X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matitaB%2Fmatita%2Fnlibrary%2Farithmetics%2FR.ma;fp=matitaB%2Fmatita%2Fnlibrary%2Farithmetics%2FR.ma;h=60de71dbd7a2eb6d5fd69a6851603f2bb72dc060;hb=cacbe3c6493ddce76c4c13379ade271d8dd172e8;hp=0000000000000000000000000000000000000000;hpb=f04a064bb34aabaf91dc0c48e3b08b37ecd7b0a2;p=helm.git diff --git a/matitaB/matita/nlibrary/arithmetics/R.ma b/matitaB/matita/nlibrary/arithmetics/R.ma new file mode 100644 index 000000000..60de71dbd --- /dev/null +++ b/matitaB/matita/nlibrary/arithmetics/R.ma @@ -0,0 +1,285 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "arithmetics/nat.ma". + +naxiom Q: Type[0]. +naxiom nat_to_Q: nat → Q. +ncoercion nat_to_Q : ∀x:nat.Q ≝ nat_to_Q on _x:nat to Q. +ndefinition bool_to_nat ≝ λb. match b with [ true ⇒ 1 | false ⇒ 0 ]. +ncoercion bool_to_nat : ∀b:bool.nat ≝ bool_to_nat on _b:bool to nat. +naxiom Qplus: Q → Q → Q. +naxiom Qminus: Q → Q → Q. +naxiom Qtimes: Q → Q → Q. +naxiom Qdivides: Q → Q → Q. +naxiom Qle : Q → Q → Prop. +naxiom Qlt: Q → Q → Prop. +naxiom Qmin: Q → Q → Q. +naxiom Qmax: Q → Q → Q. +interpretation "Q plus" 'plus x y = (Qplus x y). +interpretation "Q minus" 'minus x y = (Qminus x y). +interpretation "Q times" 'times x y = (Qtimes x y). +interpretation "Q divides" 'divide x y = (Qdivides x y). +interpretation "Q le" 'leq x y = (Qle x y). +interpretation "Q lt" 'lt x y = (Qlt x y). +naxiom Qtimes_plus: ∀n,m:nat.∀q:Q. (n * q + m * q) = (plus n m) * q. +naxiom Qmult_one: ∀q:Q. 1 * q = q. +naxiom Qdivides_mult: ∀q1,q2. (q1 * q2) / q1 = q2. +naxiom Qtimes_distr: ∀q1,q2,q3:Q.(q3 * q1 + q3 * q2) = q3 * (q1 + q2). +naxiom Qdivides_distr: ∀q1,q2,q3:Q.(q1 / q3 + q2 / q3) = (q1 + q2) / q3. +naxiom Qplus_comm: ∀q1,q2. q1 + q2 = q2 + q1. +naxiom Qplus_assoc: ∀q1,q2,q3. q1 + q2 + q3 = q1 + (q2 + q3). +ntheorem Qplus_assoc1: ∀q1,q2,q3. q1 + q2 + q3 = q3 + q2 + q1. +#a; #b; #c; //; nqed. +naxiom Qle_refl: ∀q1. q1≤q1. +naxiom Qle_trans: ∀x,y,z. x≤y → y≤z → x≤z. +naxiom Qlt_trans: ∀x,y,z. x < y → y < z → x < z. +naxiom Qle_lt_trans1: ∀x,y,z. x ≤ y → y < z → x < z. +naxiom Qle_lt_trans2: ∀x,y,z. x < y → y ≤ z → x < z. +naxiom Qle_plus_compat: ∀x,y,z,t. x≤y → z≤t → x+z ≤ y+t. +naxiom Qmult_zero: ∀q:Q. 0 * q = 0. + +naxiom phi: Q. (* the golden number *) +naxiom golden: phi = phi * phi + phi * phi * phi. + +(* naxiom Ndivides_mult: ∀n:nat.∀q. (n * q) / n = q. *) + +ntheorem lem1: ∀n:nat.∀q:Q. (n * q + q) = (S n) * q. +#n; #q; ncut (plus n 1 = S n);##[//##] +//; nqed. + +ntheorem Qplus_zero: ∀q:Q. 0 + q = q. //. nqed. + +ncoinductive locate : Q → Q → Prop ≝ + L: ∀l,u. locate l ((1 - phi) * l + phi * u) → locate l u + | H: ∀l,u. locate (phi * l + (1 - phi) * u) u → locate l u. + +ndefinition locate_inv_ind': + ∀l,u:Q.∀P:Q → Q → Prop. + ∀H1: locate l ((1 - phi) * l + phi * u) → P l u. + ∀H2: locate (phi * l + (1 - phi) * u) u → P l u. + locate l u → P l u. + #l; #u; #P; #H1; #H2; #p; ninversion p; #l; #u; #H; #E1; #E2; + ndestruct; /2/. +nqed. + +ndefinition R ≝ ∃l,u:Q. locate l u. + +(* +nlet corec Q_to_locate q : locate q q ≝ L q q … (Q_to_locate q). + //; nrewrite < (Qdivides_mult 3 q) in ⊢ (? % ?); //. +nqed. + +ndefinition Q_to_R : Q → R. + #q; @ q; @q; //. +nqed. +*) + +nlemma help_auto1: ∀q:Q. false * q = 0. #q; nnormalize; //. nqed. + +(* +nlet corec locate_add (l,u:?) (r1,r2: locate l u) (c1,c2:bool) : + locate (l + l + c1 * phi + c2 * phi * phi) (u + u + c1 * phi + c2 * phi * phi) ≝ ?. + napply (locate_inv_ind' … r1); napply (locate_inv_ind' … r2); + #r2'; #r1'; ncases c1; ncases c2 + [ ##4: nnormalize; @1; + nlapply (locate_add … r1' r2' false false); nnormalize; + nrewrite > (Qmult_zero …); nrewrite > (Qmult_zero …); #K; nauto demod; + #K; + nnormalize in K; nrewrite > (Qmult_zero …) in K; nnormalize; #K; + napplyS K; + + + + + [ ##1,4: ##[ @1 ? (l1'+l2') (u1'+u2') | @2 ? (l1'+l2') (u1'+u2') ] + ##[ ##1,5: /2/ | napplyS (Qle_plus_compat …leq1u leq2u) | + ##4: napplyS (Qle_plus_compat …leq1l leq2l) + |##*: /2/ ] + ##| ninversion r2; #l2''; #u2''; #leq2l'; #leq2u'; #r2'; + ninversion r1; #l1''; #u1''; #leq1l'; #leq1u'; #r1'; + ##[ @1 ? (l1''+l2'') (u1''+u2''); + ##[ napply Qle_plus_compat; /3/; + ##| ##3: /2/; + ##| napplyS (Qle_plus_compat …leq1u' leq2u'); + +(* +nlet corec locate_add (l1,u1:?) (r1: locate l1 u1) (l2,u2:?) (r2: locate l2 u2) : + locate (l1 + l2) (u1 + u2) ≝ ?. + napply (locate_inv_ind' … r1); napply (locate_inv_ind' … r2); #l2'; #u2'; #leq2l; #leq2u; #r2; + #l1'; #u1'; #leq1l; #leq1u; #r1 + [ ##1,4: ##[ @1 ? (l1'+l2') (u1'+u2') | @2 ? (l1'+l2') (u1'+u2') ] + ##[ ##1,5: /2/ | napplyS (Qle_plus_compat …leq1u leq2u) | + ##4: napplyS (Qle_plus_compat …leq1l leq2l) + |##*: /2/ ] + ##| ninversion r2; #l2''; #u2''; #leq2l'; #leq2u'; #r2'; + ninversion r1; #l1''; #u1''; #leq1l'; #leq1u'; #r1'; + ##[ @1 ? (l1''+l2'') (u1''+u2''); + ##[ napply Qle_plus_compat; /3/; + ##| ##3: /2/; + ##| napplyS (Qle_plus_compat …leq1u' leq2u'); + . + +nlet corec apart (l1,u1) (r1: locate l1 u1) (l2,u2) (r2: locate l2 u2) : CProp[0] ≝ + match disjoint l1 u1 l2 u2 with + [ true ⇒ True + | false ⇒ +*) +*) + +include "topology/igft.ma". +include "datatypes/pairs.ma". +include "datatypes/sums.ma". + +nrecord pre_order (A: Type[0]) : Type[1] ≝ + { pre_r :2> A → A → CProp[0]; + pre_refl: reflexive … pre_r; + pre_trans: transitive … pre_r + }. + +nrecord Ax_pro : Type[1] ≝ + { AAx :> Ax; + Aleq: pre_order AAx + }. + +interpretation "Ax_pro leq" 'leq x y = (pre_r ? (Aleq ?) x y). + +(*CSC: per auto per sotto, ma non sembra aiutare *) +nlemma And_elim1: ∀A,B. A ∧ B → A. + #A; #B; *; //. +nqed. + +nlemma And_elim2: ∀A,B. A ∧ B → B. + #A; #B; *; //. +nqed. +(*CSC: /fine per auto per sotto *) + +ndefinition Rax : Ax_pro. + @ + [ @ (Q × Q) + [ #p; napply (unit + sigma … (λc. fst … p < fst … c ∧ fst … c < snd … c ∧ snd … c < snd … p)) + | #c; * + [ #_; napply {c' | fst … c < fst … c' ∧ snd … c' < snd … c} + | *; #c'; #_; napply {d' | fst … d' = fst … c ∧ snd … d' = fst … c' + ∨ fst … d' = snd … c' ∧ snd … d' = snd … c } ]##] +##| @ (λc,d. fst … d ≤ fst … c ∧ snd … c ≤ snd … d) + [ /2/ + | nnormalize; #z; #x; #y; *; #H1; #H2; *; /3/; (*CSC: perche' non va? *) ##] +nqed. + +ndefinition downarrow: ∀S:Ax_pro. Ω \sup S → Ω \sup S ≝ + λS:Ax_pro.λU:Ω ^S.{a | ∃b:S. b ∈ U ∧ a ≤ b}. + +interpretation "downarrow" 'downarrow a = (downarrow ? a). + +ndefinition fintersects: ∀S:Ax_pro. Ω \sup S → Ω \sup S → Ω \sup S ≝ + λS.λU,V. ↓U ∩ ↓V. + +interpretation "fintersects" 'fintersects U V = (fintersects ? U V). + +ndefinition singleton ≝ λA.λa:A.{b | b=a}. + +interpretation "singleton" 'singl a = (singleton ? a). + +ninductive ftcover (A : Ax_pro) (U : Ω^A) : A → CProp[0] ≝ +| ftreflexivity : ∀a. a ∈ U → ftcover A U a +| ftleqinfinity : ∀a,b. a ≤ b → ∀i. (∀x. x ∈ 𝐂 b i ↓ (singleton … a) → ftcover A U x) → ftcover A U a +| ftleqleft : ∀a,b. a ≤ b → ftcover A U b → ftcover A U a. + +interpretation "ftcovers" 'covers a U = (ftcover ? U a). + +ntheorem ftinfinity: ∀A: Ax_pro. ∀U: Ω^A. ∀a. ∀i. (∀x. x ∈ 𝐂 a i → x ◃ U) → a ◃ U. + #A; #U; #a; #i; #H; + napply (ftleqinfinity … a … i); //; + #b; *; *; #b; *; #H1; #H2; #H3; napply (ftleqleft … b); //; + napply H; napply H1 (*CSC: auto non va! *). +nqed. + +ncoinductive ftfish (A : Ax_pro) (F : Ω^A) : A → CProp[0] ≝ +| ftfish : ∀a. + a ∈ F → + (∀b. a ≤ b → ftfish A F b) → + (∀b. a ≤ b → ∀i:𝐈 b. ∃x. x ∈ 𝐂 b i ↓ (singleton … a) ∧ ftfish A F x) → + ftfish A F a. + +interpretation "fish" 'fish a U = (ftfish ? U a). + +nlemma ftcoreflexivity: ∀A: Ax_pro.∀F.∀a:A. a ⋉ F → a ∈ F. + #A; #F; #a; #H; ncases H; //. +nqed. + +nlemma ftcoleqinfinity: + ∀A: Ax_pro.∀F.∀a:A. a ⋉ F → + ∀b. (a ≤ b → ∀i. (∃x. x ∈ 𝐂 b i ↓ (singleton … a) ∧ x ⋉ F)). + #A; #F; #a; #H; ncases H; /2/. +nqed. + +nlemma ftcoleqleft: + ∀A: Ax_pro.∀F.∀a:A. a ⋉ F → + (∀b. a ≤ b → b ⋉ F). + #A; #F; #a; #H; ncases H; /2/. +nqed. + +alias symbol "I" (instance 7) = "I". +alias symbol "I" (instance 18) = "I". +alias symbol "I" (instance 18) = "I". +alias symbol "I" (instance 18) = "I". +nlet corec ftfish_coind + (A: Ax_pro) (F: Ω^A) (P: A → CProp[0]) + (Hcorefl: ∀a. P a → a ∈ F) + (Hcoleqleft: ∀a. P a → ∀b. a ≤ b → P b) + (Hcoleqinfinity: ∀a. P a → ∀b. a ≤ b → ∀i:𝐈 b. ∃x. x ∈ 𝐂 b i ↓ (singleton … a) ∧ P x) +: ∀a:A. P a → a ⋉ F ≝ ?. + #a; #H; @ + [ /2/ + | #b; #H; napply (ftfish_coind … Hcorefl Hcoleqleft Hcoleqinfinity); /2/ + | #b; #H1; #i; ncases (Hcoleqinfinity a H ? H1 i); #x; *; #H2; #H3; + @ x; @; //; napply (ftfish_coind … Hcorefl Hcoleqleft Hcoleqinfinity); //] +nqed. + +(*CSC: non serve manco questo (vedi sotto) *) +nlemma auto_hint3: ∀A. S__o__AAx A = S (AAx A). + #A; //. +nqed. + +alias symbol "I" (instance 6) = "I". +ntheorem ftcoinfinity: ∀A: Ax_pro. ∀F: Ω^A. ∀a. a ⋉ F → (∀i: 𝐈 a. ∃b. b ∈ 𝐂 a i ∧ b ⋉ F). + #A; #F; #a; #H; #i; nlapply (ftcoleqinfinity … F … a … i); //; #H; + ncases H; #c; *; *; *; #b; *; #H1; #H2; #H3; #H4; @ b; @ [ napply H1 (*CSC: auto non va *)] + napply (ftcoleqleft … c); //. +nqed. + +nrecord Pt (A: Ax_pro) : Type[1] ≝ + { pt_set: Ω^A; + pt_inhabited: ∃a. a ∈ pt_set; + pt_filtering: ∀a,b. a ∈ pt_set → b ∈ pt_set → ∃c. c ∈ (singleton … a) ↓ (singleton … b) → c ∈ pt_set; + pt_closed: pt_set ⊆ {b | b ⋉ pt_set} + }. + +ndefinition Rd ≝ Pt Rax. + +naxiom daemon: False. + +ndefinition Q_to_R: Q → Rd. + #q; @ + [ napply { c | fst … c < q ∧ q < snd … c } + | @ [ @ (Qminus q 1) (Qplus q 1) | ncases daemon ] +##| #c; #d; #Hc; #Hd; @ [ @ (Qmin (fst … c) (fst … d)) (Qmax (snd … c) (snd … d)) | ncases daemon] +##| #a; #H; napply (ftfish_coind Rax ? (λa. fst … a < q ∧ q < snd … a)); /2/ + [ /5/ | #b; *; #H1; #H2; #c; *; #H3; #H4; #i; ncases i + [ #w; nnormalize; + ##| nnormalize; + ] +nqed. +