X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Ftests%2Ffguidi.ma;h=a95e954c134375d95c4ec25539908f854c95673f;hb=a3f4c0a8b4328cb9a9fe3b4c2e577be2a258675c;hp=84faee59ace814a772bacd076c95c6c6ef7ec662;hpb=e9bc7577856e02545d3bc84d8f20aa15c5842034;p=helm.git diff --git a/matita/tests/fguidi.ma b/matita/tests/fguidi.ma index 84faee59a..a95e954c1 100644 --- a/matita/tests/fguidi.ma +++ b/matita/tests/fguidi.ma @@ -42,7 +42,7 @@ definition pred: nat \to nat \def ]. theorem eq_gen_S_O: \forall x. (S x = O) \to \forall P:Prop. P. -intros. apply False_ind. cut (is_S O). auto new. elim H. exact I. +intros. apply False_ind. cut (is_S O). elim Hcut. rewrite < H. apply I. qed. theorem eq_gen_S_O_cc: (\forall P:Prop. P) \to \forall x. (S x = O). @@ -51,11 +51,11 @@ qed. theorem eq_gen_S_S: \forall m,n. (S m) = (S n) \to m = n. intros. cut ((pred (S m)) = (pred (S n))). -assumption. elim H. auto paramodulation. +assumption. elim H. autobatch. qed. theorem eq_gen_S_S_cc: \forall m,n. m = n \to (S m) = (S n). -intros. elim H. auto paramodulation. +intros. elim H. autobatch. qed. inductive le: nat \to nat \to Prop \def @@ -63,38 +63,40 @@ inductive le: nat \to nat \to Prop \def | le_succ: \forall m, n. (le m n) \to (le (S m) (S n)). theorem le_refl: \forall x. (le x x). -intros. elim x; auto new. +intros. elim x; autobatch. qed. theorem le_gen_x_O_aux: \forall x, y. (le x y) \to (y =O) \to (x = O). -intros 3. elim H. auto paramodulation. apply eq_gen_S_O. exact n1. auto paramodulation. +intros 3. elim H. autobatch. apply eq_gen_S_O. exact n1. autobatch. qed. theorem le_gen_x_O: \forall x. (le x O) \to (x = O). -intros. apply le_gen_x_O_aux. exact O. auto paramodulation. auto paramodulation. +intros. apply le_gen_x_O_aux. exact O. autobatch. autobatch. qed. theorem le_gen_x_O_cc: \forall x. (x = O) \to (le x O). -intros. elim H. auto new. +intros. elim H. autobatch. qed. theorem le_gen_S_x_aux: \forall m,x,y. (le y x) \to (y = S m) \to (\exists n. x = (S n) \land (le m n)). -intros 4. elim H. -apply eq_gen_S_O. exact m. elim H1. auto paramodulation. -cut (n = m). elim Hcut. apply ex_intro. exact n1. auto new.auto paramodulation. +intros 4. elim H; clear H x y. +apply eq_gen_S_O. exact m. elim H1. autobatch. +clear H2. cut (n = m). +elim Hcut. apply ex_intro. exact n1. split; autobatch. +apply eq_gen_S_S. autobatch. qed. theorem le_gen_S_x: \forall m,x. (le (S m) x) \to (\exists n. x = (S n) \land (le m n)). -intros. apply le_gen_S_x_aux. exact (S m). auto paramodulation. auto paramodulation. +intros. apply le_gen_S_x_aux. exact (S m). autobatch. autobatch. qed. theorem le_gen_S_x_cc: \forall m,x. (\exists n. x = (S n) \land (le m n)) \to (le (S m) x). -intros. elim H. elim H1. cut ((S x1) = x). elim Hcut. auto new. -elim H2. auto paramodulation. +intros. elim H. elim H1. cut ((S x1) = x). elim Hcut. autobatch. +elim H2. autobatch. qed. theorem le_gen_S_S: \forall m,n. (le (S m) (S n)) \to (le m n). @@ -104,12 +106,12 @@ lapply eq_gen_S_S to H2 as H4. rewrite > H4. assumption. qed. theorem le_gen_S_S_cc: \forall m,n. (le m n) \to (le (S m) (S n)). -intros. auto new. +intros. autobatch. qed. (* theorem le_trans: \forall x,y. (le x y) \to \forall z. (le y z) \to (le x z). intros 1. elim x; clear H. clear x. -auto paramodulation. -fwd H1 [H]. decompose H. +autobatch. +fwd H1 [H]. decompose. *)