X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=weblib%2Farithmetics%2Fbigops.ma;h=0c10b02bb62200c21c222b3e364a400535317765;hb=569ba7fe357918e3e83c3fe2d5a41070834c5b67;hp=03db53f7d5ff0f9863abaeba9cfe10f5bd681a33;hpb=4a41f041869956a6c98418e6d06b3a2521a1fb2a;p=helm.git diff --git a/weblib/arithmetics/bigops.ma b/weblib/arithmetics/bigops.ma index 03db53f7d..0c10b02bb 100644 --- a/weblib/arithmetics/bigops.ma +++ b/weblib/arithmetics/bigops.ma @@ -12,36 +12,28 @@ include "basics/types.ma". include "arithmetics/div_and_mod.ma". -definition sameF_upto: nat → ∀A.relation(nat→A) ≝ -λk.λA.λf,g.∀i. i < k → f i = g i. +img class="anchor" src="icons/tick.png" id="sameF_upto"definition sameF_upto: a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a → ∀A.a href="cic:/matita/basics/relations/relation.def(1)"relation/a(a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→A) ≝ +λk.λA.λf,g.∀i. i a title="natural 'less than'" href="cic:/fakeuri.def(1)"</a k → f i a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a g i. -definition sameF_p: nat → (nat → bool) →∀A.relation(nat→A) ≝ -λk,p,A,f,g.∀i. i < k → p i = true → f i = g i. +img class="anchor" src="icons/tick.png" id="sameF_p"definition sameF_p: a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a → (a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a → a href="cic:/matita/basics/bool/bool.ind(1,0,0)"bool/a) →∀A.a href="cic:/matita/basics/relations/relation.def(1)"relation/a(a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→A) ≝ +λk,p,A,f,g.∀i. i a title="natural 'less than'" href="cic:/fakeuri.def(1)"</a k → p i a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → f i a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a g i. -lemma sameF_upto_le: ∀A,f,g,n,m. - n ≤m → sameF_upto m A f g → sameF_upto n A f g. -#A #f #g #n #m #lenm #samef #i #ltin @samef /2/ +img class="anchor" src="icons/tick.png" id="sameF_upto_le"lemma sameF_upto_le: ∀A,f,g,n,m. + n a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"≤/am → a href="cic:/matita/arithmetics/bigops/sameF_upto.def(2)"sameF_upto/a m A f g → a href="cic:/matita/arithmetics/bigops/sameF_upto.def(2)"sameF_upto/a n A f g. +#A #f #g #n #m #lenm #samef #i #ltin @samef /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/nat/lt_to_le_to_lt.def(4)"lt_to_le_to_lt/a/span/span/ qed. -lemma sameF_p_le: ∀A,p,f,g,n,m. - n ≤m → sameF_p m p A f g → sameF_p n p A f g. -#A #p #f #g #n #m #lenm #samef #i #ltin #pi @samef /2/ +img class="anchor" src="icons/tick.png" id="sameF_p_le"lemma sameF_p_le: ∀A,p,f,g,n,m. + n a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"≤/am → a href="cic:/matita/arithmetics/bigops/sameF_p.def(2)"sameF_p/a m p A f g → a href="cic:/matita/arithmetics/bigops/sameF_p.def(2)"sameF_p/a n p A f g. +#A #p #f #g #n #m #lenm #samef #i #ltin #pi @samef /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/nat/lt_to_le_to_lt.def(4)"lt_to_le_to_lt/a/span/span/ qed. -(* -definition sumF ≝ λA.λf,g:nat → A.λn,i. -if_then_else ? (leb n i) (g (i-n)) (f i). - -lemma sumF_unfold: ∀A,f,g,n,i. -sumF A f g n i = if_then_else ? (leb n i) (g (i-n)) (f i). -// qed. *) - -definition prodF ≝ - λA,B.λf:nat→A.λg:nat→B.λm,x.〈 f(div x m), g(mod x m) 〉. +img class="anchor" src="icons/tick.png" id="prodF"definition prodF ≝ + λA,B.λf:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→A.λg:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B.λm,x.〈 f(a href="cic:/matita/arithmetics/div_and_mod/div.def(3)"div/a x m), g(a href="cic:/matita/arithmetics/div_and_mod/mod.def(3)"mod/a x m) a title="Pair construction" href="cic:/fakeuri.def(1)"〉/a. (* bigop *) -let rec bigop (n:nat) (p:nat → bool) (B:Type[0]) - (nil: B) (op: B → B → B) (f: nat → B) ≝ +img class="anchor" src="icons/tick.png" id="bigop"let rec bigop (n:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a) (p:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a → a href="cic:/matita/basics/bool/bool.ind(1,0,0)"bool/a) (B:Type[0]) + (nil: B) (op: B → B → B) (f: a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a → B) ≝ match n with [ O ⇒ nil | S k ⇒ @@ -64,12 +56,12 @@ notation "\big [ op , nil ]_{ ident j ∈ [a,b[ | p } f" with precedence 80 for @{'bigop ($b-$a) $op $nil (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - + notation "\big [ op , nil ]_{ ident j ∈ [a,b[ } f" with precedence 80 for @{'bigop ($b-$a) $op $nil (λ${ident j}.((λ${ident j}.true) (${ident j}+$a))) (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - + (* notation "\big [ op , nil ]_{( term 50) a ≤ ident j < b | p } f" with precedence 80 for @{\big[$op,$nil]_{${ident j} < ($b-$a) | ((λ${ident j}.$p) (${ident j}+$a))}((λ${ident j}.$f)(${ident j}+$a))}. @@ -77,947 +69,350 @@ for @{\big[$op,$nil]_{${ident j} < ($b-$a) | ((λ${ident j}.$p) (${ident j}+$a)) interpretation "bigop" 'bigop n op nil p f = (bigop n p ? nil op f). -lemma bigop_Strue: ∀k,p,B,nil,op.∀f:nat→B. p k = true → - \big[op,nil]_{i < S k | p i}(f i) = - op (f k) (\big[op,nil]_{i < k | p i}(f i)). +img class="anchor" src="icons/tick.png" id="bigop_Strue"lemma bigop_Strue: ∀k,p,B,nil,op.∀f:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B. p k a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → + \big[op,nil]_{i < a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a k | p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a + op (f k) (\big[op,nil]_{i < k | p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i)). #k #p #B #nil #op #f #H normalize >H // qed. -lemma bigop_Sfalse: ∀k,p,B,nil,op.∀f:nat→B. p k = false → - \big[op,nil]_{ i < S k | p i}(f i) = - \big[op,nil]_{i < k | p i}(f i). +img class="anchor" src="icons/tick.png" id="bigop_Sfalse"lemma bigop_Sfalse: ∀k,p,B,nil,op.∀f:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B. p k a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a → + \big[op,nil]_{ i < a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a k | p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a + \big[op,nil]_{i < k | p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i). #k #p #B #nil #op #f #H normalize >H // qed. -lemma same_bigop : ∀k,p1,p2,B,nil,op.∀f,g:nat→B. - sameF_upto k bool p1 p2 → sameF_p k p1 B f g → - \big[op,nil]_{i < k | p1 i}(f i) = - \big[op,nil]_{i < k | p2 i}(g i). +img class="anchor" src="icons/tick.png" id="same_bigop"lemma same_bigop : ∀k,p1,p2,B,nil,op.∀f,g:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B. + a href="cic:/matita/arithmetics/bigops/sameF_upto.def(2)"sameF_upto/a k a href="cic:/matita/basics/bool/bool.ind(1,0,0)"bool/a p1 p2 → a href="cic:/matita/arithmetics/bigops/sameF_p.def(2)"sameF_p/a k p1 B f g → + \big[op,nil]_{i < k | p1 ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a + \big[op,nil]_{i < k | p2 ia title="bigop" href="cic:/fakeuri.def(1)"}/a(g i). #k #p1 #p2 #B #nil #op #f #g (elim k) // -#n #Hind #samep #samef normalize >Hind /2/ -<(samep … (le_n …)) cases(true_or_false (p1 n)) #H1 >H1 -normalize // <(samef … (le_n …) H1) // +#n #Hind #samep #samef normalize >Hind + [|@(a href="cic:/matita/arithmetics/bigops/sameF_p_le.def(5)"sameF_p_le/a … samef) // |@(a href="cic:/matita/arithmetics/bigops/sameF_upto_le.def(5)"sameF_upto_le/a … samep) //] +<(samep … (a href="cic:/matita/arithmetics/nat/le.con(0,1,1)"le_n/a …)) cases(a href="cic:/matita/basics/bool/true_or_false.def(1)"true_or_false/a (p1 n)) #H1 >H1 +normalize // <(samef … (a href="cic:/matita/arithmetics/nat/le.con(0,1,1)"le_n/a …) H1) // qed. -theorem pad_bigop: ∀k,n,p,B,nil,op.∀f:nat→B. n ≤ k → -\big[op,nil]_{i < n | p i}(f i) - = \big[op,nil]_{i < k | if_then_else ? (leb n i) false (p i)}(f i). +img class="anchor" src="icons/tick.png" id="pad_bigop"theorem pad_bigop: ∀k,n,p,B,nil,op.∀f:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B. n a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"≤/a k → +\big[op,nil]_{i < n | p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i) + a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a \big[op,nil]_{i < k | font class="Apple-style-span" color="#FF0000"if/font (a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"leb/a n i) then a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a else p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i). #k #n #p #B #nil #op #f #lenk (elim lenk) - [@same_bigop #i #lti // >(not_le_to_leb_false …) /2/ - |#j #leup #Hind >bigop_Sfalse >(le_to_leb_true … leup) // + [@a href="cic:/matita/arithmetics/bigops/same_bigop.def(6)"same_bigop/a #i #lti // >(a href="cic:/matita/arithmetics/nat/not_le_to_leb_false.def(7)"not_le_to_leb_false/a …) /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/nat/lt_to_not_le.def(7)"lt_to_not_le/a/span/span/ + |#j #leup #Hind >a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a >(a href="cic:/matita/arithmetics/nat/le_to_leb_true.def(7)"le_to_leb_true/a … leup) // ] qed. -record Aop (A:Type[0]) (nil:A) : Type[0] ≝ +img class="anchor" src="icons/tick.png" id="pad_bigop1"theorem pad_bigop1: ∀k,n,p,B,nil,op.∀f:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B. n a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"≤/a k → + (∀i. n a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"≤/a i → i a title="natural 'less than'" href="cic:/fakeuri.def(1)"</a k → p i a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a) → + \big[op,nil]_{i < n | p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i) + a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a \big[op,nil]_{i < k | p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i). +#k #n #p #B #nil #op #f #lenk (elim lenk) + [#_ @a href="cic:/matita/arithmetics/bigops/same_bigop.def(6)"same_bigop/a #i #lti // + |#j #leup #Hind #Hfalse >a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a + [@Hind #i #leni #ltij @Hfalse // @a href="cic:/matita/arithmetics/nat/le.con(0,2,1)"le_S/a // + |@Hfalse // + ] + ] +qed. + +img class="anchor" src="icons/tick.png" id="bigop_false"theorem bigop_false: ∀n,B,nil,op.∀f:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B. + \big[op,nil]_{i < n | a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a a title="bigop" href="cic:/fakeuri.def(1)"}/a(f i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a nil. +#n #B #nil #op #f elim n // #n1 #Hind +>a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // +qed. + +img class="anchor" src="icons/tick.png" id="Aop"record Aop (A:Type[0]) (nil:A) : Type[0] ≝ {op :2> A → A → A; - nill:∀a. op nil a = a; - nilr:∀a. op a nil = a; - assoc: ∀a,b,c.op a (op b c) = op (op a b) c + nill:∀a. op nil a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a; + nilr:∀a. op a nil a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a; + assoc: ∀a,b,c.op a (op b c) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a op (op a b) c }. -theorem bigop_sum: ∀k1,k2,p1,p2,B.∀nil.∀op:Aop B nil.∀f,g:nat→B. -op (\big[op,nil]_{ia href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // + cut (f j a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a nil) + [cases (Hfalse j leup (a href="cic:/matita/arithmetics/nat/le.con(0,1,1)"le_n/a … )) // >Hpj #H destruct (H)] #Hfj + >Hfj >a href="cic:/matita/arithmetics/bigops/nill.fix(0,2,2)"nill/a @Hind #i #leni #ltij + cases (Hfalse i leni (a href="cic:/matita/arithmetics/nat/le.con(0,2,1)"le_S/a … ltij)) /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a, a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a/span/span/ + |>a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // @Hind #i #leni #ltij + cases (Hfalse i leni (a href="cic:/matita/arithmetics/nat/le.con(0,2,1)"le_S/a … ltij)) /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a, a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a/span/span/ + ] + ] +qed. + +img class="anchor" src="icons/tick.png" id="bigop_sum"theorem bigop_sum: ∀k1,k2,p1,p2,B.∀nil.∀op:a href="cic:/matita/arithmetics/bigops/Aop.ind(1,0,2)"Aop/a B nil.∀f,g:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B. +op (\big[op,nil]_{inill @same_bigop #i #lti - >(lt_to_leb_false … lti) normalize /2/ - |#i #Hind normalize (le_to_leb_true … (le_plus_n …)) normalize a href="cic:/matita/arithmetics/bigops/nill.fix(0,2,2)"nill/a @a href="cic:/matita/arithmetics/bigops/same_bigop.def(6)"same_bigop/a #i #lti + >(a href="cic:/matita/arithmetics/nat/lt_to_leb_false.def(8)"lt_to_leb_false/a … lti) normalize /span class="autotactic"2span class="autotrace" trace /span/span/ + |#i #Hind normalize <a href="cic:/matita/arithmetics/nat/minus_plus_m_m.def(6)"minus_plus_m_m/a (cases (p1 i)) + >(a href="cic:/matita/arithmetics/nat/le_to_leb_true.def(7)"le_to_leb_true/a … (a href="cic:/matita/arithmetics/nat/le_plus_n.def(7)"le_plus_n/a …)) normalize (commutative_plus c) ->associative_plus (a href="cic:/matita/arithmetics/nat/commutative_plus.def(5)"commutative_plus/a c) +>a href="cic:/matita/arithmetics/nat/associative_plus.def(4)"associative_plus/a <a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"plus_minus_m_m/a // +qed. + +img class="anchor" src="icons/tick.png" id="bigop_I"theorem bigop_I: ∀n,p,B.∀nil.∀op:a href="cic:/matita/arithmetics/bigops/Aop.ind(1,0,2)"Aop/a B nil.∀f:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B. +\big[op,nil]_{i∈[a title="natural number" href="cic:/fakeuri.def(1)"0/a,n[ |p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a \big[op,nil]_{i < n|p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i). +#n #p #B #nil #op #f <a href="cic:/matita/arithmetics/nat/minus_n_O.def(3)"minus_n_O/a @a href="cic:/matita/arithmetics/bigops/same_bigop.def(6)"same_bigop/a // qed. -theorem bigop_I: ∀n,p,B.∀nil.∀op:Aop B nil.∀f:nat→B. -\big[op,nil]_{i∈[0,n[ |p i}(f i) = \big[op,nil]_{i < n|p i}(f i). -#n #p #B #nil #op #f a href="cic:/matita/arithmetics/nat/eq_minus_S_pred.def(4)"eq_minus_S_pred/a >a href="cic:/matita/arithmetics/nat/S_pred.def(3)"S_pred/a + /2 by a href="cic:/matita/arithmetics/nat/lt_plus_to_minus_r.def(11)"lt_plus_to_minus_r/a/] #Hcut +cases (a href="cic:/matita/arithmetics/nat/le_to_or_lt_eq.def(5)"le_to_or_lt_eq/a … lea) #Ha + [cases (a href="cic:/matita/basics/bool/true_or_false.def(1)"true_or_false/a (p b)) #Hcase + [>a href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a [2: >Hcase >(a href="cic:/matita/arithmetics/nat/le_to_leb_true.def(7)"le_to_leb_true/a a b) // @a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a @Ha] + >(Hcut … (a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a … Ha)) + >a href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a + [@a href="cic:/matita/basics/logic/eq_f2.def(3)"eq_f2/a + [@a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a <a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"plus_minus_m_m/a [//|@a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a //] @Hind + |@Hind @a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a // + ] + |<a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"plus_minus_m_m/a // @a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a // + ] + |>a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a [2: >Hcase cases (a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"leb/a a b)//] + >(Hcut … (a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a … Ha)) >a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a + [@Hind @a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a // | <a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"plus_minus_m_m/a // @a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a //] + ] + |(a href="cic:/matita/arithmetics/nat/not_le_to_leb_false.def(7)"not_le_to_leb_false/a a i) // @a href="cic:/matita/arithmetics/nat/lt_to_not_le.def(7)"lt_to_not_le/a // + ] qed. -theorem bigop_sumI: ∀a,b,c,p,B.∀nil.∀op:Aop B nil.∀f:nat→B. -a ≤ b → b ≤ c → -\big[op,nil]_{i∈[a,c[ |p i}(f i) = - op (\big[op,nil]_{i ∈ [b,c[ |p i}(f i)) - \big[op,nil]_{i ∈ [a,b[ |p i}(f i). +img class="anchor" src="icons/tick.png" id="bigop_sumI"theorem bigop_sumI: ∀a,b,c,p,B.∀nil.∀op:a href="cic:/matita/arithmetics/bigops/Aop.ind(1,0,2)"Aop/a B nil.∀f:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B. +a a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"≤/a b → b a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"≤/a c → +\big[op,nil]_{i∈[a,c[ |p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a + op (\big[op,nil]_{i ∈ [b,c[ |p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i)) + \big[op,nil]_{i ∈ [a,b[ |p ia title="bigop" href="cic:/fakeuri.def(1)"}/a(f i). #a #b # c #p #B #nil #op #f #leab #lebc ->(plus_minus_m_m (c-a) (b-a)) in ⊢ (??%?) /2/ ->minus_plus >(commutative_plus a) bigop_sum (cut (∀i. b -a ≤ i → i+a = i-(b-a)+b)) - [#i #lei >plus_minus // (a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"plus_minus_m_m/a (ca title="natural minus" href="cic:/fakeuri.def(1)"-/aa) (ba title="natural minus" href="cic:/fakeuri.def(1)"-/aa)) in ⊢ (??%?); /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/nat/monotonic_le_minus_l.def(9)"monotonic_le_minus_l/a/span/span/ +>a href="cic:/matita/arithmetics/nat/minus_plus.def(13)"minus_plus/a >(a href="cic:/matita/arithmetics/nat/commutative_plus.def(5)"commutative_plus/a a) <a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"plus_minus_m_m/a // +>a href="cic:/matita/arithmetics/bigops/bigop_sum.def(9)"bigop_sum/a (cut (∀i. b a title="natural minus" href="cic:/fakeuri.def(1)"-/aa a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"≤/a i → ia title="natural plus" href="cic:/fakeuri.def(1)"+/aa a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a ia title="natural minus" href="cic:/fakeuri.def(1)"-/a(ba title="natural minus" href="cic:/fakeuri.def(1)"-/aa)a title="natural plus" href="cic:/fakeuri.def(1)"+/ab)) + [#i #lei >a href="cic:/matita/arithmetics/nat/plus_minus.def(5)"plus_minus/a // <a href="cic:/matita/arithmetics/bigops/plus_minus1.def(8)"plus_minus1/a + [@a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a @a href="cic:/matita/basics/logic/sym_eq.def(2)"sym_eq/a @a href="cic:/matita/arithmetics/nat/plus_to_minus.def(7)"plus_to_minus/a /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/bigops/plus_minus1.def(8)"plus_minus1/a/span/span/ | /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/nat/monotonic_le_minus_l.def(9)"monotonic_le_minus_l/a/span/span/]] +#H @a href="cic:/matita/arithmetics/bigops/same_bigop.def(6)"same_bigop/a #i #ltic @a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"leb_elim/a normalize // #lei (bigop_sumI a (S a) (S b)) [|@le_S_S //|//] @eq_f2 - [@same_bigop // |(a href="cic:/matita/arithmetics/bigops/bigop_sumI.def(14)"bigop_sumI/a a (a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a a) (a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a b)) [|@a href="cic:/matita/arithmetics/nat/le_S_S.def(2)"le_S_S/a //|//] @a href="cic:/matita/basics/logic/eq_f2.def(3)"eq_f2/a + [@a href="cic:/matita/arithmetics/bigops/same_bigop.def(6)"same_bigop/a // |<a href="cic:/matita/arithmetics/nat/minus_Sn_n.def(4)"minus_Sn_n/a normalize @a href="cic:/matita/arithmetics/bigops/nilr.fix(0,2,2)"nilr/a] qed. -theorem bigop_0: ∀n,B.∀nil.∀op:Aop B nil.∀f:nat→B. -\big[op,nil]_{i < S n}(f i) = - op (\big[op,nil]_{i < n}(f (S i))) (f 0). +img class="anchor" src="icons/tick.png" id="bigop_0"theorem bigop_0: ∀n,B.∀nil.∀op:a href="cic:/matita/arithmetics/bigops/Aop.ind(1,0,2)"Aop/a B nil.∀f:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→B. +\big[op,nil]_{i < a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a na title="bigop" href="cic:/fakeuri.def(1)"}/a(f i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a + op (\big[op,nil]_{i < na title="bigop" href="cic:/fakeuri.def(1)"}/a(f (a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a i))) (f a title="natural number" href="cic:/fakeuri.def(1)"0/a). #n #B #nil #op #f -bigop_a [|//] @eq_f2 [|//] a href="cic:/matita/arithmetics/bigops/bigop_a.def(15)"bigop_a/a [|//] @a href="cic:/matita/basics/logic/eq_f2.def(3)"eq_f2/a [|//] <a href="cic:/matita/arithmetics/nat/minus_n_O.def(3)"minus_n_O/a +@a href="cic:/matita/arithmetics/bigops/same_bigop.def(6)"same_bigop/a // qed. -theorem bigop_prod: ∀k1,k2,p1,p2,B.∀nil.∀op:Aop B nil.∀f: nat →nat → B. -\big[op,nil]_{xbigop_Strue // >Hind >bigop_sum @same_bigop - #i #lti @leb_elim // #lei cut (i = n*k2+(i-n*k2)) /2/ - #eqi [|#H] (>eqi in ⊢ (???%)) - >div_plus_times /2/ >Hp1 >(mod_plus_times …) /2/ - |>bigop_Sfalse // >Hind >(pad_bigop (S n*k2)) // @same_bigop - #i #lti @leb_elim // #lei cut (i = n*k2+(i-n*k2)) /2/ - #eqi >eqi in ⊢ (???%) >div_plus_times /2/ +#n #Hind cases(a href="cic:/matita/basics/bool/true_or_false.def(1)"true_or_false/a (p1 n)) #Hp1 + [>a href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // >Hind >a href="cic:/matita/arithmetics/bigops/bigop_sum.def(9)"bigop_sum/a @a href="cic:/matita/arithmetics/bigops/same_bigop.def(6)"same_bigop/a + #i #lti @a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"leb_elim/a // #lei cut (i a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a na title="natural times" href="cic:/fakeuri.def(1)"*/ak2a title="natural plus" href="cic:/fakeuri.def(1)"+/a(ia title="natural minus" href="cic:/fakeuri.def(1)"-/ana title="natural times" href="cic:/fakeuri.def(1)"*/ak2)) /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/bigops/plus_minus1.def(8)"plus_minus1/a/span/span/ + #eqi [|#H] >eqi in ⊢ (???%); + >a href="cic:/matita/arithmetics/div_and_mod/div_plus_times.def(14)"div_plus_times/a /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/nat/lt_plus_to_lt_l.def(6)"lt_plus_to_lt_l/a/span/span/ >Hp1 >(a href="cic:/matita/arithmetics/div_and_mod/mod_plus_times.def(14)"mod_plus_times/a …) /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a, a href="cic:/matita/arithmetics/nat/lt_plus_to_lt_l.def(6)"lt_plus_to_lt_l/a/span/span/ + |>a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // >Hind >(a href="cic:/matita/arithmetics/bigops/pad_bigop.def(8)"pad_bigop/a (a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a na title="natural times" href="cic:/fakeuri.def(1)"*/ak2)) // @a href="cic:/matita/arithmetics/bigops/same_bigop.def(6)"same_bigop/a + #i #lti @a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"leb_elim/a // #lei cut (i a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a na title="natural times" href="cic:/fakeuri.def(1)"*/ak2a title="natural plus" href="cic:/fakeuri.def(1)"+/a(ia title="natural minus" href="cic:/fakeuri.def(1)"-/ana title="natural times" href="cic:/fakeuri.def(1)"*/ak2)) /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/bigops/plus_minus1.def(8)"plus_minus1/a/span/span/ + #eqi >eqi in ⊢ (???%); >a href="cic:/matita/arithmetics/div_and_mod/div_plus_times.def(14)"div_plus_times/a [ >Hp1 %| /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/nat/monotonic_lt_minus_l.def(12)"monotonic_lt_minus_l/a/span/span/] ] qed. -record ACop (A:Type[0]) (nil:A) : Type[0] ≝ - {aop :> Aop A nil; - comm: ∀a,b.aop a b = aop b a +img class="anchor" src="icons/tick.png" id="ACop"record ACop (A:Type[0]) (nil:A) : Type[0] ≝ + {aop :> a href="cic:/matita/arithmetics/bigops/Aop.ind(1,0,2)"Aop/a A nil; + comm: ∀a,b.aop a b a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a aop b a }. -lemma bigop_op: ∀k,p,B.∀nil.∀op:ACop B nil.∀f,g: nat → B. -op (\big[op,nil]_{ibigop_Strue // >bigop_Strue // >bigop_Strue // - assoc >comm in ⊢ (??(????%?)?) - bigop_Sfalse // >bigop_Sfalse // >bigop_Sfalse // +img class="anchor" src="icons/tick.png" id="bigop_op"lemma bigop_op: ∀k,p,B.∀nil.∀op:a href="cic:/matita/arithmetics/bigops/ACop.ind(1,0,2)"ACop/a B nil.∀f,g: a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a → B. +op (\big[op,nil]_{ia href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // >a href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // >a href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // + normalize <a href="cic:/matita/arithmetics/bigops/assoc.fix(0,2,2)"assoc/a <a href="cic:/matita/arithmetics/bigops/assoc.fix(0,2,2)"assoc/a in ⊢ (???%); @a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a >a href="cic:/matita/arithmetics/bigops/assoc.fix(0,2,2)"assoc/a + >a href="cic:/matita/arithmetics/bigops/comm.fix(0,2,3)"comm/a in ⊢ (??(????%?)?); <a href="cic:/matita/arithmetics/bigops/assoc.fix(0,2,2)"assoc/a @a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a @Hind + |>a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // >a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // >a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // ] qed. -lemma bigop_diff: ∀p,B.∀nil.∀op:ACop B nil.∀f:nat → B.∀i,n. - i < n → p i = true → - \big[op,nil]_{x(not_eq_to_eqb_false … (lt_to_not_eq … Hi)) //] #Hcut - cases (true_or_false (p n)) #pn - [>bigop_Strue // >bigop_Strue // - >assoc >(comm ?? op (f i) (f n)) Hind // - |>bigop_Sfalse // >bigop_Sfalse // >Hind // + [#ltO @a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"False_ind/a /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/absurd.def(2)"absurd/a/span/span/ + |#n #Hind #lein #pi cases (a href="cic:/matita/arithmetics/nat/le_to_or_lt_eq.def(5)"le_to_or_lt_eq/a … (a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a …lein)) #Hi + [cut (a href="cic:/matita/basics/bool/andb.def(1)"andb/a(a href="cic:/matita/basics/bool/notb.def(1)"notb/a(a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"eqb/a i n))(p n) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a (p n)) + [>(a href="cic:/matita/arithmetics/nat/not_eq_to_eqb_false.def(6)"not_eq_to_eqb_false/a … (a href="cic:/matita/arithmetics/nat/lt_to_not_eq.def(7)"lt_to_not_eq/a … Hi)) //] #Hcut + cases (a href="cic:/matita/basics/bool/true_or_false.def(1)"true_or_false/a (p n)) #pn + [>a href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // >a href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // + normalize >a href="cic:/matita/arithmetics/bigops/assoc.fix(0,2,2)"assoc/a >(a href="cic:/matita/arithmetics/bigops/comm.fix(0,2,3)"comm/a ?? op (f i) (f n)) <a href="cic:/matita/arithmetics/bigops/assoc.fix(0,2,2)"assoc/a >Hind // + |>a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // >a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // >Hind // ] - |bigop_Strue // @eq_f >bigop_Sfalse - [@same_bigop // #k #ltki >not_eq_to_eqb_false /2/ - |>eq_to_eqb_true // + |a href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // @a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a >a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a + [@a href="cic:/matita/arithmetics/bigops/same_bigop.def(6)"same_bigop/a // #k #ltki >a href="cic:/matita/arithmetics/nat/not_eq_to_eqb_false.def(6)"not_eq_to_eqb_false/a /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/not_to_not.def(3)"not_to_not/a/span/span/ + |>a href="cic:/matita/arithmetics/nat/eq_to_eqb_true.def(5)"eq_to_eqb_true/a // ] ] ] qed. (* range *) -record range (A:Type[0]): Type[0] ≝ - {enum:nat→A; upto:nat; filter:nat→bool}. +img class="anchor" src="icons/tick.png" id="range"record range (A:Type[0]): Type[0] ≝ + {enum:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→A; upto:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a; filter:a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→a href="cic:/matita/basics/bool/bool.ind(1,0,0)"bool/a}. -definition sub_hk: (nat→nat)→(nat→nat)→∀A:Type[0].relation (range A) ≝ -λh,k,A,I,J.∀i.i<(upto A I) → (filter A I i)=true → - (h i < upto A J - ∧ filter A J (h i) = true - ∧ k (h i) = i). - -definition iso: ∀A:Type[0].relation (range A) ≝ - λA,I,J.∃h,k. - (∀i. i < (upto A I) → (filter A I i) = true → - enum A I i = enum A J (h i)) ∧ - sub_hk h k A I J ∧ sub_hk k h A J I. +img class="anchor" src="icons/tick.png" id="sub_hk"definition sub_hk: (a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a)→(a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a→a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"nat/a)→∀A:Type[0].a href="cic:/matita/basics/relations/relation.def(1)"relation/a (a href="cic:/matita/arithmetics/bigops/range.ind(1,0,1)"range/a A) ≝ +λh,k,A,I,J.∀i.ia title="natural 'less than'" href="cic:/fakeuri.def(1)"</a(a href="cic:/matita/arithmetics/bigops/upto.fix(0,1,1)"upto/a A I) → (a href="cic:/matita/arithmetics/bigops/filter.fix(0,1,1)"filter/a A I i)a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → + (h i a title="natural 'less than'" href="cic:/fakeuri.def(1)"</a a href="cic:/matita/arithmetics/bigops/upto.fix(0,1,1)"upto/a A J + a title="logical and" href="cic:/fakeuri.def(1)"∧/a a href="cic:/matita/arithmetics/bigops/filter.fix(0,1,1)"filter/a A J (h i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a + a title="logical and" href="cic:/fakeuri.def(1)"∧/a k (h i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a i). + +img class="anchor" src="icons/tick.png" id="iso"definition iso: ∀A:Type[0].a href="cic:/matita/basics/relations/relation.def(1)"relation/a (a href="cic:/matita/arithmetics/bigops/range.ind(1,0,1)"range/a A) ≝ + λA,I,J.a title="exists" href="cic:/fakeuri.def(1)"∃/ah,ka title="exists" href="cic:/fakeuri.def(1)"./a + (∀i. i a title="natural 'less than'" href="cic:/fakeuri.def(1)"</a (a href="cic:/matita/arithmetics/bigops/upto.fix(0,1,1)"upto/a A I) → (a href="cic:/matita/arithmetics/bigops/filter.fix(0,1,1)"filter/a A I i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → + a href="cic:/matita/arithmetics/bigops/enum.fix(0,1,1)"enum/a A I i a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/arithmetics/bigops/enum.fix(0,1,1)"enum/a A J (h i)) a title="logical and" href="cic:/fakeuri.def(1)"∧/a + a href="cic:/matita/arithmetics/bigops/sub_hk.def(2)"sub_hk/a h k A I J a title="logical and" href="cic:/fakeuri.def(1)"∧/a a href="cic:/matita/arithmetics/bigops/sub_hk.def(2)"sub_hk/a k h A J I. -lemma sub_hkO: ∀h,k,A,I,J. upto A I = 0 → sub_hk h k A I J. -#h #k #A #I #J #up0 #i #lti >up0 @False_ind /2/ +img class="anchor" src="icons/tick.png" id="sub_hkO"lemma sub_hkO: ∀h,k,A,I,J. a href="cic:/matita/arithmetics/bigops/upto.fix(0,1,1)"upto/a A I a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="natural number" href="cic:/fakeuri.def(1)"0/a → a href="cic:/matita/arithmetics/bigops/sub_hk.def(2)"sub_hk/a h k A I J. +#h #k #A #I #J #up0 #i #lti >up0 @a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"False_ind/a /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/absurd.def(2)"absurd/a/span/span/ qed. -lemma sub0_to_false: ∀h,k,A,I,J. upto A I = 0 → sub_hk h k A J I → - ∀i. i < upto A J → filter A J i = false. -#h #k #A #I #J #up0 #sub #i #lti cases(true_or_false (filter A J i)) // -#ptrue (cases (sub i lti ptrue)) * #hi @False_ind /2/ +img class="anchor" src="icons/tick.png" id="sub0_to_false"lemma sub0_to_false: ∀h,k,A,I,J. a href="cic:/matita/arithmetics/bigops/upto.fix(0,1,1)"upto/a A I a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="natural number" href="cic:/fakeuri.def(1)"0/a → a href="cic:/matita/arithmetics/bigops/sub_hk.def(2)"sub_hk/a h k A J I → + ∀i. i a title="natural 'less than'" href="cic:/fakeuri.def(1)"</a a href="cic:/matita/arithmetics/bigops/upto.fix(0,1,1)"upto/a A J → a href="cic:/matita/arithmetics/bigops/filter.fix(0,1,1)"filter/a A J i a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a. +#h #k #A #I #J #up0 #sub #i #lti cases(a href="cic:/matita/basics/bool/true_or_false.def(1)"true_or_false/a (a href="cic:/matita/arithmetics/bigops/filter.fix(0,1,1)"filter/a A J i)) // +#ptrue (cases (sub i lti ptrue)) * #hi @a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"False_ind/a /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/absurd.def(2)"absurd/a/span/span/ qed. -lemma sub_lt: ∀A,e,p,n,m. n ≤ m → - sub_hk (λx.x) (λx.x) A (mk_range A e n p) (mk_range A e m p). -#A #e #f #n #m #lenm #i #lti #fi % // % /2/ +img class="anchor" src="icons/tick.png" id="sub_lt"lemma sub_lt: ∀A,e,p,n,m. n a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"≤/a m → + a href="cic:/matita/arithmetics/bigops/sub_hk.def(2)"sub_hk/a (λx.x) (λx.x) A (a href="cic:/matita/arithmetics/bigops/range.con(0,1,1)"mk_range/a A e n p) (a href="cic:/matita/arithmetics/bigops/range.con(0,1,1)"mk_range/a A e m p). +#A #e #f #n #m #lenm #i #lti #fi % // % /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/nat/lt_to_le_to_lt.def(4)"lt_to_le_to_lt/a/span/span/ qed. -theorem transitive_sub: ∀h1,k1,h2,k2,A,I,J,K. - sub_hk h1 k1 A I J → sub_hk h2 k2 A J K → - sub_hk (λx.h2(h1 x)) (λx.k1(k2 x)) A I K. +img class="anchor" src="icons/tick.png" id="transitive_sub"theorem transitive_sub: ∀h1,k1,h2,k2,A,I,J,K. + a href="cic:/matita/arithmetics/bigops/sub_hk.def(2)"sub_hk/a h1 k1 A I J → a href="cic:/matita/arithmetics/bigops/sub_hk.def(2)"sub_hk/a h2 k2 A J K → + a href="cic:/matita/arithmetics/bigops/sub_hk.def(2)"sub_hk/a (λx.h2(h1 x)) (λx.k1(k2 x)) A I K. #h1 #k1 #h2 #k2 #A #I #J #K #sub1 #sub2 #i #lti #fi cases(sub1 i lti fi) * #lth1i #fh1i #ei cases(sub2 (h1 i) lth1i fh1i) * #H1 #H2 #H3 % // % // qed. -theorem bigop_iso: ∀n1,n2,p1,p2,B.∀nil.∀op:ACop B nil.∀f1,f2. - iso B (mk_range B f1 n1 p1) (mk_range B f2 n2 p2) → - \big[op,nil]_{ibigop_Sfalse - [@(Hind ? (le_O_n ?)) [/2/ | @(transitive_sub … (sub_lt …) sub2) //] - |@(sub0_to_false … sub2) // + >a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a + [@(Hind ? (a href="cic:/matita/arithmetics/nat/le_O_n.def(2)"le_O_n/a ?)) [/span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/bigops/sub_hkO.def(4)"sub_hkO/a/span/span/ | @(a href="cic:/matita/arithmetics/bigops/transitive_sub.def(4)"transitive_sub/a … (a href="cic:/matita/arithmetics/bigops/sub_lt.def(5)"sub_lt/a …) sub2) //] + |@(a href="cic:/matita/arithmetics/bigops/sub0_to_false.def(4)"sub0_to_false/a … sub2) // ] - |#n #Hind #p2 #ltn #sub1 #sub2 (cut (n ≤n1)) [/2/] #len - cases(true_or_false (p1 n)) #p1n - [>bigop_Strue // (cases (sub1 n (le_n …) p1n)) * #hn #p2hn #eqn - >(bigop_diff … (h n) n2) // >same // - @eq_f @(Hind ? len) - [#i #ltin #p1i (cases (sub1 i (le_S … ltin) p1i)) * - #h1i #p2h1i #eqi % // % // >not_eq_to_eqb_false normalize // - @(not_to_not ??? (lt_to_not_eq ? ? ltin)) // - |#j #ltj #p2j (cases (sub2 j ltj (andb_true_r …p2j))) * + |#n #Hind #p2 #ltn #sub1 #sub2 (cut (n a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"≤/an1)) [/span class="autotactic"2span class="autotrace" trace a href="cic:/matita/arithmetics/nat/le_plus_b.def(8)"le_plus_b/a/span/span/] #len + cases(a href="cic:/matita/basics/bool/true_or_false.def(1)"true_or_false/a (p1 n)) #p1n + [>a href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // (cases (sub1 n (a href="cic:/matita/arithmetics/nat/le.con(0,1,1)"le_n/a …) p1n)) * #hn #p2hn #eqn + >(a href="cic:/matita/arithmetics/bigops/bigop_diff.def(8)"bigop_diff/a … (h n) n2) // >same // + @a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a @(Hind ? len) + [#i #ltin #p1i (cases (sub1 i (a href="cic:/matita/arithmetics/nat/le.con(0,2,1)"le_S/a … ltin) p1i)) * + #h1i #p2h1i #eqi % // % // >a href="cic:/matita/arithmetics/nat/not_eq_to_eqb_false.def(6)"not_eq_to_eqb_false/a normalize // + @(a href="cic:/matita/basics/logic/not_to_not.def(3)"not_to_not/a ??? (a href="cic:/matita/arithmetics/nat/lt_to_not_eq.def(7)"lt_to_not_eq/a ? ? ltin)) // + |#j #ltj #p2j (cases (sub2 j ltj (a href="cic:/matita/basics/bool/andb_true_r.def(4)"andb_true_r/a …p2j))) * #ltkj #p1kj #eqj % // % // - (cases (le_to_or_lt_eq …(le_S_S_to_le …ltkj))) // - #eqkj @False_ind generalize in match p2j @eqb_elim - normalize /2/ + (cases (a href="cic:/matita/arithmetics/nat/le_to_or_lt_eq.def(5)"le_to_or_lt_eq/a …(a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a …ltkj))) // + #eqkj @a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"False_ind/a generalize in match p2j; @a href="cic:/matita/arithmetics/nat/eqb_elim.def(5)"eqb_elim/a + normalize /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/absurd.def(2)"absurd/a/span/span/ ] - |>bigop_Sfalse // @(Hind ? len) - [@(transitive_sub … (sub_lt …) sub1) // + |>a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // @(Hind ? len) + [@(a href="cic:/matita/arithmetics/bigops/transitive_sub.def(4)"transitive_sub/a … (a href="cic:/matita/arithmetics/bigops/sub_lt.def(5)"sub_lt/a …) sub1) // |#i #lti #p2i cases(sub2 i lti p2i) * #ltki #p1ki #eqi - % // % // cases(le_to_or_lt_eq …(le_S_S_to_le …ltki)) // - #eqki @False_ind /2/ + % // % // cases(a href="cic:/matita/arithmetics/nat/le_to_or_lt_eq.def(5)"le_to_or_lt_eq/a …(a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"le_S_S_to_le/a …ltki)) // + #eqki @a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"False_ind/a /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/absurd.def(2)"absurd/a/span/span/ ] ] ] qed. -(* distributivity *) - -record Dop (A:Type[0]) (nil:A): Type[0] ≝ - {sum : ACop A nil; - prod: A → A →A; - null: \forall a. prod a nil = nil; - distr: ∀a,b,c:A. prod a (sum b c) = sum (prod a b) (prod a c) - }. - -theorem bigop_distr: ∀n,p,B,nil.∀R:Dop B nil.\forall f,a. - let aop \def sum B nil R in - let mop \def prod B nil R in - mop a \big[aop,nil]_{ibigop_Strue // >bigop_Strue // >(distr B nil R) >Hind // - |>bigop_Sfalse // >bigop_Sfalse // - ] -qed. - -(* Sigma e Pi - - -notation "Σ_{ ident i < n | p } f" - with precedence 80 -for @{'bigop $n plus 0 (λ${ident i}.p) (λ${ident i}. $f)}. - -notation "Σ_{ ident i < n } f" - with precedence 80 -for @{'bigop $n plus 0 (λ${ident i}.true) (λ${ident i}. $f)}. - -notation "Σ_{ ident j ∈ [a,b[ } f" - with precedence 80 -for @{'bigop ($b-$a) plus 0 (λ${ident j}.((λ${ident j}.true) (${ident j}+$a))) - (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - -notation "Σ_{ ident j ∈ [a,b[ | p } f" - with precedence 80 -for @{'bigop ($b-$a) plus 0 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) - (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - -notation "Π_{ ident i < n | p} f" - with precedence 80 -for @{'bigop $n times 1 (λ${ident i}.$p) (λ${ident i}. $f)}. - -notation "Π_{ ident i < n } f" - with precedence 80 -for @{'bigop $n times 1 (λ${ident i}.true) (λ${ident i}. $f)}. - -notation "Π_{ ident j ∈ [a,b[ } f" - with precedence 80 -for @{'bigop ($b-$a) times 1 (λ${ident j}.((λ${ident j}.true) (${ident j}+$a))) - (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - -notation "Π_{ ident j ∈ [a,b[ | p } f" - with precedence 80 -for @{'bigop ($b-$a) times 1 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) - (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - -*) -(* - -definition p_ord_times \def -\lambda p,m,x. - match p_ord x p with - [pair q r \Rightarrow r*m+q]. - -theorem eq_p_ord_times: \forall p,m,x. -p_ord_times p m x = (ord_rem x p)*m+(ord x p). -intros.unfold p_ord_times. unfold ord_rem. -unfold ord. -elim (p_ord x p). -reflexivity. -qed. - -theorem div_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x / m = ord_rem x p. -intros.rewrite > eq_p_ord_times. -apply div_plus_times. -assumption. -qed. - -theorem mod_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x \mod m = ord x p. -intros.rewrite > eq_p_ord_times. -apply mod_plus_times. -assumption. -qed. - -lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m. -intros. -elim (le_to_or_lt_eq O ? (le_O_n m)) - [assumption - |apply False_ind. - rewrite < H1 in H. - rewrite < times_n_O in H. - apply (not_le_Sn_O ? H) - ] -qed. - -theorem iter_p_gen_knm: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to A. -\forall h2:nat \to nat \to nat. -\forall h11,h12:nat \to nat. -\forall k,n,m. -\forall p1,p21:nat \to bool. -\forall p22:nat \to nat \to bool. -(\forall x. x < k \to p1 x = true \to -p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true -\land h2 (h11 x) (h12 x) = x -\land (h11 x) < n \land (h12 x) < m) \to -(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to -p1 (h2 i j) = true \land -h11 (h2 i j) = i \land h12 (h2 i j) = j -\land h2 i j < k) \to -iter_p_gen k p1 A g baseA plusA = -iter_p_gen n p21 A (\lambda x:nat.iter_p_gen m (p22 x) A (\lambda y. g (h2 x y)) baseA plusA) baseA plusA. -intros. -rewrite < (iter_p_gen2' n m p21 p22 ? ? ? ? H H1 H2). -apply sym_eq. -apply (eq_iter_p_gen_gh A baseA plusA H H1 H2 g ? (\lambda x.(h11 x)*m+(h12 x))) - [intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - assumption - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - rewrite > H10. - rewrite > H9. - apply sym_eq. - apply div_mod. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - assumption - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - rewrite > div_plus_times - [rewrite > mod_plus_times - [rewrite > H9. - rewrite > H12. - reflexivity. - |assumption - ] - |assumption - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - rewrite > div_plus_times - [rewrite > mod_plus_times - [assumption - |assumption - ] - |assumption - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - apply (lt_to_le_to_lt ? ((h11 j)*m+m)) - [apply monotonic_lt_plus_r. - assumption - |rewrite > sym_plus. - change with ((S (h11 j)*m) \le n*m). - apply monotonic_le_times_l. - assumption - ] - ] -qed. - -theorem iter_p_gen_divides: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -\forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to -\forall g: nat \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) - -\to - -iter_p_gen (S (n*(exp p m))) (\lambda x.divides_b x (n*(exp p m))) A g baseA plusA = -iter_p_gen (S n) (\lambda x.divides_b x n) A - (\lambda x.iter_p_gen (S m) (\lambda y.true) A (\lambda y.g (x*(exp p y))) baseA plusA) baseA plusA. -intros. -cut (O < p) - [rewrite < (iter_p_gen2 ? ? ? ? ? ? ? ? H3 H4 H5). - apply (trans_eq ? ? - (iter_p_gen (S n*S m) (\lambda x:nat.divides_b (x/S m) n) A - (\lambda x:nat.g (x/S m*(p)\sup(x\mod S m))) baseA plusA) ) - [apply sym_eq. - apply (eq_iter_p_gen_gh ? ? ? ? ? ? g ? (p_ord_times p (S m))) - [ assumption - | assumption - | assumption - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - apply divides_to_divides_b_true - [rewrite > (times_n_O O). - apply lt_times - [assumption - |apply lt_O_exp.assumption - ] - |apply divides_times - [apply divides_b_true_to_divides.assumption - |apply (witness ? ? (p \sup (m-i \mod (S m)))). - rewrite < exp_plus_times. - apply eq_f. - rewrite > sym_plus. - apply plus_minus_m_m. - autobatch by le_S_S_to_le, lt_mod_m_m, lt_O_S; - ] - ] - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - unfold p_ord_times. - rewrite > (p_ord_exp1 p ? (i \mod (S m)) (i/S m)) - [change with ((i/S m)*S m+i \mod S m=i). - apply sym_eq. - apply div_mod. - apply lt_O_S - |assumption - |unfold Not.intro. - apply H2. - apply (trans_divides ? (i/ S m)) - [assumption| - apply divides_b_true_to_divides;assumption] - |apply sym_times. - ] - |intros. - apply le_S_S. - apply le_times - [apply le_S_S_to_le. - change with ((i/S m) < S n). - apply (lt_times_to_lt_l m). - apply (le_to_lt_to_lt ? i);[2:assumption] - autobatch by eq_plus_to_le, div_mod, lt_O_S. - |apply le_exp - [assumption - |apply le_S_S_to_le. - apply lt_mod_m_m. - apply lt_O_S - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [apply divides_to_divides_b_true - [apply lt_O_ord_rem - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (n = ord_rem (n*(exp p m)) p) - [rewrite > Hcut2. - apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord_rem. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [rewrite > mod_p_ord_times - [rewrite > sym_times. - apply sym_eq. - apply exp_ord - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut2. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - rewrite > eq_p_ord_times. - rewrite > sym_plus. - apply (lt_to_le_to_lt ? (S m +ord_rem j p*S m)) - [apply lt_plus_l. - apply le_S_S. - cut (m = ord (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] - |change with (S (ord_rem j p)*S m \le S n*S m). - apply le_times_l. - apply le_S_S. - cut (n = ord_rem (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le - [apply lt_O_ord_rem - [elim H1.assumption - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - ] - |unfold ord_rem. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] +(* commutation *) +img class="anchor" src="icons/tick.png" id="bigop_commute"theorem bigop_commute: ∀n,m,p11,p12,p21,p22,B.∀nil.∀op:a href="cic:/matita/arithmetics/bigops/ACop.ind(1,0,2)"ACop/a B nil.∀f. +a title="natural number" href="cic:/fakeuri.def(1)"0/a a title="natural 'less than'" href="cic:/fakeuri.def(1)"</a n → a title="natural number" href="cic:/fakeuri.def(1)"0/a a title="natural 'less than'" href="cic:/fakeuri.def(1)"</a m → +(∀i,j. i a title="natural 'less than'" href="cic:/fakeuri.def(1)"</a n → j a title="natural 'less than'" href="cic:/fakeuri.def(1)"</a m → (p11 i a title="boolean and" href="cic:/fakeuri.def(1)"∧/a p12 i j) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a (p21 j a title="boolean and" href="cic:/fakeuri.def(1)"∧/a p22 i j)) → +\big[op,nil]_{ia href="cic:/matita/arithmetics/bigops/bigop_prod.def(15)"bigop_prod/a >a href="cic:/matita/arithmetics/bigops/bigop_prod.def(15)"bigop_prod/a @a href="cic:/matita/arithmetics/bigops/bigop_iso.def(9)"bigop_iso/a +%{(λi.(ia title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a m)a title="natural times" href="cic:/fakeuri.def(1)"*/an a title="natural plus" href="cic:/fakeuri.def(1)"+/a ia title="natural divide" href="cic:/fakeuri.def(1)"//am)} %{(λi.(ia title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a n)a title="natural times" href="cic:/fakeuri.def(1)"*/am a title="natural plus" href="cic:/fakeuri.def(1)"+/a ia title="natural divide" href="cic:/fakeuri.def(1)"//an)} % + [% + [#i #lti #Heq (* whd in ⊢ (???(?(?%?)?)); *) @a href="cic:/matita/basics/logic/eq_f2.def(3)"eq_f2/a + [@a href="cic:/matita/basics/logic/sym_eq.def(2)"sym_eq/a @a href="cic:/matita/arithmetics/div_and_mod/mod_plus_times.def(14)"mod_plus_times/a /2 by a href="cic:/matita/arithmetics/div_and_mod/lt_times_to_lt_div.def(10)"lt_times_to_lt_div/a/ + |@a href="cic:/matita/basics/logic/sym_eq.def(2)"sym_eq/a @a href="cic:/matita/arithmetics/div_and_mod/div_plus_times.def(14)"div_plus_times/a /2 by a href="cic:/matita/arithmetics/div_and_mod/lt_times_to_lt_div.def(10)"lt_times_to_lt_div/a/ ] - ] - |apply eq_iter_p_gen - - [intros. - elim (divides_b (x/S m) n);reflexivity - |intros.reflexivity - ] - ] -|elim H1.apply lt_to_le.assumption -] -qed. - - - -theorem iter_p_gen_2_eq: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall h11,h12,h21,h22: nat \to nat \to nat. -\forall n1,m1,n2,m2. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to -p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true -\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j -\land h11 i j < n1 \land h12 i j < m1) \to -(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to -p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true -\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j -\land (h21 i j) < n2 \land (h22 i j) < m2) \to -iter_p_gen n1 p11 A - (\lambda x:nat .iter_p_gen m1 (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen n2 p21 A - (\lambda x:nat .iter_p_gen m2 (p22 x) A (\lambda y. g (h11 x y) (h12 x y)) baseA plusA ) - baseA plusA. - -intros. -rewrite < (iter_p_gen2' ? ? ? ? ? ? ? ? H H1 H2). -letin ha:= (\lambda x,y.(((h11 x y)*m1) + (h12 x y))). -letin ha12:= (\lambda x.(h21 (x/m1) (x \mod m1))). -letin ha22:= (\lambda x.(h22 (x/m1) (x \mod m1))). - -apply (trans_eq ? ? -(iter_p_gen n2 p21 A (\lambda x:nat. iter_p_gen m2 (p22 x) A - (\lambda y:nat.(g (((h11 x y)*m1+(h12 x y))/m1) (((h11 x y)*m1+(h12 x y))\mod m1))) baseA plusA ) baseA plusA)) -[ - apply (iter_p_gen_knm A baseA plusA H H1 H2 (\lambda e. (g (e/m1) (e \mod m1))) ha ha12 ha22);intros - [ elim (and_true ? ? H6). - cut(O \lt m1) - [ cut(x/m1 < n1) - [ cut((x \mod m1) < m1) - [ elim (H4 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - split - [ split - [ split - [ split - [ assumption - | assumption - ] - | unfold ha. - unfold ha12. - unfold ha22. - rewrite > H14. - rewrite > H13. - apply sym_eq. - apply div_mod. - assumption - ] - | assumption - ] - | assumption + |#i #lti #Hi + cut ((ia title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a ma title="natural times" href="cic:/fakeuri.def(1)"*/ana title="natural plus" href="cic:/fakeuri.def(1)"+/aia title="natural divide" href="cic:/fakeuri.def(1)"//am)a title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a na title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/aia title="natural divide" href="cic:/fakeuri.def(1)"//am) + [@a href="cic:/matita/arithmetics/div_and_mod/mod_plus_times.def(14)"mod_plus_times/a @a href="cic:/matita/arithmetics/div_and_mod/lt_times_to_lt_div.def(10)"lt_times_to_lt_div/a //] #H1 + cut ((ia title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a ma title="natural times" href="cic:/fakeuri.def(1)"*/ana title="natural plus" href="cic:/fakeuri.def(1)"+/aia title="natural divide" href="cic:/fakeuri.def(1)"//am)a title="natural divide" href="cic:/fakeuri.def(1)"//ana title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/ai a title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a m) + [@a href="cic:/matita/arithmetics/div_and_mod/div_plus_times.def(14)"div_plus_times/a @a href="cic:/matita/arithmetics/div_and_mod/lt_times_to_lt_div.def(10)"lt_times_to_lt_div/a //] #H2 + %[%[@(a href="cic:/matita/arithmetics/nat/lt_to_le_to_lt.def(4)"lt_to_le_to_lt/a ? (ia title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a ma title="natural times" href="cic:/fakeuri.def(1)"*/ana title="natural plus" href="cic:/fakeuri.def(1)"+/an)) + [whd >a href="cic:/matita/arithmetics/nat/plus_n_Sm.def(4)"plus_n_Sm/a @a href="cic:/matita/arithmetics/nat/monotonic_le_plus_r.def(3)"monotonic_le_plus_r/a @a href="cic:/matita/arithmetics/div_and_mod/lt_times_to_lt_div.def(10)"lt_times_to_lt_div/a // + |>a href="cic:/matita/arithmetics/nat/commutative_plus.def(5)"commutative_plus/a @(a href="cic:/matita/arithmetics/nat/le_times.def(9)"le_times/a (a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a(i a title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a m)) m n n) // @a href="cic:/matita/arithmetics/div_and_mod/lt_mod_m_m.def(12)"lt_mod_m_m/a // ] - | apply lt_mod_m_m. - assumption + |lapply (Heq (ia title="natural divide" href="cic:/fakeuri.def(1)"//am) (i a title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a m) ??) + [@a href="cic:/matita/arithmetics/div_and_mod/lt_mod_m_m.def(12)"lt_mod_m_m/a // |@a href="cic:/matita/arithmetics/div_and_mod/lt_times_to_lt_div.def(10)"lt_times_to_lt_div/a //|>Hi >H1 >H2 //] ] - | apply (lt_times_n_to_lt m1) - [ assumption - | apply (le_to_lt_to_lt ? x) - [ apply (eq_plus_to_le ? ? (x \mod m1)). - apply div_mod. - assumption - | assumption - ] - ] - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H9). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n. - ] - | elim (H3 ? ? H5 H6 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - cut(((h11 i j)*m1 + (h12 i j))/m1 = (h11 i j)) - [ cut(((h11 i j)*m1 + (h12 i j)) \mod m1 = (h12 i j)) - [ split - [ split - [ split - [ apply true_to_true_to_andb_true - [ rewrite > Hcut. - assumption - | rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | unfold ha. - unfold ha12. - rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | unfold ha. - unfold ha22. - rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | cut(O \lt m1) - [ cut(O \lt n1) - [ apply (lt_to_le_to_lt ? ((h11 i j)*m1 + m1) ) - [ unfold ha. - apply (lt_plus_r). - assumption - | rewrite > sym_plus. - rewrite > (sym_times (h11 i j) m1). - rewrite > times_n_Sm. - rewrite > sym_times. - apply (le_times_l). - assumption - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H12. - apply (le_n_O_elim ? H11). - apply le_to_not_lt. - apply le_O_n - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H10. - apply (le_n_O_elim ? H11). - apply le_to_not_lt. - apply le_O_n - ] - ] - | rewrite > (mod_plus_times m1 (h11 i j) (h12 i j)). - reflexivity. - assumption - ] - | rewrite > (div_plus_times m1 (h11 i j) (h12 i j)). - reflexivity. - assumption + |>H1 >H2 // + ] ] - ] -| apply (eq_iter_p_gen1) - [ intros. reflexivity - | intros. - apply (eq_iter_p_gen1) - [ intros. reflexivity - | intros. - rewrite > (div_plus_times) - [ rewrite > (mod_plus_times) - [ reflexivity - | elim (H3 x x1 H5 H7 H6 H8). - assumption + |#i #lti #Hi + cut ((ia title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a na title="natural times" href="cic:/fakeuri.def(1)"*/ama title="natural plus" href="cic:/fakeuri.def(1)"+/aia title="natural divide" href="cic:/fakeuri.def(1)"//an)a title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a ma title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/aia title="natural divide" href="cic:/fakeuri.def(1)"//an) + [@a href="cic:/matita/arithmetics/div_and_mod/mod_plus_times.def(14)"mod_plus_times/a @a href="cic:/matita/arithmetics/div_and_mod/lt_times_to_lt_div.def(10)"lt_times_to_lt_div/a //] #H1 + cut ((ia title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a na title="natural times" href="cic:/fakeuri.def(1)"*/ama title="natural plus" href="cic:/fakeuri.def(1)"+/aia title="natural divide" href="cic:/fakeuri.def(1)"//an)a title="natural divide" href="cic:/fakeuri.def(1)"//ama title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/ai a title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a n) + [@a href="cic:/matita/arithmetics/div_and_mod/div_plus_times.def(14)"div_plus_times/a @a href="cic:/matita/arithmetics/div_and_mod/lt_times_to_lt_div.def(10)"lt_times_to_lt_div/a //] #H2 + %[%[@(a href="cic:/matita/arithmetics/nat/lt_to_le_to_lt.def(4)"lt_to_le_to_lt/a ? (ia title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a na title="natural times" href="cic:/fakeuri.def(1)"*/ama title="natural plus" href="cic:/fakeuri.def(1)"+/am)) + [whd >a href="cic:/matita/arithmetics/nat/plus_n_Sm.def(4)"plus_n_Sm/a @a href="cic:/matita/arithmetics/nat/monotonic_le_plus_r.def(3)"monotonic_le_plus_r/a @a href="cic:/matita/arithmetics/div_and_mod/lt_times_to_lt_div.def(10)"lt_times_to_lt_div/a // + |>a href="cic:/matita/arithmetics/nat/commutative_plus.def(5)"commutative_plus/a @(a href="cic:/matita/arithmetics/nat/le_times.def(9)"le_times/a (a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a(i a title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a n)) n m m) // @a href="cic:/matita/arithmetics/div_and_mod/lt_mod_m_m.def(12)"lt_mod_m_m/a // ] - | elim (H3 x x1 H5 H7 H6 H8). - assumption + |lapply (Heq (i a title="natural remainder" href="cic:/fakeuri.def(1)"\mod/a n) (ia title="natural divide" href="cic:/fakeuri.def(1)"//an) ??) + [@a href="cic:/matita/arithmetics/div_and_mod/lt_times_to_lt_div.def(10)"lt_times_to_lt_div/a // |@a href="cic:/matita/arithmetics/div_and_mod/lt_mod_m_m.def(12)"lt_mod_m_m/a // |>Hi >H1 >H2 //] ] + |>H1 >H2 // ] ] -] qed. -theorem iter_p_gen_iter_p_gen: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall n,m. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall x,y. x < n \to y < m \to - (p11 x \land p12 x y) = (p21 y \land p22 y x)) \to -iter_p_gen n p11 A - (\lambda x:nat.iter_p_gen m (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen m p21 A - (\lambda y:nat.iter_p_gen n (p22 y) A (\lambda x. g x y) baseA plusA ) - baseA plusA. -intros. -apply (iter_p_gen_2_eq A baseA plusA H H1 H2 (\lambda x,y. g x y) (\lambda x,y.y) (\lambda x,y.x) (\lambda x,y.y) (\lambda x,y.x) - n m m n p11 p21 p12 p22) - [intros.split - [split - [split - [split - [split - [apply (andb_true_true ? (p12 j i)). - rewrite > H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - |apply (andb_true_true_r (p11 j)). - rewrite > H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - ] - |reflexivity - ] - |reflexivity - ] - |assumption - ] - |assumption - ] - |intros.split - [split - [split - [split - [split - [apply (andb_true_true ? (p22 j i)). - rewrite < H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - |apply (andb_true_true_r (p21 j)). - rewrite < H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - ] - |reflexivity - ] - |reflexivity - ] - |assumption - ] - |assumption - ] +(* distributivity *) + +img class="anchor" src="icons/tick.png" id="Dop"record Dop (A:Type[0]) (nil:A): Type[0] ≝ + {sum : a href="cic:/matita/arithmetics/bigops/ACop.ind(1,0,2)"ACop/a A nil; + prod: A → A →A; + null: \forall a. prod a nil a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a nil; + distr: ∀a,b,c:A. prod a (sum b c) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a sum (prod a b) (prod a c) + }. + +img class="anchor" src="icons/tick.png" id="bigop_distr"theorem bigop_distr: ∀n,p,B,nil.∀R:a href="cic:/matita/arithmetics/bigops/Dop.ind(1,0,2)"Dop/a B nil.\forall f,a. + let aop \def a href="cic:/matita/arithmetics/bigops/sum.fix(0,2,4)"sum/a B nil R in + let mop \def a href="cic:/matita/arithmetics/bigops/prod.fix(0,2,4)"prod/a B nil R in + mop a \big[aop,nil]_{ia href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // >a href="cic:/matita/arithmetics/bigops/bigop_Strue.def(3)"bigop_Strue/a // >(a href="cic:/matita/arithmetics/bigops/distr.fix(0,2,5)"distr/a B nil R) >Hind // + |>a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // >a href="cic:/matita/arithmetics/bigops/bigop_Sfalse.def(3)"bigop_Sfalse/a // ] -qed. *) \ No newline at end of file +qed. + \ No newline at end of file