X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Fturing%2Fmulti_universal%2Funistep_aux.ma;h=bb730a558bfa4ac58c8c0827f0033c6f901259ee;hb=7e96e893e0ebea2589f619fab861bf9984cff989;hp=3f4ed69db02f1a7f333ca40f64414003ec2c380d;hpb=a1dd5e64f21738a3f9ee1f635affeb9033e90954;p=helm.git diff --git a/matita/matita/lib/turing/multi_universal/unistep_aux.ma b/matita/matita/lib/turing/multi_universal/unistep_aux.ma index 3f4ed69db..bb730a558 100644 --- a/matita/matita/lib/turing/multi_universal/unistep_aux.ma +++ b/matita/matita/lib/turing/multi_universal/unistep_aux.ma @@ -52,70 +52,13 @@ include "turing/multi_universal/tuples.ma". cfg_to_obj *) -definition copy_char_states ≝ initN 3. - -definition cc0 : copy_states ≝ mk_Sig ?? 0 (leb_true_to_le 1 3 (refl …)). -definition cc1 : copy_states ≝ mk_Sig ?? 1 (leb_true_to_le 2 3 (refl …)). - -definition trans_copy_char ≝ - λsrc,dst.λsig:FinSet.λn. - λp:copy_char_states × (Vector (option sig) (S n)). - let 〈q,a〉 ≝ p in - match pi1 … q with - [ O ⇒ 〈cc1,change_vec ? (S n) - (change_vec ? (S n) (null_action ? n) (〈None ?,R〉) src) - (〈nth src ? a (None ?),R〉) dst〉 - | S _ ⇒ 〈cc1,null_action ? n〉 ]. - -definition copy_char ≝ - λsrc,dst,sig,n. - mk_mTM sig n copy_char_states (trans_copy_char src dst sig n) - cc0 (λq.q == cc1). - -definition R_copy_char ≝ - λsrc,dst,sig,n.λint,outt: Vector (tape sig) (S n). - outt = change_vec ?? - (change_vec ?? int - (tape_move_mono ? (nth src ? int (niltape ?)) 〈None ?, R〉) src) - (tape_move_mono ? (nth dst ? int (niltape ?)) - 〈current ? (nth src ? int (niltape ?)), R〉) dst. - -lemma copy_char_q0_q1 : - ∀src,dst,sig,n,v.src ≠ dst → src < S n → dst < S n → - step sig n (copy_char src dst sig n) (mk_mconfig ??? cc0 v) = - mk_mconfig ??? cc1 - (change_vec ? (S n) - (change_vec ?? v - (tape_move_mono ? (nth src ? v (niltape ?)) 〈None ?, R〉) src) - (tape_move_mono ? (nth dst ? v (niltape ?)) 〈current ? (nth src ? v (niltape ?)), R〉) dst). -#src #dst #sig #n #v #Heq #Hsrc #Hdst -whd in ⊢ (??%?); -<(change_vec_same … v dst (niltape ?)) in ⊢ (??%?); -<(change_vec_same … v src (niltape ?)) in ⊢ (??%?); ->tape_move_multi_def @eq_f2 // ->pmap_change >pmap_change tape_move_null_action @eq_f2 // @eq_f2 -[ >change_vec_same % -| >change_vec_same >change_vec_same // ] -qed. - -lemma sem_copy_char: - ∀src,dst,sig,n.src ≠ dst → src < S n → dst < S n → - copy_char src dst sig n ⊨ R_copy_char src dst sig n. -#src #dst #sig #n #Hneq #Hsrc #Hdst #int -%{2} % [| % [ % | whd >copy_char_q0_q1 // ]] -qed. - definition obj ≝ (0:DeqNat). definition cfg ≝ (1:DeqNat). definition prg ≝ (2:DeqNat). definition obj_to_cfg ≝ - mmove cfg FSUnialpha 2 L · (ifTM ?? (inject_TM ? (test_null ?) 2 obj) - (copy_char obj cfg FSUnialpha 2 · - mmove cfg FSUnialpha 2 L · - mmove obj FSUnialpha 2 L) + (copy_char_N obj cfg FSUnialpha 2) (inject_TM ? (write FSUnialpha null) 2 cfg) tc_true) · inject_TM ? (move_to_end FSUnialpha L) 2 cfg · @@ -123,7 +66,7 @@ definition obj_to_cfg ≝ definition R_obj_to_cfg ≝ λt1,t2:Vector (tape FSUnialpha) 3. ∀c,ls. - nth cfg ? t1 (niltape ?) = mk_tape FSUnialpha (c::ls) (None ?) [ ] → + nth cfg ? t1 (niltape ?) = midtape ? ls c [ ] → (∀lso,x,rso.nth obj ? t1 (niltape ?) = midtape FSUnialpha lso x rso → t2 = change_vec ?? t1 (mk_tape ? [ ] (option_hd ? (reverse ? (x::ls))) (tail ? (reverse ? (x::ls)))) cfg) ∧ @@ -131,7 +74,7 @@ definition R_obj_to_cfg ≝ λt1,t2:Vector (tape FSUnialpha) 3. t2 = change_vec ?? t1 (mk_tape ? [ ] (option_hd FSUnialpha (reverse ? (null::ls))) (tail ? (reverse ? (null::ls)))) cfg). - + axiom accRealize_to_Realize : ∀sig,n.∀M:mTM sig n.∀Rtrue,Rfalse,acc. M ⊨ [ acc: Rtrue, Rfalse ] → M ⊨ Rtrue ∪ Rfalse. @@ -161,69 +104,69 @@ lemma eq_vec_change_vec : ∀sig,n.∀v1,v2:Vector sig n.∀i,t,d. | >nth_change_vec_neq [|@sym_not_eq //] @sym_eq @H2 @sym_not_eq // ] qed. +lemma not_None_to_Some: ∀A.∀a. a ≠ None A → ∃b. a = Some ? b. +#A * /2/ * #H @False_ind @H % +qed. + lemma sem_obj_to_cfg : obj_to_cfg ⊨ R_obj_to_cfg. -@(sem_seq_app FSUnialpha 2 ????? (sem_move_multi ? 2 cfg L ?) - (sem_seq ?????? - (sem_if ?????????? - (sem_test_null_multi ?? obj ?) - (sem_seq ?????? (sem_copy_char …) - (sem_seq ?????? (sem_move_multi ? 2 cfg L ?) - (sem_move_multi ? 2 obj L ?))) - (sem_inject ???? cfg ? (sem_write FSUnialpha null))) - (sem_seq ?????? (sem_inject ???? cfg ? (sem_move_to_end_l ?)) - (sem_move_multi ? 2 cfg R ?)))) // -#ta #tb * -#tc * whd in ⊢ (%→?); #Htc * -#td * * -[ * #te * * #Hcurtc #Hte - * destruct (Hte) #te * whd in ⊢ (%→?); #Hte - cut (∃x.current ? (nth obj ? tc (niltape ?)) = Some ? x) - [ cases (current ? (nth obj ? tc (niltape ?))) in Hcurtc; - [ * #H @False_ind /2/ | #x #_ %{x} % ] ] * #x #Hcurtc' -(* [ whd in ⊢ (%→%→?); * #x * #y * * -Hcurtc #Hcurtc1 #Hcurtc2 #Hte *) - * #tf * whd in ⊢ (%→%→?); #Htf #Htd - * #tg * * * whd in ⊢ (%→%→%→%→?); #Htg1 #Htg2 #Htg3 #Htb - #c #ls #Hta1 % - [ #lso #x0 #rso #Hta2 >Hta1 in Htc; >eq_mk_tape_rightof - whd in match (tape_move ???); #Htc - cut (tg = change_vec ?? td (mk_tape ? [ ] (None ?) (reverse ? ls@[x])) cfg) - [ lapply (eq_vec_change_vec ??????? (Htg2 ls x [ ] ?) Htg3) // - >Htd >nth_change_vec_neq // >Htf >nth_change_vec // - >Hte >Hcurtc' >nth_change_vec // >Htc >nth_change_vec // ] - -Htg1 -Htg2 -Htg3 #Htg destruct - >change_vec_change_vec >change_vec_change_vec - >change_vec_commute // >change_vec_change_vec - >change_vec_commute [|@sym_not_eq //] >change_vec_change_vec - >change_vec_commute // >change_vec_change_vec - >nth_change_vec // >nth_change_vec_neq [|@sym_not_eq //] - >nth_change_vec // >nth_change_vec_neq [|@sym_not_eq //] - >change_vec_commute [|@sym_not_eq //] @eq_f3 // - [ >Hta2 cases rso in Hta2; whd in match (tape_move_mono ???); - [ #Hta2 whd in match (tape_move ???); tape_move_mk_tape_R [| #_ % %] >reverse_cons - >nth_change_vec_neq in Hcurtc'; [|@sym_not_eq //] >Hta2 - normalize in ⊢ (%→?); #H destruct (H) % - ] - | #Hta2 >Htc in Hcurtc'; >nth_change_vec_neq [| @sym_not_eq //] - >Hta2 #H destruct (H) +@(sem_seq_app FSUnialpha 2 ????? + (sem_if ?????????? + (sem_test_null_multi ?? obj ?) + (sem_copy_char_N …) + (sem_inject ???? cfg ? (sem_write FSUnialpha null))) + (sem_seq ?????? (sem_inject ???? cfg ? (sem_move_to_end_l ?)) + (sem_move_multi ? 2 cfg R ?))) // +#ta #tout * +#tb * #Hif * #tc * #HM2 #HM3 #c #ls #Hcfg +(* Hif *) +cases Hif -Hif +[ * #t1 * * #Hcurta #Ht1 destruct (Ht1) + lapply (not_None_to_Some … Hcurta) * #curta #Hcurtaeq + whd in ⊢ (%→?); #Htb % [2: #Hcur @False_ind /2/] + #lso #xo #rso #Hobjta cases HM2 whd in ⊢ (%→?); * #_ + #HM2 #Heq >Htb in HM2; >nth_change_vec [2: @leb_true_to_le %] + >Hcfg >Hcurtaeq #HM2 lapply (HM2 … (refl ??)) -HM2 + whd in match (left ??); whd in match (right ??); + >reverse_cons #Htc >HM3 @(eq_vec … (niltape ?)) #i #lei2 + cases (le_to_or_lt_eq … (le_S_S_to_le …lei2)) + [#lei1 cases (le_to_or_lt_eq … (le_S_S_to_le …lei1)) + [#lei0 lapply(le_n_O_to_eq … (le_S_S_to_le …lei0)) #eqi nth_change_vec_neq [2:@eqb_false_to_not_eq %] + <(Heq 0) [2:@eqb_false_to_not_eq %] >Htb + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [%|2:@eqb_false_to_not_eq %] + |#Hi >Hi >nth_change_vec // >nth_change_vec // >Htc + >Hobjta in Hcurtaeq; whd in ⊢ (??%?→?); #Htmp destruct(Htmp) + >tape_move_mk_tape_R [2: #_ %1 %] % + ] + |#Hi >Hi >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + <(Heq 2) [2:@eqb_false_to_not_eq %] >Htb + >nth_change_vec_neq [%|2:@eqb_false_to_not_eq %] + ] +| * #t1 * * #Hcurta #Ht1 destruct (Ht1) + * whd in ⊢ (%→?); #Htb lapply (Htb … Hcfg) -Htb #Htb + #Htbeq % + [#lso #xo #rso #Hmid @False_ind >Hmid in Hcurta; + whd in ⊢ (??%?→?); #Htmp destruct (Htmp)] + #_ cases HM2 whd in ⊢ (%→?); * #_ + #HM2 #Heq >Htb in HM2; #HM2 lapply (HM2 … (refl ??)) -HM2 + #Htc >HM3 @(eq_vec … (niltape ?)) #i #lei2 + cases (le_to_or_lt_eq … (le_S_S_to_le …lei2)) + [#lei1 cases (le_to_or_lt_eq … (le_S_S_to_le …lei1)) + [#lei0 lapply(le_n_O_to_eq … (le_S_S_to_le …lei0)) #eqi nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + <(Heq 0) [2:@eqb_false_to_not_eq %] >Htb + <(Htbeq 0) [2:@eqb_false_to_not_eq %] % + |#Hi >Hi >nth_change_vec // >nth_change_vec // >Htc + >tape_move_mk_tape_R [2: #_ %1 %] >reverse_cons % ] -| * #te * * #Hcurtc #Hte - * whd in ⊢ (%→%→?); #Htd1 #Htd2 - * #tf * * * #Htf1 #Htf2 #Htf3 whd in ⊢ (%→?); #Htb - #c #ls #Hta1 % - [ #lso #x #rso #Hta2 >Htc in Hcurtc; >nth_change_vec_neq [|@sym_not_eq //] - >Hta2 normalize in ⊢ (%→?); #H destruct (H) - | #_ >Hta1 in Htc; >eq_mk_tape_rightof whd in match (tape_move ???); #Htc - destruct (Hte) cut (td = change_vec ?? tc (midtape ? ls null []) cfg) - [ lapply (eq_vec_change_vec ??????? (Htd1 ls c [ ] ?) Htd2) // - >Htc >nth_change_vec // ] -Htd1 -Htd2 #Htd - -Htf1 cut (tf = change_vec ?? td (mk_tape ? [ ] (None ?) (reverse ? ls@[null])) cfg) - [ lapply (eq_vec_change_vec ??????? (Htf2 ls null [ ] ?) Htf3) // - >Htd >nth_change_vec // ] -Htf2 -Htf3 #Htf destruct (Htf Htd Htc Htb) - >change_vec_change_vec >change_vec_change_vec >change_vec_change_vec - >change_vec_change_vec >change_vec_change_vec >nth_change_vec // - >reverse_cons >tape_move_mk_tape_R /2/ ] + |#Hi >Hi >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + <(Heq 2) [2:@eqb_false_to_not_eq %] + <(Htbeq 2) [%|@eqb_false_to_not_eq %] + ] ] qed. @@ -254,25 +197,21 @@ definition cfg_to_obj ≝ mmove cfg FSUnialpha 2 L · (ifTM ?? (inject_TM ? test_null_char 2 cfg) (nop ? 2) - (copy_char cfg obj FSUnialpha 2 · - mmove cfg FSUnialpha 2 L · - mmove obj FSUnialpha 2 L) - tc_true) · + (copy_char_N cfg obj FSUnialpha 2) + tc_true). +(* · inject_TM ? (move_to_end FSUnialpha L) 2 cfg · - mmove cfg FSUnialpha 2 R. + mmove cfg FSUnialpha 2 R. *) definition R_cfg_to_obj ≝ λt1,t2:Vector (tape FSUnialpha) 3. ∀c,ls. nth cfg ? t1 (niltape ?) = mk_tape FSUnialpha (c::ls) (None ?) [ ] → - (c = null → - t2 = change_vec ?? t1 - (mk_tape ? [ ] (option_hd FSUnialpha (reverse ? (c::ls))) - (tail ? (reverse ? (c::ls)))) cfg) ∧ + (c = null → t2 = change_vec ?? t1 (midtape ? ls c [ ]) cfg) ∧ (c ≠ null → t2 = change_vec ?? (change_vec ?? t1 (midtape ? (left ? (nth obj ? t1 (niltape ?))) c (right ? (nth obj ? t1 (niltape ?)))) obj) - (mk_tape ? [ ] (option_hd ? (reverse ? (c::ls))) (tail ? (reverse ? (c::ls)))) cfg). + (midtape ? ls c [ ]) cfg). lemma tape_move_mk_tape_L : ∀sig,ls,c,rs. @@ -286,73 +225,37 @@ qed. lemma sem_cfg_to_obj : cfg_to_obj ⊨ R_cfg_to_obj. @(sem_seq_app FSUnialpha 2 ????? (sem_move_multi ? 2 cfg L ?) - (sem_seq ?????? - (sem_if ?????????? - (acc_sem_inject ?????? cfg ? sem_test_null_char) - (sem_nop …) - (sem_seq ?????? (sem_copy_char …) - (sem_seq ?????? (sem_move_multi ? 2 cfg L ?) (sem_move_multi ? 2 obj L ?)))) - (sem_seq ?????? (sem_inject ???? cfg ? (sem_move_to_end_l ?)) - (sem_move_multi ? 2 cfg R ?)))) // [@sym_not_eq //] + (sem_if ?????????? + (acc_sem_inject ?????? cfg ? sem_test_null_char) + (sem_nop …) + (sem_copy_char_N …))) +// [@sym_not_eq //] #ta #tb * #tc * whd in ⊢ (%→?); #Htc * -#td * * -[ * #te * * * #Hcurtc #Hte1 #Hte2 whd in ⊢ (%→?); #Htd destruct (Htd) - * #tf * * * #Htf1 #Htf2 #Htf3 - whd in ⊢ (%→?); #Htb +[ * #te * * * #Hcurtc #Hte1 #Hte2 whd in ⊢ (%→?); #Htb destruct (Htb) #c #ls #Hta % [ #Hc >Hta in Htc; >eq_mk_tape_rightof whd in match (tape_move ???); #Htc cut (te = tc) [ lapply (eq_vec_change_vec ??????? (sym_eq … Hte1) Hte2) >change_vec_same // ] - -Hte1 -Hte2 #Hte - cut (tf = change_vec ? 3 te (mk_tape ? [ ] (None ?) (reverse ? ls@[c])) cfg) - [ lapply (eq_vec_change_vec ??????? (Htf2 ls c [ ] ?) Htf3) // - >Hte >Htc >nth_change_vec // ] -Htf1 -Htf2 -Htf3 #Htf - destruct (Htf Hte Htc Htb) - >change_vec_change_vec >change_vec_change_vec >change_vec_change_vec - >nth_change_vec // >tape_move_mk_tape_R [| #_ % % ] - >reverse_cons % - | #Hc >Hta in Htc; >eq_mk_tape_rightof whd in match (tape_move ???); #Htc - >Htc in Hcurtc; >nth_change_vec // normalize in ⊢ (%→?); - #H destruct (H) @False_ind cases Hc /2/ ] - * #tf * * + -Hte1 -Hte2 #Hte // + | #Hc >Hta in Htc; >eq_mk_tape_rightof whd in match (tape_move ???); #Htc + >Htc in Hcurtc; >nth_change_vec // normalize in ⊢ (%→?); + #H destruct (H) @False_ind cases Hc /2/ ] | * #te * * * #Hcurtc #Hte1 #Hte2 - * #tf * whd in ⊢ (%→?); #Htf - * #tg * whd in ⊢ (%→%→?); #Htg #Htd - * #th * * * #Hth1 #Hth2 #Hth3 - whd in ⊢ (%→?); #Htb + whd in ⊢ (%→?); #Htb #c #ls #Hta % #Hc - [ >Htc in Hcurtc; >Hta >nth_change_vec // >tape_move_mk_tape_L // - >Hc normalize in ⊢ (%→?); * #H @False_ind /2/ + [ >Htc in Hcurtc; >Hta >nth_change_vec // + normalize in ⊢ (%→?); * #H @False_ind /2/ | cut (te = tc) [ lapply (eq_vec_change_vec ??????? (sym_eq … Hte1) Hte2) - >change_vec_same // ] -Hte1 -Hte2 #Hte - cut (th = change_vec ?? td (mk_tape ? [ ] (None ?) (reverse ? ls@[c])) cfg) - [ lapply (eq_vec_change_vec ??????? (Hth2 ls c [ ] ?) Hth3) // - >Htd >nth_change_vec_neq // >Htg >nth_change_vec // - >Htf >nth_change_vec_neq // >nth_change_vec // - >Hte >Htc >nth_change_vec // >Hta // ] -Hth1 -Hth2 -Hth3 #Hth - destruct (Hth Hte Hta Htb Htd Htg Htc Htf) - >change_vec_change_vec >change_vec_change_vec - >change_vec_commute // >change_vec_change_vec - >change_vec_commute [|@sym_not_eq //] >change_vec_change_vec - >change_vec_commute // >change_vec_change_vec - >nth_change_vec // >nth_change_vec_neq [|@sym_not_eq //] - >nth_change_vec // >nth_change_vec_neq [|@sym_not_eq //] - >change_vec_commute [|@sym_not_eq //] - @eq_f3 // - [ >Hta >tape_move_mk_tape_L // >nth_change_vec // whd in match (current ??); - @eq_f2 // cases (nth obj ? ta (niltape ?)) - [| #r0 #rs0 | #l0 #ls0 | #ls0 #c0 #rs0 ] try % - cases rs0 // - | >reverse_cons >tape_move_mk_tape_R // #_ % % ] + >change_vec_same // ] -Hte1 -Hte2 #Hte destruct (Hte) + >Hta in Htc; whd in match (tape_move ???); #Htc + >Htc in Htb; >nth_change_vec // + >nth_change_vec_neq [2:@eqb_false_to_not_eq //] >Hta + #Htb @Htb ] -] qed. -(* macchina che muove il nastro obj a destra o sinistra a seconda del valore - del current di prg, che codifica la direzione in cui ci muoviamo *) - definition char_to_move ≝ λc.match c with [ bit b ⇒ if b then R else L | _ ⇒ N]. @@ -360,7 +263,58 @@ definition char_to_move ≝ λc.match c with definition char_to_bit_option ≝ λc.match c with [ bit b ⇒ Some ? (bit b) | _ ⇒ None ?]. - + +definition R_cfg_to_obj1 ≝ λt1,t2:Vector (tape FSUnialpha) 3. + ∀c,ls. + nth cfg ? t1 (niltape ?) = mk_tape FSUnialpha (c::ls) (None ?) [ ] → + c ≠ bar → + let new_obj ≝ + tape_write ? (nth obj ? t1 (niltape ?)) (char_to_bit_option c) in + t2 = change_vec ?? + (change_vec ?? t1 + (tape_write ? (nth obj ? t1 (niltape ?)) (char_to_bit_option c)) obj) + (midtape ? ls c [ ]) cfg. + +lemma sem_cfg_to_obj1: cfg_to_obj ⊨ R_cfg_to_obj1. +@(Realize_to_Realize … sem_cfg_to_obj) #t1 #t2 #H #c #ls #Hcfg #Hbar +cases (H c ls Hcfg) cases (true_or_false (c==null)) #Hc + [#Ht2 #_ >(Ht2 (\P Hc)) -Ht2 @(eq_vec … (niltape ?)) + #i #lei2 cases (le_to_or_lt_eq … (le_S_S_to_le …lei2)) + [#lei1 cases (le_to_or_lt_eq … (le_S_S_to_le …lei1)) + [#lei0 lapply(le_n_O_to_eq … (le_S_S_to_le …lei0)) #eqi nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq in ⊢ (???%); [2:@eqb_false_to_not_eq %] + >nth_change_vec // >(\P Hc) % + |#Hi >Hi >nth_change_vec // + ] + |#Hi >Hi >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] % + ] + |#_ #Ht2 >(Ht2 (\Pf Hc)) -Ht2 @(eq_vec … (niltape ?)) + #i #lei2 cases (le_to_or_lt_eq … (le_S_S_to_le …lei2)) + [#lei1 cases (le_to_or_lt_eq … (le_S_S_to_le …lei1)) + [#lei0 lapply(le_n_O_to_eq … (le_S_S_to_le …lei0)) #eqi nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq in ⊢ (???%); [2:@eqb_false_to_not_eq %] + >nth_change_vec // >nth_change_vec // + lapply (\bf Hbar) lapply Hc elim c // + [whd in ⊢ (??%?→?); #H destruct (H) + |#_ whd in ⊢ (??%?→?); #H destruct (H) + ] + |#Hi >Hi >nth_change_vec // + ] + |#Hi >Hi >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] + >nth_change_vec_neq [2:@eqb_false_to_not_eq %] % + ] + ] +qed. + + +(* macchina che muove il nastro obj a destra o sinistra a seconda del valore + del current di prg, che codifica la direzione in cui ci muoviamo *) + definition tape_move_obj : mTM FSUnialpha 2 ≝ ifTM ?? (inject_TM ? (test_char ? (λc:FSUnialpha.c == bit false)) 2 prg) @@ -502,287 +456,3 @@ whd in ⊢ (%→?); #Htb * ] qed. -definition unistep ≝ - match_m cfg prg FSUnialpha 2 · - restart_tape cfg 2 · mmove cfg ? 2 R · copy prg cfg FSUnialpha 2 · - cfg_to_obj · tape_move_obj · restart_tape prg 2 · obj_to_cfg. - -(* -definition legal_tape ≝ λn,l,h,t. - ∃state,char,table. - nth cfg ? t1 (niltape ?) = midtape ? [ ] bar (state@[char]) → - is_config n (bar::state@[char]) → - nth prg ? t1 (niltape ?) = midtape ? [ ] bar table → - bar::table = table_TM n l h → *) - -definition low_char' ≝ λc. - match c with - [ None ⇒ null - | Some b ⇒ if (is_bit b) then b else null - ]. - -lemma low_char_option : ∀s. - low_char' (option_map FinBool FSUnialpha bit s) = low_char s. -* // -qed. - -definition R_unistep ≝ λn,l,h.λt1,t2: Vector ? 3. - ∀state,char,table. - (* cfg *) - nth cfg ? t1 (niltape ?) = midtape ? [ ] bar (state@[char]) → - is_config n (bar::state@[char]) → - (* prg *) - nth prg ? t1 (niltape ?) = midtape ? [ ] bar table → - bar::table = table_TM n l h → - (* obj *) - only_bits (list_of_tape ? (nth obj ? t1 (niltape ?))) → - let conf ≝ (bar::state@[char]) in - (∃ll,lr.bar::table = ll@conf@lr) → -(* - ∃nstate,nchar,m,t. tuple_encoding n h t = (conf@nstate@[nchar;m]) ∧ - mem ? t l ∧ *) - ∀nstate,nchar,m,t. - tuple_encoding n h t = (conf@nstate@[nchar;m])→ - mem ? t l → - let new_obj ≝ - tape_move_mono ? (nth obj ? t1 (niltape ?)) - 〈char_to_bit_option nchar,char_to_move m〉 in - let next_char ≝ low_char' (current ? new_obj) in - t2 = - change_vec ?? - (change_vec ?? t1 (midtape ? [ ] bar (nstate@[next_char])) cfg) - new_obj obj. - -lemma lt_obj : obj < 3. // qed. -lemma lt_cfg : cfg < 3. // qed. -lemma lt_prg : prg < 3. // qed. - -definition R_copy_strict ≝ - λsrc,dst,sig,n.λint,outt: Vector (tape sig) (S n). - ((current ? (nth src ? int (niltape ?)) = None ? ∨ - current ? (nth dst ? int (niltape ?)) = None ?) → outt = int) ∧ - (∀ls,x,x0,rs,ls0,rs0. - nth src ? int (niltape ?) = midtape sig ls x rs → - nth dst ? int (niltape ?) = midtape sig ls0 x0 rs0 → - |rs0| ≤ |rs| → - (∃rs1,rs2.rs = rs1@rs2 ∧ |rs1| = |rs0| ∧ - outt = change_vec ?? - (change_vec ?? int - (mk_tape sig (reverse sig rs1@x::ls) (option_hd sig rs2) - (tail sig rs2)) src) - (mk_tape sig (reverse sig rs1@x::ls0) (None sig) []) dst)). - -axiom sem_copy_strict : ∀src,dst,sig,n. src ≠ dst → src < S n → dst < S n → - copy src dst sig n ⊨ R_copy_strict src dst sig n. - -lemma sem_unistep : ∀n,l,h.unistep ⊨ R_unistep n l h. -#n #l #h -@(sem_seq_app ??????? (sem_match_m cfg prg FSUnialpha 2 ???) - (sem_seq ?????? (sem_restart_tape ???) - (sem_seq ?????? (sem_move_multi ? 2 cfg R ?) - (sem_seq ?????? (sem_copy_strict prg cfg FSUnialpha 2 ???) - (sem_seq ?????? sem_cfg_to_obj - (sem_seq ?????? sem_tape_move_obj - (sem_seq ?????? (sem_restart_tape ???) sem_obj_to_cfg))))))) - /2 by le_n,sym_not_eq/ -#ta #tb #HR #state #char #table #Hta_cfg #Hcfg #Hta_prg #Htable -#Hbits_obj #Htotaltable -#nstate #nchar #m #t #Htuple #Hmatch -cases HR -HR #tc * whd in ⊢ (%→?); ->Hta_cfg #H cases (H ?? (refl ??)) -H -(* prg starts with a bar, so it's not empty *) #_ ->Hta_prg #H lapply (H ??? (refl ??)) -H * -[| cases Htotaltable #ll * #lr #H >H - #Hfalse @False_ind cases (Hfalse ll lr) #H1 @H1 //] -* #ll * #lr * #Hintable -Htotaltable #Htc -* #td * whd in ⊢ (%→?); >Htc ->nth_change_vec_neq [|@sym_not_eq //] >(nth_change_vec ?????? lt_cfg) -#Htd lapply (Htd ? (refl ??)) -Htd ->change_vec_commute [|@sym_not_eq //] >change_vec_change_vec ->(?: list_of_tape ? (mk_tape ? (reverse ? (state@[char])@[bar]) (None ?) [ ]) = - bar::state@[char]) -[|whd in ⊢ (??%?); >left_mk_tape >reverse_append >reverse_reverse - >current_mk_tape >right_mk_tape normalize >append_nil % ] -whd in ⊢ (???(???(????%?)??)→?); whd in match (tail ??); #Htd -(* move cfg to R *) -* #te * whd in ⊢ (%→?); >Htd ->change_vec_commute [|@sym_not_eq //] >change_vec_change_vec ->nth_change_vec_neq [|@sym_not_eq //] >nth_change_vec // ->Htable in Hintable; #Hintable #Hte -(* copy *) -cases (cfg_in_table_to_tuple ???? Hcfg ?? Hintable) -#newstate * #m0 * #lr0 * * #Hlr destruct (Hlr) #Hnewcfg #Hm0 -cut (∃fo,so,co.state = fo::so@[co] ∧ |so| = n) -[ @daemon ] * #fo * #so * #co * #Hstate_exp #Hsolen -cut (∃fn,sn,cn.newstate = fn::sn@[cn] ∧ |sn| = n) -[ @daemon ] * #fn * #sn * #cn * #Hnewstate_exp #Hsnlen -* #tf * * #_ >Hte >(nth_change_vec ?????? lt_prg) ->nth_change_vec_neq [|@sym_not_eq //] >(nth_change_vec ?????? lt_cfg) ->Hstate_exp >Hnewstate_exp -whd in match (mk_tape ????); whd in match (tape_move ???); -#Htf cases (Htf ?????? (refl ??) (refl ??) ?) -[| whd in match (tail ??); >length_append >length_append - >Hsolen >length_append >length_append >Hsnlen - append_cons #Hrs1rs2 #Hrs1len ->change_vec_change_vec >change_vec_commute [|@sym_not_eq //] ->change_vec_change_vec #Htf -(* cfg to obj *) -* #tg * whd in ⊢ (%→?); >Htf ->nth_change_vec_neq [|@sym_not_eq //] ->(nth_change_vec ?????? lt_cfg) -lapply (append_l1_injective ?????? Hrs1rs2) -[ >Hsnlen >Hrs1len >length_append >length_append >length_append >length_append - normalize >Hsolen >Hsnlen % ] -#Hrs1 reverse_append #Htg cases (Htg ?? (refl ??)) -Htg #Htg1 #Htg2 - - - - - -[ * - - match_m cfg prg FSUnialpha 2 · - restart_tape cfg · copy prg cfg FSUnialpha 2 · - cfg_to_obj · tape_move_obj · restart_tape prg · obj_to_cfg. - -definition tape_map ≝ λA,B:FinSet.λf:A→B.λt. - mk_tape B (map ?? f (left ? t)) - (option_map ?? f (current ? t)) - (map ?? f (right ? t)). - -lemma map_list_of_tape: ∀A,B,f,t. - list_of_tape B (tape_map ?? f t) = map ?? f (list_of_tape A t). -#A #B #f * // normalize // #ls #c #rs map_write >map_move % -qed. - -lemma map_move_mono: ∀t,cout,m. - tape_move_mono ? (tape_map FinBool ? bit t) - 〈char_to_bit_option (low_char cout), char_to_move (low_mv m)〉 - = tape_map ?? bit (tape_move_mono ? t 〈cout,m〉). -@map_action -qed. - -definition R_unistep_high ≝ λM:normalTM.λt1,t2. -∀c:nconfig (no_states M). - t1 = low_tapes M c → - t2 = low_tapes M (step ? M c). - -lemma R_unistep_equiv : ∀M,t1,t2. - R_unistep (no_states M) (graph_enum ?? (ntrans M)) (nhalt M) t1 t2 → - R_unistep_high M t1 t2. -#M #t1 #t2 #H whd whd in match (nconfig ?); #c #Ht1 -lapply (initial_bar ? (nhalt M) (graph_enum ?? (ntrans M)) (nTM_nog ?)) #Htable -(* tup = current tuple *) -cut (∃t.t = 〈〈cstate … c,current ? (ctape … c)〉, - ntrans M 〈cstate … c,current ? (ctape … c)〉〉) [% //] * #tup #Htup -(* tup is in the graph *) -cut (mem ? tup (graph_enum ?? (ntrans M))) - [@memb_to_mem >Htup @(graph_enum_complete … (ntrans M)) %] #Hingraph -(* tupe target = 〈qout,cout,m〉 *) -lapply (decomp_target ? (ntrans M 〈cstate … c,current ? (ctape … c)〉)) -* #qout * #cout * #m #Htg >Htg in Htup; #Htup -(* new config *) -cut (step FinBool M c = mk_config ?? qout (tape_move ? (tape_write ? (ctape … c) cout) m)) - [>(config_expand … c) whd in ⊢ (??%?); (* >Htg ?? why not?? *) - cut (trans ? M 〈cstate … c, current ? (ctape … c)〉 = 〈qout,cout,m〉) [Heq1 %] #Hstep -(* new state *) -cut (cstate ?? (step FinBool M c) = qout) [>Hstep %] #Hnew_state -(* new tape *) -cut (ctape ?? (step FinBool M c) = tape_move ? (tape_write ? (ctape … c) cout) m) - [>Hstep %] #Hnew_tape -lapply(H (bits_of_state ? (nhalt M) (cstate ?? c)) - (low_char (current ? (ctape ?? c))) - (tail ? (table_TM ? (graph_enum ?? (ntrans M)) (nhalt M))) - ??????) -[Htable1 @eq_f Htup - whd in ⊢ (??%?); @eq_f >associative_append % -|>Ht1 >obj_low_tapes >map_list_of_tape elim (list_of_tape ??) - [#b @False_ind | #b #tl #Hind #a * [#Ha >Ha //| @Hind]] -|@sym_eq @Htable -|>Ht1 % -|%{(bits_of_state ? (nhalt M) (cstate ?? c))} %{(low_char (current ? (ctape ?? c)))} - % [% [% [// | cases (current ??) normalize [|#b] % #Hd destruct (Hd)] - |>length_map whd in match (length ??); @eq_f //] - |//] -|>Ht1 >cfg_low_tapes //] -H #H -lapply(H (bits_of_state … (nhalt M) qout) (low_char … cout) - (low_mv … m) tup ? Hingraph) - [>Htup whd in ⊢ (??%?); @eq_f >associative_append %] -H -#Ht2 @(eq_vec ? 3 ?? (niltape ?) ?) >Ht2 #i #Hi -cases (le_to_or_lt_eq … (le_S_S_to_le … Hi)) -Hi #Hi - [cases (le_to_or_lt_eq … (le_S_S_to_le … Hi)) -Hi #Hi - [cases (le_to_or_lt_eq … (le_S_S_to_le … Hi)) -Hi #Hi - [@False_ind /2/ - |>Hi >obj_low_tapes >nth_change_vec // - >Ht1 >obj_low_tapes >Hstep @map_action - ] - |>Hi >cfg_low_tapes >nth_change_vec_neq - [|% whd in ⊢ (??%?→?); #H destruct (H)] - >nth_change_vec // >Hnew_state @eq_f @eq_f >Hnew_tape - @eq_f2 [|2:%] >Ht1 >obj_low_tapes >map_move_mono >low_char_current % - ] - |(* program tapes do not change *) - >Hi >prg_low_tapes - >nth_change_vec_neq [|% whd in ⊢ (??%?→?); #H destruct (H)] - >nth_change_vec_neq [|% whd in ⊢ (??%?→?); #H destruct (H)] - >Ht1 >prg_low_tapes // - ] -qed.