X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fturing%2Fmulti_universal%2Funistep_aux.ma;h=8033c222627b6123481c324d528aab44652260aa;hb=31790e8f6fa051f710f41e4c17d67701874ba331;hp=ed15669e02edf83710b9ccd458f9431a1b588408;hpb=3a9c3c16e7c7e3a35640a0afa53f044a4f87ed65;p=helm.git diff --git a/matita/matita/lib/turing/multi_universal/unistep_aux.ma b/matita/matita/lib/turing/multi_universal/unistep_aux.ma index ed15669e0..8033c2226 100644 --- a/matita/matita/lib/turing/multi_universal/unistep_aux.ma +++ b/matita/matita/lib/turing/multi_universal/unistep_aux.ma @@ -9,59 +9,19 @@ \ / GNU General Public License Version 2 V_____________________________________________________________*) -include "turing/multi_universal/moves_2.ma". -include "turing/multi_universal/match.ma". -include "turing/multi_universal/copy.ma". +include "turing/auxiliary_machines.ma". +include "turing/auxiliary_multi_machines.ma". include "turing/multi_universal/alphabet.ma". include "turing/multi_universal/tuples.ma". -(* - - in.obj : ... x ... - ^ - in.cfg : ... ? ? ... - ^ - - out.cfg : ... 1 x ... - ^ - - --------------------- - current (in.obj) = None - - in.cfg : ... ? ? ... - ^ - - out.cfg : ... 0 0 ... - ^ - - obj_to_cfg ≝ - move_l(cfg); - move_l(cfg); - (if (current(in.obj)) == None - then write(0,cfg); - move_r(cfg); - write(0,cfg); - else write(1,cfg); - move_r(cfg); - copy_step(obj,cfg); - move_l(obj);) - move_to_end_l(cfg); - move_r(cfg); - - - cfg_to_obj -*) definition obj ≝ (0:DeqNat). definition cfg ≝ (1:DeqNat). definition prg ≝ (2:DeqNat). definition obj_to_cfg ≝ - mmove cfg FSUnialpha 2 L · (ifTM ?? (inject_TM ? (test_null ?) 2 obj) - (copy_step obj cfg FSUnialpha 2 · - mmove cfg FSUnialpha 2 L · - mmove obj FSUnialpha 2 L) + (copy_char_N obj cfg FSUnialpha 2) (inject_TM ? (write FSUnialpha null) 2 cfg) tc_true) · inject_TM ? (move_to_end FSUnialpha L) 2 cfg · @@ -69,7 +29,7 @@ definition obj_to_cfg ≝ definition R_obj_to_cfg ≝ λt1,t2:Vector (tape FSUnialpha) 3. ∀c,ls. - nth cfg ? t1 (niltape ?) = mk_tape FSUnialpha (c::ls) (None ?) [ ] → + nth cfg ? t1 (niltape ?) = midtape ? ls c [ ] → (∀lso,x,rso.nth obj ? t1 (niltape ?) = midtape FSUnialpha lso x rso → t2 = change_vec ?? t1 (mk_tape ? [ ] (option_hd ? (reverse ? (x::ls))) (tail ? (reverse ? (x::ls)))) cfg) ∧ @@ -77,22 +37,18 @@ definition R_obj_to_cfg ≝ λt1,t2:Vector (tape FSUnialpha) 3. t2 = change_vec ?? t1 (mk_tape ? [ ] (option_hd FSUnialpha (reverse ? (null::ls))) (tail ? (reverse ? (null::ls)))) cfg). - -axiom sem_move_to_end_l : ∀sig. move_to_end sig L ⊨ R_move_to_end_l sig. + +(* axiom accRealize_to_Realize : ∀sig,n.∀M:mTM sig n.∀Rtrue,Rfalse,acc. M ⊨ [ acc: Rtrue, Rfalse ] → M ⊨ Rtrue ∪ Rfalse. +*) lemma eq_mk_tape_rightof : ∀alpha,a,al.mk_tape alpha (a::al) (None ?) [ ] = rightof ? a al. #alpha #a #al % qed. -axiom daemon : ∀P:Prop.P. - -definition option_cons ≝ λsig.λc:option sig.λl. - match c with [ None ⇒ l | Some c0 ⇒ c0::l ]. - lemma tape_move_mk_tape_R : ∀sig,ls,c,rs. (c = None ? → ls = [ ] ∨ rs = [ ]) → @@ -103,70 +59,110 @@ lemma tape_move_mk_tape_R : normalize // qed. +lemma None_or_Some: ∀A.∀a. a =None A ∨ ∃b. a = Some ? b. +#A * /2/ #a %2 %{a} % +qed. + +lemma not_None_to_Some: ∀A.∀a. a ≠ None A → ∃b. a = Some ? b. +#A * /2/ * #H @False_ind @H % +qed. + lemma sem_obj_to_cfg : obj_to_cfg ⊨ R_obj_to_cfg. -@(sem_seq_app FSUnialpha 2 ????? (sem_move_multi ? 2 cfg L ?) - (sem_seq ?????? - (sem_if ?????????? - (sem_test_null_multi ?? obj ?) - (sem_seq ?????? (accRealize_to_Realize … (sem_copy_step …)) - (sem_seq ?????? (sem_move_multi ? 2 cfg L ?) - (sem_move_multi ? 2 obj L ?))) - (sem_inject ???? cfg ? (sem_write FSUnialpha null))) - (sem_seq ?????? (sem_inject ???? cfg ? (sem_move_to_end_l ?)) - (sem_move_multi ? 2 cfg R ?)))) // -#ta #tb * -#tc * whd in ⊢ (%→?); #Htc * -#td * * -[ * #te * * #Hcurtc #Hte - * destruct (Hte) #te * * - [ whd in ⊢ (%→%→?); * #x * #y * * -Hcurtc #Hcurtc1 #Hcurtc2 #Hte - * #tf * whd in ⊢ (%→%→?); #Htf #Htd - * #tg * * * whd in ⊢ (%→%→%→%→?); #Htg1 #Htg2 #Htg3 #Htb - #c #ls #Hta1 % - [ #lso #x0 #rso #Hta2 >Hta1 in Htc; >eq_mk_tape_rightof - whd in match (tape_move ???); #Htc - cut (tg = change_vec ?? td (mk_tape ? [ ] (None ?) (reverse ? ls@[x])) cfg) - [@daemon] -Htg1 -Htg2 -Htg3 #Htg destruct (Htg Htf Hte Htd Htc Htb) - >change_vec_change_vec >change_vec_change_vec - >change_vec_commute // >change_vec_change_vec - >change_vec_commute [|@sym_not_eq //] >change_vec_change_vec - >change_vec_commute // >change_vec_change_vec - >nth_change_vec // >nth_change_vec_neq [|@sym_not_eq //] - >nth_change_vec // >nth_change_vec_neq [|@sym_not_eq //] - >change_vec_commute [|@sym_not_eq //] @eq_f3 // - [ >Hta2 cases rso in Hta2; whd in match (tape_move_mono ???); - [ #Hta2 whd in match (tape_move ???); tape_move_mk_tape_R [| #_ % %] >reverse_cons - >nth_change_vec_neq in Hcurtc1; [|@sym_not_eq //] >Hta2 - normalize in ⊢ (%→?); #H destruct (H) % - ] - | #Hta2 >Htc in Hcurtc1; >nth_change_vec_neq [| @sym_not_eq //] - >Hta2 #H destruct (H) +@(sem_seq_app FSUnialpha 2 ????? + (sem_if ?????????? + (sem_test_null_multi ?? obj ?) + (sem_copy_char_N …) + (sem_inject ???? cfg ? (sem_write FSUnialpha null))) + (sem_seq ?????? (sem_inject ???? cfg ? (sem_move_to_end_l ?)) + (sem_move_multi ? 2 cfg R ?))) // +#ta #tout * +#tb * #Hif * #tc * #HM2 #HM3 #c #ls #Hcfg +(* Hif *) +cases Hif -Hif +[ * #t1 * * #Hcurta #Ht1 destruct (Ht1) + lapply (not_None_to_Some … Hcurta) * #curta #Hcurtaeq + whd in ⊢ (%→?); #Htb % [2: #Hcur @False_ind /2/] + #lso #xo #rso #Hobjta cases HM2 whd in ⊢ (%→?); * #_ + #HM2 #Heq >Htb in HM2; >nth_change_vec [2: @leb_true_to_le %] + >Hcfg >Hcurtaeq #HM2 lapply (HM2 … (refl ??)) -HM2 + whd in match (left ??); whd in match (right ??); + >reverse_cons #Htc >HM3 @(eq_vec … (niltape ?)) #i #lei2 + cases (le_to_or_lt_eq … (le_S_S_to_le …lei2)) + [#lei1 cases (le_to_or_lt_eq … (le_S_S_to_le …lei1)) + [#lei0 lapply(le_n_O_to_eq … (le_S_S_to_le …lei0)) #eqi nth_change_vec_neq [2:@eqb_false_to_not_eq %] + <(Heq 0) [2:@eqb_false_to_not_eq %] >Htb + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [%|2:@eqb_false_to_not_eq %] + |#Hi >Hi >nth_change_vec // >nth_change_vec // >Htc + >Hobjta in Hcurtaeq; whd in ⊢ (??%?→?); #Htmp destruct(Htmp) + >tape_move_mk_tape_R [2: #_ %1 %] % ] - | * #Hcurtc0 #Hte #_ #_ #c #ls #Hta1 >Hta1 in Htc; >eq_mk_tape_rightof - whd in match (tape_move ???); #Htc >Htc in Hcurtc0; * - [ >Htc in Hcurtc; >nth_change_vec_neq [|@sym_not_eq //] - #Hcurtc #Hcurtc0 >Hcurtc0 in Hcurtc; * #H @False_ind @H % - | >nth_change_vec // normalize in ⊢ (%→?); #H destruct (H) ] + |#Hi >Hi >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + <(Heq 2) [2:@eqb_false_to_not_eq %] >Htb + >nth_change_vec_neq [%|2:@eqb_false_to_not_eq %] + ] +| * #t1 * * #Hcurta #Ht1 destruct (Ht1) + * whd in ⊢ (%→?); #Htb lapply (Htb … Hcfg) -Htb #Htb + #Htbeq % + [#lso #xo #rso #Hmid @False_ind >Hmid in Hcurta; + whd in ⊢ (??%?→?); #Htmp destruct (Htmp)] + #_ cases HM2 whd in ⊢ (%→?); * #_ + #HM2 #Heq >Htb in HM2; #HM2 lapply (HM2 … (refl ??)) -HM2 + #Htc >HM3 @(eq_vec … (niltape ?)) #i #lei2 + cases (le_to_or_lt_eq … (le_S_S_to_le …lei2)) + [#lei1 cases (le_to_or_lt_eq … (le_S_S_to_le …lei1)) + [#lei0 lapply(le_n_O_to_eq … (le_S_S_to_le …lei0)) #eqi nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + <(Heq 0) [2:@eqb_false_to_not_eq %] >Htb + <(Htbeq 0) [2:@eqb_false_to_not_eq %] % + |#Hi >Hi >nth_change_vec // >nth_change_vec // >Htc + >tape_move_mk_tape_R [2: #_ %1 %] >reverse_cons % + ] + |#Hi >Hi >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + <(Heq 2) [2:@eqb_false_to_not_eq %] + <(Htbeq 2) [%|@eqb_false_to_not_eq %] ] -| * #te * * #Hcurtc #Hte - * whd in ⊢ (%→%→?); #Htd1 #Htd2 - * #tf * * * #Htf1 #Htf2 #Htf3 whd in ⊢ (%→?); #Htb - #c #ls #Hta1 % - [ #lso #x #rso #Hta2 >Htc in Hcurtc; >nth_change_vec_neq [|@sym_not_eq //] - >Hta2 normalize in ⊢ (%→?); #H destruct (H) - | #_ >Hta1 in Htc; >eq_mk_tape_rightof whd in match (tape_move ???); #Htc - destruct (Hte) cut (td = change_vec ?? tc (midtape ? ls null []) cfg) - [@daemon] -Htd1 -Htd2 #Htd - -Htf1 cut (tf = change_vec ?? td (mk_tape ? [ ] (None ?) (reverse ? ls@[null])) cfg) - [@daemon] -Htf2 -Htf3 #Htf destruct (Htf Htd Htc Htb) - >change_vec_change_vec >change_vec_change_vec >change_vec_change_vec - >change_vec_change_vec >change_vec_change_vec >nth_change_vec // - >reverse_cons >tape_move_mk_tape_R /2/ ] ] qed. +(* another semantics for obj_to_cfg *) +definition low_char' ≝ λc. + match c with + [ None ⇒ null + | Some b ⇒ if (is_bit b) then b else null + ]. + +lemma low_char_option : ∀s. + low_char' (option_map FinBool FSUnialpha bit s) = low_char s. +* // +qed. + +definition R_obj_to_cfg1 ≝ λt1,t2:Vector (tape FSUnialpha) 3. + ∀c,ls. + nth cfg ? t1 (niltape ?) = midtape ? ls c [ ] → + let x ≝ current ? (nth obj ? t1 (niltape ?)) in + (∀b. x= Some ? b → is_bit b = true) → + t2 = change_vec ?? t1 + (mk_tape ? [ ] (option_hd FSUnialpha (reverse ? (low_char' x::ls))) + (tail ? (reverse ? (low_char' x::ls)))) cfg. + +lemma sem_obj_to_cfg1: obj_to_cfg ⊨ R_obj_to_cfg1. +@(Realize_to_Realize … sem_obj_to_cfg) #t1 #t2 #Hsem +#c #ls #Hcfg lapply(Hsem c ls Hcfg) * #HSome #HNone #Hb +cases (None_or_Some ? (current ? (nth obj ? t1 (niltape ?)))) + [#Hcur >Hcur @HNone @Hcur + |* #b #Hb1 >Hb1 + cut (low_char' (Some ? b) = b) [whd in ⊢ (??%?); >(Hb b Hb1) %] #Hlow >Hlow + lapply(current_to_midtape … Hb1) * #lsobj * #rsobj #Hmid + @(HSome … Hmid) + ] +qed. + +(* test_null_char *) definition test_null_char ≝ test_char FSUnialpha (λc.c == null). definition R_test_null_char_true ≝ λt1,t2. @@ -190,83 +186,25 @@ lemma sem_test_null_char : | tape_move_multi_def @eq_f2 // ->pmap_change >pmap_change tape_move_null_action @eq_f2 // @eq_f2 -[ >change_vec_same % -| >change_vec_same >change_vec_same // ] -qed. - -lemma sem_copy_char: - ∀src,dst,sig,n.src ≠ dst → src < S n → dst < S n → - copy_char src dst sig n ⊨ R_copy_char src dst sig n. -#src #dst #sig #n #Hneq #Hsrc #Hdst #int -%{2} % [| % [ % | whd >copy_char_q0_q1 // ]] -qed. - definition cfg_to_obj ≝ mmove cfg FSUnialpha 2 L · (ifTM ?? (inject_TM ? test_null_char 2 cfg) (nop ? 2) - (copy_char cfg obj FSUnialpha 2 · - mmove cfg FSUnialpha 2 L · - mmove obj FSUnialpha 2 L) - tc_true) · + (copy_char_N cfg obj FSUnialpha 2) + tc_true). +(* · inject_TM ? (move_to_end FSUnialpha L) 2 cfg · - mmove cfg FSUnialpha 2 R. + mmove cfg FSUnialpha 2 R. *) definition R_cfg_to_obj ≝ λt1,t2:Vector (tape FSUnialpha) 3. ∀c,ls. nth cfg ? t1 (niltape ?) = mk_tape FSUnialpha (c::ls) (None ?) [ ] → - (c = null → - t2 = change_vec ?? t1 - (mk_tape ? [ ] (option_hd FSUnialpha (reverse ? (c::ls))) - (tail ? (reverse ? (c::ls)))) cfg) ∧ + (c = null → t2 = change_vec ?? t1 (midtape ? ls c [ ]) cfg) ∧ (c ≠ null → t2 = change_vec ?? (change_vec ?? t1 (midtape ? (left ? (nth obj ? t1 (niltape ?))) c (right ? (nth obj ? t1 (niltape ?)))) obj) - (mk_tape ? [ ] (option_hd ? (reverse ? (c::ls))) (tail ? (reverse ? (c::ls)))) cfg). + (midtape ? ls c [ ]) cfg). lemma tape_move_mk_tape_L : ∀sig,ls,c,rs. @@ -280,65 +218,37 @@ qed. lemma sem_cfg_to_obj : cfg_to_obj ⊨ R_cfg_to_obj. @(sem_seq_app FSUnialpha 2 ????? (sem_move_multi ? 2 cfg L ?) - (sem_seq ?????? - (sem_if ?????????? - (acc_sem_inject ?????? cfg ? sem_test_null_char) - (sem_nop …) - (sem_seq ?????? (sem_copy_char …) - (sem_seq ?????? (sem_move_multi ? 2 cfg L ?) (sem_move_multi ? 2 obj L ?)))) - (sem_seq ?????? (sem_inject ???? cfg ? (sem_move_to_end_l ?)) - (sem_move_multi ? 2 cfg R ?)))) // [@sym_not_eq //] + (sem_if ?????????? + (acc_sem_inject ?????? cfg ? sem_test_null_char) + (sem_nop …) + (sem_copy_char_N …))) +// [@sym_not_eq //] #ta #tb * #tc * whd in ⊢ (%→?); #Htc * -#td * * -[ * #te * * * #Hcurtc #Hte1 #Hte2 whd in ⊢ (%→?); #Htd destruct (Htd) - * #tf * * * #Htf1 #Htf2 #Htf3 - whd in ⊢ (%→?); #Htb +[ * #te * * * #Hcurtc #Hte1 #Hte2 whd in ⊢ (%→?); #Htb destruct (Htb) #c #ls #Hta % [ #Hc >Hta in Htc; >eq_mk_tape_rightof whd in match (tape_move ???); #Htc - cut (te = tc) [@daemon] -Hte1 -Hte2 #Hte - cut (tf = change_vec ? 3 te (mk_tape ? [ ] (None ?) (reverse ? ls@[c])) cfg) - [@daemon] -Htf1 -Htf2 -Htf3 #Htf - destruct (Htf Hte Htc Htb) - >change_vec_change_vec >change_vec_change_vec >change_vec_change_vec - >nth_change_vec // >tape_move_mk_tape_R [| #_ % % ] - >reverse_cons % - | #Hc >Hta in Htc; >eq_mk_tape_rightof whd in match (tape_move ???); #Htc - >Htc in Hcurtc; >nth_change_vec // normalize in ⊢ (%→?); - #H destruct (H) @False_ind cases Hc /2/ ] - * #tf * * + cut (te = tc) + [ lapply (eq_vec_change_vec ??????? (sym_eq … Hte1) Hte2) >change_vec_same // ] + -Hte1 -Hte2 #Hte // + | #Hc >Hta in Htc; >eq_mk_tape_rightof whd in match (tape_move ???); #Htc + >Htc in Hcurtc; >nth_change_vec // normalize in ⊢ (%→?); + #H destruct (H) @False_ind cases Hc /2/ ] | * #te * * * #Hcurtc #Hte1 #Hte2 - * #tf * whd in ⊢ (%→?); #Htf - * #tg * whd in ⊢ (%→%→?); #Htg #Htd - * #th * * * #Hth1 #Hth2 #Hth3 - whd in ⊢ (%→?); #Htb + whd in ⊢ (%→?); #Htb #c #ls #Hta % #Hc - [ >Htc in Hcurtc; >Hta >nth_change_vec // >tape_move_mk_tape_L // - >Hc normalize in ⊢ (%→?); * #H @False_ind /2/ - | cut (te = tc) [ @daemon ] -Hte1 -Hte2 #Hte - cut (th = change_vec ?? td (mk_tape ? [ ] (None ?) (reverse ? ls@[c])) cfg) - [@daemon] -Hth1 -Hth2 -Hth3 #Hth - destruct (Hth Hte Hta Htb Htd Htg Htc Htf) - >change_vec_change_vec >change_vec_change_vec - >change_vec_commute // >change_vec_change_vec - >change_vec_commute [|@sym_not_eq //] >change_vec_change_vec - >change_vec_commute // >change_vec_change_vec - >nth_change_vec // >nth_change_vec_neq [|@sym_not_eq //] - >nth_change_vec // >nth_change_vec_neq [|@sym_not_eq //] - >change_vec_commute [|@sym_not_eq //] - @eq_f3 // - [ >Hta >tape_move_mk_tape_L // >nth_change_vec // whd in match (current ??); - @eq_f2 // cases (nth obj ? ta (niltape ?)) - [| #r0 #rs0 | #l0 #ls0 | #ls0 #c0 #rs0 ] try % - cases rs0 // - | >reverse_cons >tape_move_mk_tape_R // #_ % % ] + [ >Htc in Hcurtc; >Hta >nth_change_vec // + normalize in ⊢ (%→?); * #H @False_ind /2/ + | cut (te = tc) + [ lapply (eq_vec_change_vec ??????? (sym_eq … Hte1) Hte2) + >change_vec_same // ] -Hte1 -Hte2 #Hte destruct (Hte) + >Hta in Htc; whd in match (tape_move ???); #Htc + >Htc in Htb; >nth_change_vec // + >nth_change_vec_neq [2:@eqb_false_to_not_eq //] >Hta + #Htb @Htb ] -] qed. -(* macchina che muove il nastro obj a destra o sinistra a seconda del valore - del current di prg, che codifica la direzione in cui ci muoviamo *) - definition char_to_move ≝ λc.match c with [ bit b ⇒ if b then R else L | _ ⇒ N]. @@ -346,7 +256,58 @@ definition char_to_move ≝ λc.match c with definition char_to_bit_option ≝ λc.match c with [ bit b ⇒ Some ? (bit b) | _ ⇒ None ?]. - + +definition R_cfg_to_obj1 ≝ λt1,t2:Vector (tape FSUnialpha) 3. + ∀c,ls. + nth cfg ? t1 (niltape ?) = mk_tape FSUnialpha (c::ls) (None ?) [ ] → + c ≠ bar → + let new_obj ≝ + tape_write ? (nth obj ? t1 (niltape ?)) (char_to_bit_option c) in + t2 = change_vec ?? + (change_vec ?? t1 + (tape_write ? (nth obj ? t1 (niltape ?)) (char_to_bit_option c)) obj) + (midtape ? ls c [ ]) cfg. + +lemma sem_cfg_to_obj1: cfg_to_obj ⊨ R_cfg_to_obj1. +@(Realize_to_Realize … sem_cfg_to_obj) #t1 #t2 #H #c #ls #Hcfg #Hbar +cases (H c ls Hcfg) cases (true_or_false (c==null)) #Hc + [#Ht2 #_ >(Ht2 (\P Hc)) -Ht2 @(eq_vec … (niltape ?)) + #i #lei2 cases (le_to_or_lt_eq … (le_S_S_to_le …lei2)) + [#lei1 cases (le_to_or_lt_eq … (le_S_S_to_le …lei1)) + [#lei0 lapply(le_n_O_to_eq … (le_S_S_to_le …lei0)) #eqi nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq in ⊢ (???%); [2:@eqb_false_to_not_eq %] + >nth_change_vec // >(\P Hc) % + |#Hi >Hi >nth_change_vec // + ] + |#Hi >Hi >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] % + ] + |#_ #Ht2 >(Ht2 (\Pf Hc)) -Ht2 @(eq_vec … (niltape ?)) + #i #lei2 cases (le_to_or_lt_eq … (le_S_S_to_le …lei2)) + [#lei1 cases (le_to_or_lt_eq … (le_S_S_to_le …lei1)) + [#lei0 lapply(le_n_O_to_eq … (le_S_S_to_le …lei0)) #eqi nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq in ⊢ (???%); [2:@eqb_false_to_not_eq %] + >nth_change_vec // >nth_change_vec // + lapply (\bf Hbar) lapply Hc elim c // + [whd in ⊢ (??%?→?); #H destruct (H) + |#_ whd in ⊢ (??%?→?); #H destruct (H) + ] + |#Hi >Hi >nth_change_vec // + ] + |#Hi >Hi >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] % + ] + ] +qed. + + +(* macchina che muove il nastro obj a destra o sinistra a seconda del valore + del current di prg, che codifica la direzione in cui ci muoviamo *) + definition tape_move_obj : mTM FSUnialpha 2 ≝ ifTM ?? (inject_TM ? (test_char ? (λc:FSUnialpha.c == bit false)) 2 prg) @@ -379,17 +340,24 @@ lemma sem_tape_move_obj' : tape_move_obj ⊨ R_tape_move_obj'. cases HR -HR [ * #tb * * * * #c * #Hcurta_prg #Hc lapply (\P Hc) -Hc #Hc #Htb1 #Htb2 whd in ⊢ (%→%); #Houtc >Houtc -Houtc % [ % - [ >Hcurta_prg #H destruct (H) >(?:tb = ta) [|@daemon] % + [ >Hcurta_prg #H destruct (H) >(?:tb = ta) + [| lapply (eq_vec_change_vec ??????? Htb1 Htb2) + >change_vec_same // ] % | >Hcurta_prg #H destruct (H) destruct (Hc) ] | >Hcurta_prg >Hc * #H @False_ind /2/ ] -| * #tb * * * #Hnotfalse #Htb1 #Htb2 cut (tb = ta) [@daemon] -Htb1 -Htb2 - #Htb destruct (Htb) * +| * #tb * * * #Hnotfalse #Htb1 #Htb2 cut (tb = ta) + [ lapply (eq_vec_change_vec ??????? Htb1 Htb2) + >change_vec_same // ] -Htb1 -Htb2 #Htb destruct (Htb) * [ * #tc * * * * #c * #Hcurta_prg #Hc lapply (\P Hc) -Hc #Hc #Htc1 #Htc2 whd in ⊢ (%→%); #Houtc >Houtc -Houtc % [ % [ >Hcurta_prg #H destruct (H) destruct (Hc) - | >Hcurta_prg #H destruct (H) >(?:tc = ta) [|@daemon] % ] + | >Hcurta_prg #H destruct (H) >(?:tc = ta) + [| lapply (eq_vec_change_vec ??????? Htc1 Htc2) + >change_vec_same // ] % ] | >Hcurta_prg >Hc #_ * #H @False_ind /2/ ] - | * #tc * * * #Hnottrue #Htc1 #Htc2 cut (tc = ta) [@daemon] -Htc1 -Htc2 + | * #tc * * * #Hnottrue #Htc1 #Htc2 cut (tc = ta) + [ lapply (eq_vec_change_vec ??????? Htc1 Htc2) + >change_vec_same // ] -Htc1 -Htc2 #Htc destruct (Htc) whd in ⊢ (%→?); #Houtc % [ % [ #Hcurta_prg lapply (\Pf (Hnotfalse ? Hcurta_prg)) * #H @False_ind /2/ | #Hcurta_prg lapply (\Pf (Hnottrue ? Hcurta_prg)) * #H @False_ind /2/ ] @@ -413,204 +381,141 @@ lemma sem_tape_move_obj : tape_move_obj ⊨ R_tape_move_obj. ] qed. -definition restart_tape ≝ λi. - inject_TM ? (move_to_end FSUnialpha L) 2 i · - mmove i FSUnialpha 2 R. - -definition unistep ≝ - match_m cfg prg FSUnialpha 2 · - restart_tape cfg · copy prg cfg FSUnialpha 2 · - cfg_to_obj · tape_move_obj · restart_tape prg · obj_to_cfg. - -(* -definition legal_tape ≝ λn,l,h,t. - ∃state,char,table. - nth cfg ? t1 (niltape ?) = midtape ? [ ] bar (state@[char]) → - is_config n (bar::state@[char]) → - nth prg ? t1 (niltape ?) = midtape ? [ ] bar table → - bar::table = table_TM n l h → *) - -definition list_of_tape ≝ λsig,t. - left sig t@option_cons ? (current ? t) (right ? t). - -definition low_char' ≝ λc. - match c with - [ None ⇒ null - | Some b ⇒ if (is_bit b) then b else null - ]. - -lemma low_char_option : ∀s. - low_char' (option_map FinBool FSUnialpha bit s) = low_char s. -* // -qed. - -definition R_unistep ≝ λn,l,h.λt1,t2: Vector ? 3. - ∀state,char,table. - (* cfg *) - nth cfg ? t1 (niltape ?) = midtape ? [ ] bar (state@[char]) → - is_config n (bar::state@[char]) → - (* prg *) - nth prg ? t1 (niltape ?) = midtape ? [ ] bar table → - bar::table = table_TM n l h → - (* obj *) - only_bits (list_of_tape ? (nth obj ? t1 (niltape ?))) → - let conf ≝ (bar::state@[char]) in - (∃ll,lr.bar::table = ll@conf@lr) → -(* - ∃nstate,nchar,m,t. tuple_encoding n h t = (conf@nstate@[nchar;m]) ∧ - mem ? t l ∧ *) - ∀nstate,nchar,m,t. - tuple_encoding n h t = (conf@nstate@[nchar;m])→ - mem ? t l → - let new_obj ≝ - tape_move_mono ? (nth obj ? t1 (niltape ?)) - 〈char_to_bit_option nchar,char_to_move m〉 in - let next_char ≝ low_char' (current ? new_obj) in - t2 = - change_vec ?? - (change_vec ?? t1 (midtape ? [ ] bar (nstate@[next_char])) cfg) - new_obj obj. - -definition tape_map ≝ λA,B:FinSet.λf:A→B.λt. - mk_tape B (map ?? f (left ? t)) - (option_map ?? f (current ? t)) - (map ?? f (right ? t)). - -lemma map_list_of_tape: ∀A,B,f,t. - list_of_tape B (tape_map ?? f t) = map ?? f (list_of_tape A t). -#A #B #f * // normalize // #ls #c #rs list_of_midtape + >append_cons list_of_midtape >list_of_midtape + >reverse_cons >associative_append % + |(* midtape, move R *) #ls #c * + [>list_of_midtape >list_of_rightof >reverse_cons % + |#a #rs >list_of_midtape >list_of_midtape >reverse_cons + >associative_append % + ] + ] qed. -lemma low_char_current : ∀t. - low_char' (current FSUnialpha (tape_map FinBool FSUnialpha bit t)) - = low_char (current FinBool t). -* // qed. - -definition low_tapes: ∀M:normalTM.∀c:nconfig (no_states M).Vector ? 3 ≝ -λM:normalTM.λc:nconfig (no_states M).Vector_of_list ? - [tape_map ?? bit (ctape ?? c); - midtape ? [ ] bar - ((bits_of_state ? (nhalt M) (cstate ?? c))@[low_char (current ? (ctape ?? c))]); - midtape ? [ ] bar (tail ? (table_TM ? (graph_enum ?? (ntrans M)) (nhalt M))) - ]. - -lemma obj_low_tapes: ∀M,c. - nth obj ? (low_tapes M c) (niltape ?) = tape_map ?? bit (ctape ?? c). -// qed. - -lemma cfg_low_tapes: ∀M,c. - nth cfg ? (low_tapes M c) (niltape ?) = - midtape ? [ ] bar - ((bits_of_state ? (nhalt M) (cstate ?? c))@[low_char (current ? (ctape ?? c))]). -// qed. - -lemma prg_low_tapes: ∀M,c. - nth prg ? (low_tapes M c) (niltape ?) = - midtape ? [ ] bar (tail ? (table_TM ? (graph_enum ?? (ntrans M)) (nhalt M))). -// qed. - -(* commutation lemma for write *) -lemma map_write: ∀t,cout. - tape_write ? (tape_map FinBool ? bit t) (char_to_bit_option (low_char cout)) - = tape_map ?? bit (tape_write ? t cout). -#t * // #b whd in match (char_to_bit_option ?); -whd in ⊢ (??%%); @eq_f3 [elim t // | // | elim t //] +lemma list_of_tape_write: ∀sig,cond,t,c. +(∀b. c = Some ? b → cond b =true) → +(∀x. mem ? x (list_of_tape ? t) → cond x =true ) → +∀x. mem ? x (list_of_tape sig (tape_write ? t c)) → cond x =true. +#sig #cond #t #c #Hc #Htape #x lapply Hc cases c + [(* c is None *) #_ whd in match (tape_write ???); @Htape + |#b #Hb lapply (Hb … (refl ??)) -Hb #Hb + whd in match (tape_write ???); >list_of_midtape + #Hx cases(mem_append ???? Hx) -Hx + [#Hx @Htape @mem_append_l1 @Hx + |* [//] + #Hx @Htape @mem_append_l2 cases (current sig t) + [@Hx | #c1 %2 @Hx] + ] + ] qed. - -(* commutation lemma for moves *) -lemma map_move: ∀t,m. - tape_move ? (tape_map FinBool ? bit t) (char_to_move (low_mv m)) - = tape_map ?? bit (tape_move ? t m). -#t * // whd in match (char_to_move ?); - [cases t // * // | cases t // #ls #a * //] + +lemma current_in_list: ∀sig,t,b. + current sig t = Some ? b → mem ? b (list_of_tape sig t). +#sig #t #b cases t + [whd in ⊢ (??%?→?); #Htmp destruct + |#l #b whd in ⊢ (??%?→?); #Htmp destruct + |#l #b whd in ⊢ (??%?→?); #Htmp destruct + |#ls #c #rs whd in ⊢ (??%?→?); #Htmp destruct + >list_of_midtape @mem_append_l2 % % + ] qed. -(* commutation lemma for actions *) -lemma map_action: ∀t,cout,m. - tape_move ? (tape_write ? (tape_map FinBool ? bit t) - (char_to_bit_option (low_char cout))) (char_to_move (low_mv m)) - = tape_map ?? bit (tape_move ? (tape_write ? t cout) m). -#t #cout #m >map_write >map_move % -qed. - -lemma map_move_mono: ∀t,cout,m. - tape_move_mono ? (tape_map FinBool ? bit t) - 〈char_to_bit_option (low_char cout), char_to_move (low_mv m)〉 - = tape_map ?? bit (tape_move_mono ? t 〈cout,m〉). -@map_action -qed. - -definition R_unistep_high ≝ λM:normalTM.λt1,t2. -∀c:nconfig (no_states M). - t1 = low_tapes M c → - t2 = low_tapes M (step ? M c). - -lemma R_unistep_equiv : ∀M,t1,t2. - R_unistep (no_states M) (graph_enum ?? (ntrans M)) (nhalt M) t1 t2 → - R_unistep_high M t1 t2. -#M #t1 #t2 #H whd whd in match (nconfig ?); #c #Ht1 -lapply (initial_bar ? (nhalt M) (graph_enum ?? (ntrans M)) (nTM_nog ?)) #Htable -(* tup = current tuple *) -cut (∃t.t = 〈〈cstate … c,current ? (ctape … c)〉, - ntrans M 〈cstate … c,current ? (ctape … c)〉〉) [% //] * #tup #Htup -(* tup is in the graph *) -cut (mem ? tup (graph_enum ?? (ntrans M))) - [@memb_to_mem >Htup @(graph_enum_complete … (ntrans M)) %] #Hingraph -(* tupe target = 〈qout,cout,m〉 *) -lapply (decomp_target ? (ntrans M 〈cstate … c,current ? (ctape … c)〉)) -* #qout * #cout * #m #Htg >Htg in Htup; #Htup -(* new config *) -cut (step FinBool M c = mk_config ?? qout (tape_move ? (tape_write ? (ctape … c) cout) m)) - [>(config_expand … c) whd in ⊢ (??%?); (* >Htg ?? why not?? *) - cut (trans ? M 〈cstate … c, current ? (ctape … c)〉 = 〈qout,cout,m〉) [Heq1 %] #Hstep -(* new state *) -cut (cstate ?? (step FinBool M c) = qout) [>Hstep %] #Hnew_state -(* new tape *) -cut (ctape ?? (step FinBool M c) = tape_move ? (tape_write ? (ctape … c) cout) m) - [>Hstep %] #Hnew_tape -lapply(H (bits_of_state ? (nhalt M) (cstate ?? c)) - (low_char (current ? (ctape ?? c))) - (tail ? (table_TM ? (graph_enum ?? (ntrans M)) (nhalt M))) - ??????) -[Htable1 @eq_f Htup - whd in ⊢ (??%?); @eq_f >associative_append % -|>Ht1 >obj_low_tapes >map_list_of_tape elim (list_of_tape ??) - [#b @False_ind | #b #tl #Hind #a * [#Ha >Ha //| @Hind]] -|@sym_eq @Htable -|>Ht1 % -|%{(bits_of_state ? (nhalt M) (cstate ?? c))} %{(low_char (current ? (ctape ?? c)))} - % [% [% [// | cases (current ??) normalize [|#b] % #Hd destruct (Hd)] - |>length_map whd in match (length ??); @eq_f //] - |//] -|>Ht1 >cfg_low_tapes //] -H #H -lapply(H (bits_of_state … (nhalt M) qout) (low_char … cout) - (low_mv … m) tup ? Hingraph) - [>Htup whd in ⊢ (??%?); @eq_f >associative_append %] -H -#Ht2 @(eq_vec ? 3 ?? (niltape ?) ?) >Ht2 #i #Hi -cases (le_to_or_lt_eq … (le_S_S_to_le … Hi)) -Hi #Hi - [cases (le_to_or_lt_eq … (le_S_S_to_le … Hi)) -Hi #Hi - [cases (le_to_or_lt_eq … (le_S_S_to_le … Hi)) -Hi #Hi - [@False_ind /2/ - |>Hi >obj_low_tapes >nth_change_vec // - >Ht1 >obj_low_tapes >Hstep @map_action - ] - |>Hi >cfg_low_tapes >nth_change_vec_neq - [|% whd in ⊢ (??%?→?); #H destruct (H)] - >nth_change_vec // >Hnew_state @eq_f @eq_f >Hnew_tape - @eq_f2 [|2:%] >Ht1 >obj_low_tapes >map_move_mono >low_char_current % - ] - |(* program tapes do not change *) - >Hi >prg_low_tapes - >nth_change_vec_neq [|% whd in ⊢ (??%?→?); #H destruct (H)] - >nth_change_vec_neq [|% whd in ⊢ (??%?→?); #H destruct (H)] - >Ht1 >prg_low_tapes // - ] -qed. +definition restart_tape ≝ λi,n. + mmove i FSUnialpha n L · + inject_TM ? (move_to_end FSUnialpha L) n i · + mmove i FSUnialpha n R. - - - \ No newline at end of file +definition R_restart_tape ≝ λi,n.λint,outt:Vector (tape FSUnialpha) (S n). + ∀t.t = nth i ? int (niltape ?) → + outt = change_vec ?? int + (mk_tape ? [ ] (option_hd ? (list_of_tape ? t)) (tail ? (list_of_tape ? t))) i. + +lemma sem_restart_tape : ∀i,n.i < S n → restart_tape i n ⊨ R_restart_tape i n. +#i #n #Hleq +@(sem_seq_app ??????? (sem_move_multi ? n i L ?) + (sem_seq ?????? (sem_inject ???? i ? (sem_move_to_end_l ?)) + (sem_move_multi ? n i R ?))) [1,2,3:@le_S_S_to_le //] +#ta #tb * #tc * whd in ⊢ (%→?); #Htc +* #td * * * #Htd1 #Htd2 #Htd3 +whd in ⊢ (%→?); #Htb * +[ #Hta_i Htc >nth_change_vec // + | @Htd3 ] ] + (* >Htc in Htd1; >nth_change_vec // *) -Htd1 -Htd2 -Htd3 + #Htd >Htd in Htb; >Htc >change_vec_change_vec >nth_change_vec // + #Htb >Htb % +| #r0 #rs0 #Hta_i Htc >nth_change_vec // + | @Htd3 ] ] + (* >Htc in Htd1; >nth_change_vec // *) -Htd1 -Htd2 -Htd3 + #Htd >Htd in Htb; >Htc >change_vec_change_vec >nth_change_vec // + #Htb >Htb % +| #l0 #ls0 #Hta_i Htc >nth_change_vec // + | #j #Hij >nth_change_vec_neq // @Htd3 // ]] + #Htd >Htd in Htb; >Htc >change_vec_change_vec >change_vec_change_vec + >nth_change_vec // #Htb >Htb <(reverse_reverse ? ls0) in ⊢ (???%); + cases (reverse ? ls0) + [ % + | #l1 #ls1 >reverse_cons + >(?: list_of_tape ? (rightof ? l0 (reverse ? ls1@[l1])) = + l1::ls1@[l0]) + [|change with (reverse ??@?) in ⊢ (??%?); + whd in match (left ??); >reverse_cons >reverse_append + whd in ⊢ (??%?); @eq_f >reverse_reverse normalize >append_nil % ] % ] +| * + [ #c #rs #Hta_i Htc >nth_change_vec // + | @Htd3 ] ] + (* >Htc in Htd1; >nth_change_vec // *) -Htd1 -Htd2 -Htd3 + #Htd >Htd in Htb; >Htc >change_vec_change_vec >nth_change_vec // + #Htb >Htb % + | #l0 #ls0 #c #rs #Hta_i Htc >nth_change_vec // + | @Htd3 ] ] + #Htd >Htd in Htb; >Htc >change_vec_change_vec >change_vec_change_vec + >nth_change_vec // #Htb >Htb <(reverse_reverse ? ls0) in ⊢ (???%); + cases (reverse ? ls0) + [ % + | #l1 #ls1 >reverse_cons + >(?: list_of_tape ? (midtape ? (l0::reverse ? ls1@[l1]) c rs) = + l1::ls1@l0::c::rs) + [|change with (reverse ??@?) in ⊢ (??%?); + whd in match (left ??); >reverse_cons >reverse_append + whd in ⊢ (??%?); @eq_f >reverse_reverse normalize + >associative_append % ] % ] + ] +] +qed.