X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fnlibrary%2FPlogic%2Fequality.ma;h=4195c06f66ab04498a6e9fd6c0ea30cca0c4518e;hb=4e7e01cd771c07b3605ba54d3853ac34a02cb86d;hp=615151d1494202ac12ebc754fda2972a79361257;hpb=77552219608b573dc360b6bb7a52aa5344235959;p=helm.git diff --git a/matita/matita/nlibrary/Plogic/equality.ma b/matita/matita/nlibrary/Plogic/equality.ma index 615151d14..4195c06f6 100644 --- a/matita/matita/nlibrary/Plogic/equality.ma +++ b/matita/matita/nlibrary/Plogic/equality.ma @@ -21,43 +21,43 @@ interpretation "leibnitz's equality" 'eq t x y = (eq t x y). lemma eq_rect_r: ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type[0]. P a (refl A a) → P x p. - #A; #a; #x; #p; cases p; #P; #H; assumption. + #A #a #x #p cases p #P #H assumption. qed. lemma eq_ind_r : ∀A.∀a.∀P: ∀x:A. x = a → Prop. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. - #A; #a; #P; #p; #x0; #p0; apply (eq_rect_r ? ? ? p0); assumption. + #A #a #P #p #x0 #p0 apply (eq_rect_r ? ? ? p0) assumption. qed. lemma eq_rect_Type2_r : ∀A:Type[0].∀a.∀P: ∀x:A. eq ? x a → Type[2]. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. - #A;#a;#P;#H;#x;#p;generalize in match H;generalize in match P; - cases p;//; + #A #a #P #H #x #p generalize in match H generalize in match P + cases p // qed. (* nlemma eq_ind_r : ∀A.∀a.∀P: ∀x:A. x = a → Prop. P a (refl_eq A a) → ∀x.∀p:eq ? x a.P x p. - #A; #a; #P; #p; #x0; #p0; ngeneralize in match p; -ncases p0; #Heq; nassumption. + #A #a #P #p #x0 #p0 ngeneralize in match p +ncases p0 #Heq nassumption. nqed. *) theorem rewrite_l: ∀A:Type[2].∀x.∀P:A → Prop. P x → ∀y. x = y → P y. -#A; #x; #P; #Hx; #y; #Heq;cases Heq;assumption. +#A #x #P #Hx #y #Heq cases Heq assumption. qed. theorem sym_eq: ∀A:Type[2].∀x,y:A. x = y → y = x. -#A; #x; #y; #Heq; apply (rewrite_l A x (λz.z=x)); +#A #x #y #Heq apply (rewrite_l A x (λz.z=x)) [ % | assumption ] qed. theorem rewrite_r: ∀A:Type[2].∀x.∀P:A → Prop. P x → ∀y. y = x → P y. -#A; #x; #P; #Hx; #y; #Heq; cases (sym_eq ? ? ?Heq); assumption. +#A #x #P #Hx #y #Heq cases (sym_eq ? ? ?Heq) assumption. qed. theorem eq_coerc: ∀A,B:Type[1].A→(A=B)→B. -#A; #B; #Ha; #Heq;elim Heq; assumption. +#A #B #Ha #Heq elim Heq assumption. qed. definition R0 ≝ λT:Type[0].λt:T.t. @@ -76,10 +76,10 @@ definition R2 : ∀b1: T1 b0 e0. ∀e1:R1 ?? T1 a1 ? e0 = b1. T2 b0 e0 b1 e1. -#T0;#a0;#T1;#a1;#T2;#a2;#b0;#e0;#b1;#e1; -apply (eq_rect_Type0 ????? e1); -apply (R1 ?? ? ?? e0); -apply a2; +#T0 #a0 #T1 #a1 #T2 #a2 #b0 #e0 #b1 #e1 +apply (eq_rect_Type0 ????? e1) +apply (R1 ?? ? ?? e0) +apply a2 qed. definition R3 : @@ -99,10 +99,10 @@ definition R3 : ∀b2: T2 b0 e0 b1 e1. ∀e2:R2 ???? T2 a2 b0 e0 ? e1 = b2. T3 b0 e0 b1 e1 b2 e2. -#T0;#a0;#T1;#a1;#T2;#a2;#T3;#a3;#b0;#e0;#b1;#e1;#b2;#e2; -apply (eq_rect_Type0 ????? e2); -apply (R2 ?? ? ???? e0 ? e1); -apply a3; +#T0 #a0 #T1 #a1 #T2 #a2 #T3 #a3 #b0 #e0 #b1 #e1 #b2 #e2 +apply (eq_rect_Type0 ????? e2) +apply (R2 ?? ? ???? e0 ? e1) +apply a3 qed. definition R4 : @@ -134,10 +134,10 @@ definition R4 : ∀b3: T3 b0 e0 b1 e1 b2 e2. ∀e3:eq (T3 …) (R3 T0 a0 T1 a1 T2 a2 T3 a3 b0 e0 b1 e1 b2 e2) b3. T4 b0 e0 b1 e1 b2 e2 b3 e3. -#T0;#a0;#T1;#a1;#T2;#a2;#T3;#a3;#T4;#a4;#b0;#e0;#b1;#e1;#b2;#e2;#b3;#e3; -apply (eq_rect_Type0 ????? e3); -apply (R3 ????????? e0 ? e1 ? e2); -apply a4; +#T0 #a0 #T1 #a1 #T2 #a2 #T3 #a3 #T4 #a4 #b0 #e0 #b1 #e1 #b2 #e2 #b3 #e3 +apply (eq_rect_Type0 ????? e3) +apply (R3 ????????? e0 ? e1 ? e2) +apply a4 qed. -axiom streicherK : ∀T:Type[2].∀t:T.∀P:t = t → Type[2].P (refl ? t) → ∀p.P p. \ No newline at end of file +axiom streicherK : ∀T:Type[2].∀t:T.∀P:t = t → Type[2].P (refl ? t) → ∀p.P p.