X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Flib%2Ftutorial%2Fchapter8.ma;h=ca6b973c959b7b4ef40980d36f3bff9669a203e0;hb=f66ae73597b06a5bf8b0ef82d5253bf0e5aba7fc;hp=0d6a8a431b76a09b13586fdf8522756db6d40d74;hpb=770ba48ba232d7f1782629c572820a0f1bfe4fde;p=helm.git diff --git a/matita/matita/lib/tutorial/chapter8.ma b/matita/matita/lib/tutorial/chapter8.ma index 0d6a8a431..ca6b973c9 100644 --- a/matita/matita/lib/tutorial/chapter8.ma +++ b/matita/matita/lib/tutorial/chapter8.ma @@ -1,377 +1,313 @@ -(* -Broadcasting points - -Intuitively, a regular expression e must be understood as a pointed expression with a single -point in front of it. Since however we only allow points before symbols, we must broadcast -this initial point inside e traversing all nullable subexpressions, that essentially corresponds -to the ϵ-closure operation on automata. We use the notation •(_) to denote such an operation; -its definition is the expected one: let us start discussing an example. - -Example -Let us broadcast a point inside (a + ϵ)(b*a + b)b. We start working in parallel on the -first occurrence of a (where the point stops), and on ϵ that gets traversed. We have hence -reached the end of a + ϵ and we must pursue broadcasting inside (b*a + b)b. Again, we work in -parallel on the two additive subterms b^*a and b; the first point is allowed to both enter the -star, and to traverse it, stopping in front of a; the second point just stops in front of b. -No point reached that end of b^*a + b hence no further propagation is possible. In conclusion: - •((a + ϵ)(b^*a + b)b) = 〈(•a + ϵ)((•b)^*•a + •b)b, false〉 -*) +(* +Regular Expressions + +We shall apply all the previous machinery to the study of regular languages +and the constructions of the associated finite automata. *) include "tutorial/chapter7.ma". -(* Broadcasting a point inside an item generates a pre, since the point could possibly reach -the end of the expression. -Broadcasting inside a i1+i2 amounts to broadcast in parallel inside i1 and i2. -If we define - 〈i1,b1〉 ⊕ 〈i2,b2〉 = 〈i1 + i2, b1∨ b2〉 -then, we just have •(i1+i2) = •(i1)⊕ •(i2). -*) +(* The type re of regular expressions over an alphabet $S$ is the smallest +collection of objects generated by the following constructors: *) -definition lo ≝ λS:DeqSet.λa,b:pre S.〈\fst a + \fst b,\snd a ∨ \snd b〉. -notation "a ⊕ b" left associative with precedence 60 for @{'oplus $a $b}. -interpretation "oplus" 'oplus a b = (lo ? a b). +inductive re (S: DeqSet) : Type[0] ≝ + z: re S (* empty: ∅ *) + | e: re S (* epsilon: ϵ *) + | s: S → re S (* symbol: a *) + | c: re S → re S → re S (* concatenation: e1 · e2 *) + | o: re S → re S → re S (* plus: e1 + e2 *) + | k: re S → re S. (* kleene's star: e* *) -lemma lo_def: ∀S.∀i1,i2:pitem S.∀b1,b2. 〈i1,b1〉⊕〈i2,b2〉=〈i1+i2,b1∨b2〉. -// qed. +interpretation "re epsilon" 'epsilon = (e ?). +interpretation "re or" 'plus a b = (o ? a b). +interpretation "re cat" 'middot a b = (c ? a b). +interpretation "re star" 'star a = (k ? a). -(* -Concatenation is a bit more complex. In order to broadcast a point inside i1 · i2 -we should start broadcasting it inside i1 and then proceed into i2 if and only if a -point reached the end of i1. This suggests to define •(i1 · i2) as •(i1) ▹ i2, where -e ▹ i is a general operation of concatenation between a pre and an item, defined by -cases on the boolean in e: - - 〈i1,true〉 ▹ i2 = i1 ◃ •(i_2) - 〈i1,false〉 ▹ i2 = i1 · i2 -In turn, ◃ says how to concatenate an item with a pre, that is however extremely simple: - i1 ◃ 〈i1,b〉 = 〈i_1 · i2, b〉 -Let us come to the formalized definitions: -*) +notation < "a" non associative with precedence 90 for @{ 'ps $a}. +notation > "` term 90 a" non associative with precedence 90 for @{ 'ps $a}. +interpretation "atom" 'ps a = (s ? a). -definition pre_concat_r ≝ λS:DeqSet.λi:pitem S.λe:pre S. - match e with [ mk_Prod i1 b ⇒ 〈i · i1, b〉]. - -notation "i ◃ e" left associative with precedence 60 for @{'lhd $i $e}. -interpretation "pre_concat_r" 'lhd i e = (pre_concat_r ? i e). +notation "`∅" non associative with precedence 90 for @{ 'empty }. +interpretation "empty" 'empty = (z ?). -lemma eq_to_ex_eq: ∀S.∀A,B:word S → Prop. - A = B → A =1 B. -#S #A #B #H >H #x % // qed. +(* The language sem{e} associated with the regular expression e is inductively +defined by the following function: *) -(* The behaviour of ◃ is summarized by the following, easy lemma: *) +let rec in_l (S : DeqSet) (r : re S) on r : word S → Prop ≝ +match r with +[ z ⇒ ∅ +| e ⇒ {ϵ} +| s x ⇒ { (x::[]) } +| c r1 r2 ⇒ (in_l ? r1) · (in_l ? r2) +| o r1 r2 ⇒ (in_l ? r1) ∪ (in_l ? r2) +| k r1 ⇒ (in_l ? r1) ^*]. -lemma sem_pre_concat_r : ∀S,i.∀e:pre S. - \sem{i ◃ e} =1 \sem{i} · \sem{|\fst e|} ∪ \sem{e}. -#S #i * #i1 #b1 cases b1 [2: @eq_to_ex_eq //] ->sem_pre_true >sem_cat >sem_pre_true /2/ -qed. - -(* The definition of $•(-)$ (eclose) and ▹ (pre_concat_l) are mutually recursive. -In this situation, a viable alternative that is usually simpler to reason about, -is to abstract one of the two functions with respect to the other. In particular -we abstract pre_concat_l with respect to an input bcast function from items to -pres. *) - -definition pre_concat_l ≝ λS:DeqSet.λbcast:∀S:DeqSet.pitem S → pre S.λe1:pre S.λi2:pitem S. - match e1 with - [ mk_Prod i1 b1 ⇒ match b1 with - [ true ⇒ (i1 ◃ (bcast ? i2)) - | false ⇒ 〈i1 · i2,false〉 - ] - ]. - -notation "a ▹ b" left associative with precedence 60 for @{'tril eclose $a $b}. -interpretation "item-pre concat" 'tril op a b = (pre_concat_l ? op a b). - -(* We are ready to give the formal definition of the broadcasting operation. *) - -notation "•" non associative with precedence 60 for @{eclose ?}. -let rec eclose (S: DeqSet) (i: pitem S) on i : pre S ≝ - match i with - [ pz ⇒ 〈 pz ?, false 〉 - | pe ⇒ 〈 ϵ, true 〉 - | ps x ⇒ 〈 `.x, false 〉 - | pp x ⇒ 〈 `.x, false 〉 - | po i1 i2 ⇒ •i1 ⊕ •i2 - | pc i1 i2 ⇒ •i1 ▹ i2 - | pk i ⇒ 〈(\fst (•i))^*,true〉]. - -notation "• x" non associative with precedence 60 for @{'eclose $x}. -interpretation "eclose" 'eclose x = (eclose ? x). - -(* Here are a few simple properties of ▹ and •(-) *) +notation "\sem{term 19 E}" non associative with precedence 75 for @{'in_l $E}. +interpretation "in_l" 'in_l E = (in_l ? E). +interpretation "in_l mem" 'mem w l = (in_l ? l w). -lemma pcl_true : ∀S.∀i1,i2:pitem S. - 〈i1,true〉 ▹ i2 = i1 ◃ (•i2). +lemma rsem_star : ∀S.∀r: re S. \sem{r^*} = \sem{r}^*. // qed. -lemma pcl_true_bis : ∀S.∀i1,i2:pitem S. - 〈i1,true〉 ▹ i2 = 〈i1 · \fst (•i2), \snd (•i2)〉. -#S #i1 #i2 normalize cases (•i2) // qed. -lemma pcl_false: ∀S.∀i1,i2:pitem S. - 〈i1,false〉 ▹ i2 = 〈i1 · i2, false〉. -// qed. +(* +Pointed Regular expressions + +We now introduce pointed regular expressions, that are the main tool we shall +use for the construction of the automaton. +A pointed regular expression is just a regular expression internally labelled +with some additional points. Intuitively, points mark the positions inside the +regular expression which have been reached after reading some prefix of +the input string, or better the positions where the processing of the remaining +string has to be started. Each pointed expression for $e$ represents a state of +the {\em deterministic} automaton associated with $e$; since we obviously have +only a finite number of possible labellings, the number of states of the automaton +is finite. + +Pointed regular expressions provide the tool for an algebraic revisitation of +McNaughton and Yamada's algorithm for position automata, making the proof of its +correctness, that is far from trivial, particularly clear and simple. In particular, +pointed expressions offer an appealing alternative to Brzozowski's derivatives, +avoiding their weakest point, namely the fact of being forced to quotient derivatives +w.r.t. a suitable notion of equivalence in order to get a finite number of states +(that is not essential for recognizing strings, but is crucial for comparing regular +expressions). + +Our main data structure is the notion of pointed item, that is meant whose purpose +is to encode a set of positions inside a regular expression. +The idea of formalizing pointers inside a data type by means of a labelled version +of the data type itself is probably one of the first, major lessons learned in the +formalization of the metatheory of programming languages. For our purposes, it is +enough to mark positions preceding individual characters, so we shall have two kinds +of characters •a (pp a) and a (ps a) according to the case a is pointed or not. *) + +inductive pitem (S: DeqSet) : Type[0] ≝ + pz: pitem S (* empty *) + | pe: pitem S (* epsilon *) + | ps: S → pitem S (* symbol *) + | pp: S → pitem S (* pointed sysmbol *) + | pc: pitem S → pitem S → pitem S (* concatenation *) + | po: pitem S → pitem S → pitem S (* plus *) + | pk: pitem S → pitem S. (* kleene's star *) + +(* A pointed regular expression (pre) is just a pointed item with an additional +boolean, that must be understood as the possibility to have a trailing point at +the end of the expression. As we shall see, pointed regular expressions can be +understood as states of a DFA, and the boolean indicates if +the state is final or not. *) + +definition pre ≝ λS.pitem S × bool. + +interpretation "pitem star" 'star a = (pk ? a). +interpretation "pitem or" 'plus a b = (po ? a b). +interpretation "pitem cat" 'middot a b = (pc ? a b). +notation < ".a" non associative with precedence 90 for @{ 'pp $a}. +notation > "`. term 90 a" non associative with precedence 90 for @{ 'pp $a}. +interpretation "pitem pp" 'pp a = (pp ? a). +interpretation "pitem ps" 'ps a = (ps ? a). +interpretation "pitem epsilon" 'epsilon = (pe ?). +interpretation "pitem empty" 'empty = (pz ?). + +(* The carrier $|i|$ of an item i is the regular expression obtained from i by +removing all the points. Similarly, the carrier of a pointed regular expression +is the carrier of its item. *) + +let rec forget (S: DeqSet) (l : pitem S) on l: re S ≝ + match l with + [ pz ⇒ z ? (* `∅ *) + | pe ⇒ ϵ + | ps x ⇒ `x + | pp x ⇒ `x + | pc E1 E2 ⇒ (forget ? E1) · (forget ? E2) + | po E1 E2 ⇒ (forget ? E1) + (forget ? E2) + | pk E ⇒ (forget ? E)^* ]. + +(* Already in the library +notation "| term 19 C |" with precedence 70 for @{ 'card $C }. +*) +interpretation "forget" 'card a = (forget ? a). -lemma eclose_plus: ∀S:DeqSet.∀i1,i2:pitem S. - •(i1 + i2) = •i1 ⊕ •i2. +lemma erase_dot : ∀S.∀e1,e2:pitem S. |e1 · e2| = c ? (|e1|) (|e2|). // qed. -lemma eclose_dot: ∀S:DeqSet.∀i1,i2:pitem S. - •(i1 · i2) = •i1 ▹ i2. +lemma erase_plus : ∀S.∀i1,i2:pitem S. + |i1 + i2| = |i1| + |i2|. // qed. -lemma eclose_star: ∀S:DeqSet.∀i:pitem S. - •i^* = 〈(\fst(•i))^*,true〉. +lemma erase_star : ∀S.∀i:pitem S.|i^*| = |i|^*. // qed. -(* The definition of •(-) (eclose) can then be lifted from items to pres -in the obvious way. *) +(* +Comparing items and pres + +Items and pres are very concrete datatypes: they can be effectively compared, +and enumerated. In particular, we can define a boolean equality beqitem and a proof +beqitem_true that it refects propositional equality, enriching the set (pitem S) +to a DeqSet. *) + +let rec beqitem S (i1,i2: pitem S) on i1 ≝ + match i1 with + [ pz ⇒ match i2 with [ pz ⇒ true | _ ⇒ false] + | pe ⇒ match i2 with [ pe ⇒ true | _ ⇒ false] + | ps y1 ⇒ match i2 with [ ps y2 ⇒ y1==y2 | _ ⇒ false] + | pp y1 ⇒ match i2 with [ pp y2 ⇒ y1==y2 | _ ⇒ false] + | po i11 i12 ⇒ match i2 with + [ po i21 i22 ⇒ beqitem S i11 i21 ∧ beqitem S i12 i22 + | _ ⇒ false] + | pc i11 i12 ⇒ match i2 with + [ pc i21 i22 ⇒ beqitem S i11 i21 ∧ beqitem S i12 i22 + | _ ⇒ false] + | pk i11 ⇒ match i2 with [ pk i21 ⇒ beqitem S i11 i21 | _ ⇒ false] + ]. -definition lift ≝ λS.λf:pitem S →pre S.λe:pre S. - match e with - [ mk_Prod i b ⇒ 〈\fst (f i), \snd (f i) ∨ b〉]. - -definition preclose ≝ λS. lift S (eclose S). -interpretation "preclose" 'eclose x = (preclose ? x). - -(* Obviously, broadcasting does not change the carrier of the item, -as it is easily proved by structural induction. *) - -lemma erase_bull : ∀S.∀i:pitem S. |\fst (•i)| = |i|. -#S #i elim i // - [ #i1 #i2 #IH1 #IH2 >erase_dot eclose_dot - cases (•i1) #i11 #b1 cases b1 // pcl_true_bis // - | #i1 #i2 #IH1 #IH2 >eclose_plus >(erase_plus … i1) eclose_star >(erase_star … i) (\P H) // | @(\b (refl …))] + |#x #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % normalize #H destruct + [>(\P H) // | @(\b (refl …))] + |#i11 #i12 #Hind1 #Hind2 #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % + normalize #H destruct + [cases (true_or_false (beqitem S i11 i21)) #H1 + [>(proj1 … (Hind1 i21) H1) >(proj1 … (Hind2 i22)) // >H1 in H; #H @H + |>H1 in H; normalize #abs @False_ind /2/ + ] + |>(proj2 … (Hind1 i21) (refl …)) >(proj2 … (Hind2 i22) (refl …)) // + ] + |#i11 #i12 #Hind1 #Hind2 #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % + normalize #H destruct + [cases (true_or_false (beqitem S i11 i21)) #H1 + [>(proj1 … (Hind1 i21) H1) >(proj1 … (Hind2 i22)) // >H1 in H; #H @H + |>H1 in H; normalize #abs @False_ind /2/ + ] + |>(proj2 … (Hind1 i21) (refl …)) >(proj2 … (Hind2 i22) (refl …)) // + ] + |#i3 #Hind #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i4] % + normalize #H destruct + [>(proj1 … (Hind i4) H) // |>(proj2 … (Hind i4) (refl …)) //] ] -qed. - -(* We are now ready to state the main semantic properties of ⊕, ◃ and •(-): - -sem_oplus: \sem{e1 ⊕ e2} =1 \sem{e1} ∪ \sem{e2} -sem_pcl: \sem{e1 ▹ i2} =1 \sem{e1} · \sem{|i2|} ∪ \sem{i2} -sem_bullet \sem{•i} =1 \sem{i} ∪ \sem{|i|} - -The proof of sem_oplus is straightforward. *) +qed. + +definition DeqItem ≝ λS. + mk_DeqSet (pitem S) (beqitem S) (beqitem_true S). + +(* We also add a couple of unification hints to allow the type inference system +to look at (pitem S) as the carrier of a DeqSet, and at beqitem as if it was the +equality function of a DeqSet. *) + +unification hint 0 ≔ S; + X ≟ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S) +(* ---------------------------------------- *) ⊢ + pitem S ≡ carr X. + +unification hint 0 ≔ S,i1,i2; + X ≟ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S) +(* ---------------------------------------- *) ⊢ + beqitem S i1 i2 ≡ eqb X i1 i2. + +(* +Semantics of pointed regular expressions + +The intuitive semantic of a point is to mark the position where +we should start reading the regular expression. The language associated +to a pre is the union of the languages associated with its points. *) + +let rec in_pl (S : DeqSet) (r : pitem S) on r : word S → Prop ≝ +match r with +[ pz ⇒ ∅ +| pe ⇒ ∅ +| ps _ ⇒ ∅ +| pp x ⇒ { (x::[]) } +| pc r1 r2 ⇒ (in_pl ? r1) · \sem{forget ? r2} ∪ (in_pl ? r2) +| po r1 r2 ⇒ (in_pl ? r1) ∪ (in_pl ? r2) +| pk r1 ⇒ (in_pl ? r1) · \sem{forget ? r1}^* ]. + +interpretation "in_pl" 'in_l E = (in_pl ? E). +interpretation "in_pl mem" 'mem w l = (in_pl ? l w). + +definition in_prl ≝ λS : DeqSet.λp:pre S. + if (snd ?? p) then \sem{fst ?? p} ∪ {ϵ} else \sem{fst ?? p}. + +interpretation "in_prl mem" 'mem w l = (in_prl ? l w). +interpretation "in_prl" 'in_l E = (in_prl ? E). -lemma sem_oplus: ∀S:DeqSet.∀e1,e2:pre S. - \sem{e1 ⊕ e2} =1 \sem{e1} ∪ \sem{e2}. -#S * #i1 #b1 * #i2 #b2 #w % - [cases b1 cases b2 normalize /2/ * /3/ * /3/ - |cases b1 cases b2 normalize /2/ * /3/ * /3/ - ] -qed. +(* The following, trivial lemmas are only meant for rewriting purposes. *) -(* For the others, we proceed as follow: we first prove the following -auxiliary lemma, that assumes sem_bullet: +lemma sem_pre_true : ∀S.∀i:pitem S. + \sem{〈i,true〉} = \sem{i} ∪ {ϵ}. +// qed. -sem_pcl_aux: - \sem{•i2} =1 \sem{i2} ∪ \sem{|i2|} → - \sem{e1 ▹ i2} =1 \sem{e1} · \sem{|i2|} ∪ \sem{i2}. +lemma sem_pre_false : ∀S.∀i:pitem S. + \sem{〈i,false〉} = \sem{i}. +// qed. -Then, using the previous result, we prove sem_bullet by induction -on i. Finally, sem_pcl_aux and sem_bullet give sem_pcl. *) +lemma sem_cat: ∀S.∀i1,i2:pitem S. + \sem{i1 · i2} = \sem{i1} · \sem{|i2|} ∪ \sem{i2}. +// qed. -lemma LcatE : ∀S.∀e1,e2:pitem S. - \sem{e1 · e2} = \sem{e1} · \sem{|e2|} ∪ \sem{e2}. +lemma sem_cat_w: ∀S.∀i1,i2:pitem S.∀w. + \sem{i1 · i2} w = ((\sem{i1} · \sem{|i2|}) w ∨ \sem{i2} w). // qed. -lemma sem_pcl_aux : ∀S.∀e1:pre S.∀i2:pitem S. - \sem{•i2} =1 \sem{i2} ∪ \sem{|i2|} → - \sem{e1 ▹ i2} =1 \sem{e1} · \sem{|i2|} ∪ \sem{i2}. -#S * #i1 #b1 #i2 cases b1 - [2:#th >pcl_false >sem_pre_false >sem_pre_false >sem_cat /2/ - |#H >pcl_true >sem_pre_true @(eqP_trans … (sem_pre_concat_r …)) - >erase_bull @eqP_trans [|@(eqP_union_l … H)] - @eqP_trans [|@eqP_union_l[|@union_comm ]] - @eqP_trans [|@eqP_sym @union_assoc ] /3/ - ] -qed. - -lemma minus_eps_pre_aux: ∀S.∀e:pre S.∀i:pitem S.∀A. - \sem{e} =1 \sem{i} ∪ A → \sem{\fst e} =1 \sem{i} ∪ (A - {[ ]}). -#S #e #i #A #seme -@eqP_trans [|@minus_eps_pre] -@eqP_trans [||@eqP_union_r [|@eqP_sym @minus_eps_item]] -@eqP_trans [||@distribute_substract] -@eqP_substract_r // -qed. +lemma sem_plus: ∀S.∀i1,i2:pitem S. + \sem{i1 + i2} = \sem{i1} ∪ \sem{i2}. +// qed. -theorem sem_bull: ∀S:DeqSet. ∀i:pitem S. \sem{•i} =1 \sem{i} ∪ \sem{|i|}. -#S #e elim e - [#w normalize % [/2/ | * //] - |/2/ - |#x normalize #w % [ /2/ | * [@False_ind | //]] - |#x normalize #w % [ /2/ | * // ] - |#i1 #i2 #IH1 #IH2 >eclose_dot - @eqP_trans [|@sem_pcl_aux //] >sem_cat - @eqP_trans - [|@eqP_union_r - [|@eqP_trans [|@(cat_ext_l … IH1)] @distr_cat_r]] - @eqP_trans [|@union_assoc] - @eqP_trans [||@eqP_sym @union_assoc] - @eqP_union_l // - |#i1 #i2 #IH1 #IH2 >eclose_plus - @eqP_trans [|@sem_oplus] >sem_plus >erase_plus - @eqP_trans [|@(eqP_union_l … IH2)] - @eqP_trans [|@eqP_sym @union_assoc] - @eqP_trans [||@union_assoc] @eqP_union_r - @eqP_trans [||@eqP_sym @union_assoc] - @eqP_trans [||@eqP_union_l [|@union_comm]] - @eqP_trans [||@union_assoc] /2/ - |#i #H >sem_pre_true >sem_star >erase_bull >sem_star - @eqP_trans [|@eqP_union_r [|@cat_ext_l [|@minus_eps_pre_aux //]]] - @eqP_trans [|@eqP_union_r [|@distr_cat_r]] - @eqP_trans [|@union_assoc] @eqP_union_l >erase_star - @eqP_sym @star_fix_eps - ] -qed. +lemma sem_plus_w: ∀S.∀i1,i2:pitem S.∀w. + \sem{i1 + i2} w = (\sem{i1} w ∨ \sem{i2} w). +// qed. -(* -Blank item - +lemma sem_star : ∀S.∀i:pitem S. + \sem{i^*} = \sem{i} · \sem{|i|}^*. +// qed. -As a corollary of theorem sem_bullet, given a regular expression e, we can easily -find an item with the same semantics of $e$: it is enough to get an item (blank e) -having e as carrier and no point, and then broadcast a point in it. The semantics of -(blank e) is obviously the empty language: from the point of view of the automaton, -it corresponds with the pit state. *) - -let rec blank (S: DeqSet) (i: re S) on i :pitem S ≝ - match i with - [ z ⇒ pz ? - | e ⇒ ϵ - | s y ⇒ `y - | o e1 e2 ⇒ (blank S e1) + (blank S e2) - | c e1 e2 ⇒ (blank S e1) · (blank S e2) - | k e ⇒ (blank S e)^* ]. - -lemma forget_blank: ∀S.∀e:re S.|blank S e| = e. -#S #e elim e normalize // -qed. +lemma sem_star_w : ∀S.∀i:pitem S.∀w. + \sem{i^*} w = (∃w1,w2.w1 @ w2 = w ∧ \sem{i} w1 ∧ \sem{|i|}^* w2). +// qed. -lemma sem_blank: ∀S.∀e:re S.\sem{blank S e} =1 ∅. -#S #e elim e - [1,2:@eq_to_ex_eq // - |#s @eq_to_ex_eq // - |#e1 #e2 #Hind1 #Hind2 >sem_cat - @eqP_trans [||@(union_empty_r … ∅)] - @eqP_trans [|@eqP_union_l[|@Hind2]] @eqP_union_r - @eqP_trans [||@(cat_empty_l … ?)] @cat_ext_l @Hind1 - |#e1 #e2 #Hind1 #Hind2 >sem_plus - @eqP_trans [||@(union_empty_r … ∅)] - @eqP_trans [|@eqP_union_l[|@Hind2]] @eqP_union_r @Hind1 - |#e #Hind >sem_star - @eqP_trans [||@(cat_empty_l … ?)] @cat_ext_l @Hind +(* Below are a few, simple, semantic properties of items. In particular: +- not_epsilon_item : ∀S:DeqSet.∀i:pitem S. ¬ (\sem{i} ϵ). +- epsilon_pre : ∀S.∀e:pre S. (\sem{i} ϵ) ↔ (\snd e = true). +- minus_eps_item: ∀S.∀i:pitem S. \sem{i} =1 \sem{i}-{[ ]}. +- minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} =1 \sem{e}-{[ ]}. +The first property is proved by a simple induction on $i$; the other +results are easy corollaries. We need an auxiliary lemma first. *) + +lemma append_eq_nil : ∀S.∀w1,w2:word S. w1 @ w2 = ϵ → w1 = ϵ. +#S #w1 #w2 cases w1 // #a #tl normalize #H destruct qed. + +lemma not_epsilon_lp : ∀S:DeqSet.∀e:pitem S. ¬ (ϵ ∈ e). +#S #e elim e normalize + [1,2,3:/2/ + |#x % #H destruct + |#r1 #r2 * #n1 #n2 % * /2/ * #w1 * #w2 * * #H + >(append_eq_nil …H…) /2/ + |#r1 #r2 #n1 #n2 % * /2/ + |#r #n % * #w1 * #w2 * * #H >(append_eq_nil …H…) /2/ ] qed. - -theorem re_embedding: ∀S.∀e:re S. - \sem{•(blank S e)} =1 \sem{e}. -#S #e @eqP_trans [|@sem_bull] >forget_blank -@eqP_trans [|@eqP_union_r [|@sem_blank]] -@eqP_trans [|@union_comm] @union_empty_r. -qed. - -(* -Lifted Operators - - -Plus and bullet have been already lifted from items to pres. We can now -do a similar job for concatenation ⊙ and Kleene's star ⊛.*) - -definition lifted_cat ≝ λS:DeqSet.λe:pre S. - lift S (pre_concat_l S eclose e). - -notation "e1 ⊙ e2" left associative with precedence 70 for @{'odot $e1 $e2}. -interpretation "lifted cat" 'odot e1 e2 = (lifted_cat ? e1 e2). - -lemma odot_true_b : ∀S.∀i1,i2:pitem S.∀b. - 〈i1,true〉 ⊙ 〈i2,b〉 = 〈i1 · (\fst (•i2)),\snd (•i2) ∨ b〉. -#S #i1 #i2 #b normalize in ⊢ (??%?); cases (•i2) // +lemma epsilon_to_true : ∀S.∀e:pre S. ϵ ∈ e → snd … e = true. +#S * #i #b cases b // normalize #H @False_ind /2/ qed. -lemma odot_false_b : ∀S.∀i1,i2:pitem S.∀b. - 〈i1,false〉 ⊙ 〈i2,b〉 = 〈i1 · i2 ,b〉. -// -qed. - -lemma erase_odot:∀S.∀e1,e2:pre S. - |\fst (e1 ⊙ e2)| = |\fst e1| · (|\fst e2|). -#S * #i1 * * #i2 #b2 // >odot_true_b >erase_dot // +lemma true_to_epsilon : ∀S.∀e:pre S. snd … e = true → ϵ ∈ e. +#S * #i #b #btrue normalize in btrue; >btrue %2 // qed. -(* Let us come to the star operation: *) - -definition lk ≝ λS:DeqSet.λe:pre S. - match e with - [ mk_Prod i1 b1 ⇒ - match b1 with - [true ⇒ 〈(\fst (eclose ? i1))^*, true〉 - |false ⇒ 〈i1^*,false〉 - ] - ]. - -(* notation < "a \sup ⊛" non associative with precedence 90 for @{'lk $a}.*) -interpretation "lk" 'lk a = (lk ? a). -notation "a^⊛" non associative with precedence 90 for @{'lk $a}. - -lemma ostar_true: ∀S.∀i:pitem S. - 〈i,true〉^⊛ = 〈(\fst (•i))^*, true〉. -// qed. - -lemma ostar_false: ∀S.∀i:pitem S. - 〈i,false〉^⊛ = 〈i^*, false〉. -// qed. - -lemma erase_ostar: ∀S.∀e:pre S. - |\fst (e^⊛)| = |\fst e|^*. -#S * #i * // qed. - -lemma sem_odot_true: ∀S:DeqSet.∀e1:pre S.∀i. - \sem{e1 ⊙ 〈i,true〉} =1 \sem{e1 ▹ i} ∪ { [ ] }. -#S #e1 #i -cut (e1 ⊙ 〈i,true〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ true〉) [//] -#H >H cases (e1 ▹ i) #i1 #b1 cases b1 - [>sem_pre_true @eqP_trans [||@eqP_sym @union_assoc] - @eqP_union_l /2/ - |/2/ +lemma minus_eps_item: ∀S.∀i:pitem S. \sem{i} ≐ \sem{i}-{[ ]}. +#S #i #w % + [#H whd % // normalize @(not_to_not … (not_epsilon_lp …i)) // + |* // ] qed. -lemma eq_odot_false: ∀S:DeqSet.∀e1:pre S.∀i. - e1 ⊙ 〈i,false〉 = e1 ▹ i. -#S #e1 #i -cut (e1 ⊙ 〈i,false〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ false〉) [//] -cases (e1 ▹ i) #i1 #b1 cases b1 #H @H -qed. - -(* We conclude this section with the proof of the main semantic properties -of ⊙ and ⊛. *) - -lemma sem_odot: - ∀S.∀e1,e2: pre S. \sem{e1 ⊙ e2} =1 \sem{e1}· \sem{|\fst e2|} ∪ \sem{e2}. -#S #e1 * #i2 * - [>sem_pre_true - @eqP_trans [|@sem_odot_true] - @eqP_trans [||@union_assoc] @eqP_union_r @sem_pcl_aux // - |>sem_pre_false >eq_odot_false @sem_pcl_aux // +lemma minus_eps_pre: ∀S.∀e:pre S. \sem{fst ?? e} ≐ \sem{e}-{[ ]}. +#S * #i * + [>sem_pre_true normalize in ⊢ (??%?); #w % + [/3/ | * * // #H1 #H2 @False_ind @(absurd …H1 H2)] + |>sem_pre_false normalize in ⊢ (??%?); #w % [ /3/ | * // ] ] qed. - -theorem sem_ostar: ∀S.∀e:pre S. - \sem{e^⊛} =1 \sem{e} · \sem{|\fst e|}^*. -#S * #i #b cases b - [>sem_pre_true >sem_pre_true >sem_star >erase_bull - @eqP_trans [|@eqP_union_r[|@cat_ext_l [|@minus_eps_pre_aux //]]] - @eqP_trans [|@eqP_union_r [|@distr_cat_r]] - @eqP_trans [||@eqP_sym @distr_cat_r] - @eqP_trans [|@union_assoc] @eqP_union_l - @eqP_trans [||@eqP_sym @epsilon_cat_l] @eqP_sym @star_fix_eps - |>sem_pre_false >sem_pre_false >sem_star /2/ - ] -qed. \ No newline at end of file