X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Ftests%2Fdecl.ma;h=a0d3a0bd610f62962e0ffb73ea4d718985f49a21;hb=9a81424c15d8b80a50f62ffe5f5b3ced32dfa463;hp=8ff56dde87398e467896aee5d7c3d58b8266e829;hpb=31d3422a07ed889dff7bda3a28884caff30cba07;p=helm.git diff --git a/matita/tests/decl.ma b/matita/tests/decl.ma index 8ff56dde8..a0d3a0bd6 100644 --- a/matita/tests/decl.ma +++ b/matita/tests/decl.ma @@ -72,6 +72,43 @@ theorem easy2: ∀n,m. n * m = O → n = O ∨ m = O. ] qed. +theorem easy15: ∀n,m. n * m = O → n = O ∨ m = O. + assume n: nat. + assume m: nat. + (* base case *) + by _ we proved (O = O) (trivial). + by _ we proved (O = O ∨ m = O) (trivial2). + by _ we proved (O*m=O → O=O ∨ m=O) (base_case). + (* inductive case *) + we need to prove + (∀n1. (n1 * m = O → n1 = O ∨ m = O) → (S n1) * m = O → (S n1) = O ∨ m = O) + (inductive_case). + assume n1: nat. + suppose (n1 * m = O → n1 = O ∨ m = O) (inductive_hyp). + (* base case *) + by _ we proved (S n1 = O ∨ O = O) (pre_base_case2). + by _ we proved (S n1*O = O → S n1 = O ∨ O = O) (base_case2). + (* inductive case *) + we need to prove + (∀m1. (S n1 * m1 = O → S n1 = O ∨ m1 = O) → + (S n1 * S m1 = O → S n1 = O ∨ S m1 = O)) (inductive_hyp2). + assume m1: nat. + suppose (S n1 * m1 = O → S n1 = O ∨ m1 = O) (useless). + suppose (S n1 * S m1 = O) (absurd_hyp). + simplify in absurd_hyp. + by _ we proved (O = S (m1+n1*S m1)) (absurd_hyp'). + (* BUG: automation failure *) + by (not_eq_O_S ? absurd_hyp') we proved False (the_absurd). + (* BUG: automation failure *) + by (False_ind ? the_absurd) + done. + (* the induction *) + by (nat_ind (λm.S n1 * m = O → S n1 = O ∨ m = O) base_case2 inductive_hyp2 m) + done. + (* the induction *) + by (nat_ind (λn.n*m=O → n=O ∨ m=O) base_case inductive_case n) +done. +qed. theorem easy3: ∀A:Prop. (A ∧ ∃n:nat.n ≠ n) → True. assume P: Prop. @@ -98,6 +135,19 @@ obtain (S n) = (S m) by (eq_f ? ? ? ? ? H). done. qed. +theorem easy45: ∀n,m,p. n = m → S m = S p → n = S p → S n = n. +assume n: nat. +assume m:nat. +assume p:nat. +suppose (n=m) (H). +suppose (S m = S p) (K). +suppose (n = S p) (L). +obtain (S n) = (S m) by _. + = (S p) by _. + = n by _ +done. +qed. + theorem easy5: ∀n:nat. n*O=O. assume n: nat. (* Bug here: False should be n*0=0 *) @@ -130,9 +180,8 @@ theorem easy6: ∀t. O ≮ O → O < size t → t ≠ Empty. we proceed by induction on t to prove False. case Empty. the thesis becomes (O < size Empty → Empty ≠ Empty). - suppose (O < size Empty) (absurd). - (*Bug here: missing that is equivalent to *) - simplify in absurd. + suppose (O < size Empty) (absurd) + that is equivalent to (O < O). (* Here the "natural" language is not natural at all *) we proceed by induction on (trivial absurd) to prove False. (*Bug here: this is what we want @@ -145,11 +194,13 @@ theorem easy6: ∀t. O ≮ O → O < size t → t ≠ Empty. by induction hypothesis we know (O < size t1 → t1 ≠ Empty) (Ht1). assume t2: tree. by induction hypothesis we know (O < size t2 → t2 ≠ Empty) (Ht2). - suppose (O < size (Node t1 t2)) (Hyp). - (*BUG: that is equivalent to missed here *) - unfold Not. - suppose (Node t1 t2 = Empty) (absurd). - (* Discriminate should really generate a theorem to be useful with - declarative tactics *) - discriminate absurd. + suppose (O < size (Node t1 t2)) (useless). + we need to prove (Node t1 t2 ≠ Empty) (final) + or equivalently (Node t1 t2 = Empty → False). + suppose (Node t1 t2 = Empty) (absurd). + (* Discriminate should really generate a theorem to be useful with + declarative tactics *) + discriminate absurd. + by final + done. qed. \ No newline at end of file