X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=ocaml%2Fsimple.ml;h=a63314959984a88c3407ec8d20f89a60a9c1efd1;hb=69f6ab5b05bcbeb0ced857415c7c48460ae0bdcb;hp=8b47f88a5693153a630fdad73b9a20a2f3556226;hpb=3d8ab5897c6aa3d9c1b317e1137b3fcd2668f25e;p=fireball-separation.git diff --git a/ocaml/simple.ml b/ocaml/simple.ml index 8b47f88..a633149 100644 --- a/ocaml/simple.ml +++ b/ocaml/simple.ml @@ -12,24 +12,32 @@ type t = | A of t * t | L of t | B (* bottom *) - | C of int + | C (* constant *) ;; let delta = L(A(V 0, V 0));; -let eta_eq = +let eta_eq' = let rec aux l1 l2 t1 t2 = match t1, t2 with | L t1, L t2 -> aux l1 l2 t1 t2 | L t1, t2 -> aux l1 (l2+1) t1 t2 | t1, L t2 -> aux (l1+1) l2 t1 t2 | V a, V b -> a + l1 = b + l2 - | C a, C b -> a = b | A(t1,t2), A(u1,u2) -> aux l1 l2 t1 u1 && aux l1 l2 t2 u2 | _, _ -> false - in aux 0 0 + in aux ;; +let eta_eq = eta_eq' 0 0;; + +(* is arg1 eta-subterm of arg2 ? *) +let eta_subterm u = + let rec aux lev t = eta_eq' lev 0 u t || match t with + | L t -> aux (lev+1) t + | A(t1, t2) -> aux lev t1 || aux lev t2 + | _ -> false + in aux 0 ;; -(* does NOT lift t *) +(* does NOT lift the argument *) let mk_lams = fold_nat (fun x _ -> L x) ;; let string_of_t = @@ -40,7 +48,7 @@ let string_of_t = let rec string_of_term_w_pars level = function | V v -> if v >= level then "`" ^ string_of_int (v-level) else string_of_bvar (level - v-1) - | C n -> "c" ^ string_of_int n + | C -> "C" | A _ | L _ as t -> "(" ^ string_of_term_no_pars level t ^ ")" | B -> "BOT" @@ -89,24 +97,25 @@ let rec is_inert = function | A(t,_) -> is_inert t | V _ -> true - | C _ + | C | L _ | B -> false ;; -let is_var = function V _ -> true | _ -> false;; -let is_lambda = function L _ -> true | _ -> false;; - -let rec no_leading_lambdas = function - | L t -> 1 + no_leading_lambdas t - | _ -> 0 -;; - let rec get_inert = function | V n -> (n,0) | A(t, _) -> let hd,args = get_inert t in hd,args+1 | _ -> assert false ;; +(* precomputes the number of leading lambdas in a term, + after replacing _v_ w/ a term starting with n lambdas *) +let rec no_leading_lambdas v n = function + | L t -> 1 + no_leading_lambdas (v+1) n t + | A _ as t -> let v', m = get_inert t in if v = v' then max 0 (n - m) else 0 + | V v' -> if v = v' then n else 0 + | B | C -> 0 +;; + let rec subst level delift sub = function | V v -> if v = level + fst sub then lift level (snd sub) else V (if delift && v > level then v-1 else v) @@ -115,11 +124,9 @@ let rec subst level delift sub = let t1 = subst level delift sub t1 in let t2 = subst level delift sub t2 in mk_app t1 t2 - | C _ as t -> t - | B -> B + | C | B as t -> t and mk_app t1 t2 = if t2 = B || (t1 = delta && t2 = delta) then B else match t1 with - | C _ as t -> t | B -> B | L t1 -> subst 0 true (0, t2) t1 | _ -> A (t1, t2) @@ -129,29 +136,28 @@ and lift n = | V m -> V (if m >= lev then m + n else m) | L t -> L (aux (lev+1) t) | A (t1, t2) -> A (aux lev t1, aux lev t2) - | C _ as t -> t - | B -> B + | C | B as t -> t in aux 0 ;; let subst = subst 0 false;; -let subst_in_problem (sub: var * t) (p: problem) = -print_endline ("-- SUBST " ^ string_of_t (V (fst sub)) ^ " |-> " ^ string_of_t (snd sub)); +let subst_in_problem ((v, t) as sub) p = +print_endline ("-- SUBST " ^ string_of_t (V v) ^ " |-> " ^ string_of_t t); {p with div=subst sub p.div; conv=subst sub p.conv; - stepped=(fst sub)::p.stepped; + stepped=v::p.stepped; sigma=sub::p.sigma} ;; let get_subterm_with_head_and_args hd_var n_args = let rec aux lev = function - | C _ - | V _ | B -> None + | C | V _ | B -> None | L t -> aux (lev+1) t | A(t1,t2) as t -> let hd_var', n_args' = get_inert t1 in if hd_var' = hd_var + lev && n_args <= 1 + n_args' + (* the `+1` above is because of t2 *) then Some (lift ~-lev t) else match aux lev t2 with | None -> aux lev t1 @@ -163,7 +169,7 @@ let rec purify = function | L t -> Pure.L (purify t) | A (t1,t2) -> Pure.A (purify t1, purify t2) | V n -> Pure.V n - | C _ -> Pure.V max_int (* FIXME *) + | C -> Pure.V (min_int/2) | B -> Pure.B ;; @@ -172,10 +178,12 @@ let check p sigma = let div = purify p.div in let conv = purify p.conv in let sigma = List.map (fun (v,t) -> v, purify t) sigma in - let freshno = List.fold_right (fun (x,_) -> max x) sigma 0 in + let freshno = List.fold_right (max ++ fst) sigma 0 in let env = Pure.env_of_sigma freshno sigma in assert (Pure.diverged (Pure.mwhd (env,div,[]))); + print_endline " D diverged."; assert (not (Pure.diverged (Pure.mwhd (env,conv,[])))); + print_endline " C converged."; () ;; @@ -184,10 +192,13 @@ let sanity p = if p.conv = B then problem_fail p "p.conv diverged"; if p.div = B then raise (Done p.sigma); if p.phase = `Two && p.div = delta then raise (Done p.sigma); - if not (is_inert p.div) then problem_fail p "p.div converged" + if not (is_inert p.div) then problem_fail p "p.div converged"; + p ;; (* drops the arguments of t after the n-th *) +(* FIXME! E' usato in modo improprio contando sul fatto + errato che ritorna un inerte lungo esattamente n *) let inert_cut_at n t = let rec aux t = match t with @@ -200,15 +211,19 @@ let inert_cut_at n t = in snd (aux t) ;; -let find_eta_difference p t n_args = - let t = inert_cut_at n_args t in +(* return the index of the first argument with a difference + (the first argument is 0) + precondition: p.div and t have n+1 arguments + *) +let find_eta_difference p t argsno = + let t = inert_cut_at argsno t in let rec aux t u k = match t, u with - | V _, V _ -> assert false (* div subterm of conv *) + | V _, V _ -> problem_fail p "no eta difference found (div subterm of conv?)" | A(t1,t2), A(u1,u2) -> - if not (eta_eq t2 u2) then (print_endline((string_of_t t2) ^ " <> " ^ (string_of_t u2)); k) + if not (eta_eq t2 u2) then (k-1) else aux t1 u1 (k-1) | _, _ -> assert false - in aux p.div t n_args + in aux p.div t argsno ;; let compute_max_lambdas_at hd_var j = @@ -218,10 +233,10 @@ let compute_max_lambdas_at hd_var j = then max ( (*FIXME*) if is_inert t2 && let hd', j' = get_inert t2 in hd' = hd then let hd', j' = get_inert t2 in j - j' - else no_leading_lambdas t2) + else no_leading_lambdas hd_var j t2) else id) (max (aux hd t1) (aux hd t2)) | L t -> aux (hd+1) t - | V _ -> 0 + | V _ | C -> 0 | _ -> assert false in aux hd_var ;; @@ -233,24 +248,32 @@ let print_cmd s1 s2 = print_endline (">> " ^ s1 ^ " " ^ s2);; let eat p = print_cmd "EAT" ""; let var, k = get_inert p.div in + match var with + | C | L _ | B | A _ -> assert false + | V var -> let phase = p.phase in - let p, t = + let p = match phase with | `One -> let n = 1 + max - (compute_max_lambdas_at var k p.div) - (compute_max_lambdas_at var k p.conv) in + (compute_max_lambdas_at var (k-1) p.div) + (compute_max_lambdas_at var (k-1) p.conv) in (* apply fresh vars *) let p, t = fold_nat (fun (p, t) _ -> let p, v = freshvar p in p, A(t, V (v + k)) ) (p, V 0) n in - let p = {p with phase=`Two} in p, A(t, delta) - | `Two -> p, delta in - let subst = var, mk_lams t k in - let p = subst_in_problem subst p in - let p = if phase = `One then {p with div = (match p.div with A(t,_) -> t | _ -> assert false)} else p in - sanity p; p + let p = {p with phase=`Two} in + let t = A(t, delta) in + let t = fold_nat (fun t m -> A(t, V (k-m))) t (k-1) in + let subst = var, mk_lams t k in + let p = subst_in_problem subst p in + let _, args = get_inert p.div in + {p with div = inert_cut_at (args-k) p.div} + | `Two -> + let subst = var, mk_lams delta k in + subst_in_problem subst p in + sanity p ;; (* step on the head of div, on the k-th argument, with n fresh vars *) @@ -267,35 +290,7 @@ print_cmd "STEP" ("on " ^ string_of_t (V var) ^ " (of:" ^ string_of_int n ^ ")") let t = mk_lams t (k+1) in (* make leading lambdas *) let subst = var, t in let p = subst_in_problem subst p in - sanity p; p -;; - -let parse strs = - let rec aux level = function - | Parser_andrea.Lam t -> L (aux (level + 1) t) - | Parser_andrea.App (t1, t2) -> - if level = 0 then mk_app (aux level t1) (aux level t2) - else A(aux level t1, aux level t2) - | Parser_andrea.Var v -> V v in - let (tms, free) = Parser_andrea.parse_many strs in - (List.map (aux 0) tms, free) -;; - -let problem_of div conv = - print_hline (); - let [@warning "-8"] [div; conv], var_names = parse ([div; conv]) in - let varno = List.length var_names in - let p = {orig_freshno=varno; freshno=1+varno; div; conv; sigma=[]; stepped=[]; phase=`One} in - (* initial sanity check *) - sanity p; p -;; - -let exec div conv cmds = - let p = problem_of div conv in - try - problem_fail (List.fold_left (|>) p cmds) "Problem not completed" - with - | Done _ -> () + sanity p ;; let rec auto p = @@ -310,7 +305,7 @@ let rec auto p = else auto p with Done sigma -> sigma) | Some t -> - let j = find_eta_difference p t n_args - 1 in + let j = find_eta_difference p t n_args in let k = 1 + max (compute_max_lambdas_at hd_var j p.div) (compute_max_lambdas_at hd_var j p.conv) in @@ -318,7 +313,37 @@ let rec auto p = auto p ;; -let interactive div conv cmds = +let problem_of (label, div, convs, ps, var_names) = + print_hline (); + let rec aux lev = function + | `Lam(_, t) -> L (aux (lev+1) t) + | `I (v, args) -> Listx.fold_left (fun x y -> mk_app x (aux lev y)) (aux lev (`Var v)) args + | `Var(v,_) -> if v >= lev && List.nth var_names (v-lev) = "C" then C else V v + | `N _ | `Match _ -> assert false in + assert (List.length ps = 0); + let convs = List.rev convs in + let conv = List.fold_left (fun x y -> mk_app x (aux 0 (y :> Num.nf))) (V (List.length var_names)) convs in + let var_names = "@" :: var_names in + let div = match div with + | Some div -> aux 0 (div :> Num.nf) + | None -> assert false in + let varno = List.length var_names in + let p = {orig_freshno=varno; freshno=1+varno; div; conv; sigma=[]; stepped=[]; phase=`One} in + (* initial sanity check *) + sanity p +;; + +let solve p = + if eta_subterm p.div p.conv + then print_endline "!!! div is subterm of conv. Problem was not run !!!" + else check p (auto p) +;; + +Problems.main (solve ++ problem_of); + +(* Example usage of interactive: *) + +(* let interactive div conv cmds = let p = problem_of div conv in try ( let p = List.fold_left (|>) p cmds in @@ -340,52 +365,8 @@ let interactive div conv cmds = | Done _ -> print_endline "Done! Commands history: "; List.iter print_endline (List.rev cmds) in f p [] ) with Done _ -> () -;; - -let rec conv_join = function - | [] -> "@" - | x::xs -> conv_join xs ^ " ("^ x ^")" -;; - -let auto' a b = - let p = problem_of a (conv_join b) in - let sigma = auto p in - check p sigma -;; - -(* Example usage of exec, interactive: - -exec - "x x" - (conv_join["x y"; "y y"; "y x"]) - [ step 0 1; eat ] -;; +;; *) -interactive "x y" +(* interactive "x y" "@ (x x) (y x) (y z)" [step 0 1; step 0 2; eat] -;; - -*) - -auto' "x x" ["x y"; "y y"; "y x"] ;; -auto' "x y" ["x (_. x)"; "y z"; "y x"] ;; -auto' "a (x. x b) (x. x c)" ["a (x. b b) @"; "a @ c"; "a (x. x x) a"; "a (a a a) (a c c)"] ;; - -auto' "x (y. x y y)" ["x (y. x y x)"] ;; - -auto' "x a a a a" [ - "x b a a a"; - "x a b a a"; - "x a a b a"; - "x a a a b"; -] ;; - -(* Controesempio ad usare un conto dei lambda che non considere le permutazioni *) -auto' "x a a a a (x (x. x x) @ @ (_._.x. x x) x) b b b" [ - "x a a a a (_. a) b b b"; - "x a a a a (_. _. _. _. x. y. x y)"; -] ;; - - -print_hline(); -print_endline "ALL DONE. " +;; *)