X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=weblib%2Fbasics%2Flist.ma;h=49cc0a5afc548a567fe03d138d4c2649ab5b0aae;hb=528f8ea107f689d07d060e1d31ba32bf65b4e6ba;hp=798f5762933b3fd9c1d2153761e08d33e31dc689;hpb=8f08fac33a366b2267b35af1a50ad3a9df8dbb88;p=helm.git diff --git a/weblib/basics/list.ma b/weblib/basics/list.ma index 798f57629..49cc0a5af 100644 --- a/weblib/basics/list.ma +++ b/weblib/basics/list.ma @@ -9,7 +9,6 @@ \ / GNU General Public License Version 2 V_______________________________________________________________ *) -include "basics/types.ma". include "arithmetics/nat.ma". inductive list (A:Type[0]) : Type[0] := @@ -20,7 +19,7 @@ notation "hvbox(hd break :: tl)" right associative with precedence 47 for @{'cons $hd $tl}. -notation "[ list0 x sep ; ]" +notation "ref 'cons [ list0 x sep ; ref 'nil ]" non associative with precedence 90 for ${fold right @'nil rec acc @{'cons $x $acc}}. @@ -31,12 +30,12 @@ notation "hvbox(l1 break @ l2)" interpretation "nil" 'nil = (nil ?). interpretation "cons" 'cons hd tl = (cons ? hd tl). -definition not_nil: ∀A:Type[0].list A → Prop ≝ - λA.λl.match l with [ nil ⇒ True | cons hd tl ⇒ False ]. +definition not_nil: ∀A:Type[0].a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A → Prop ≝ + λA.λl.match l with [ nil ⇒ a href="cic:/matita/basics/logic/True.ind(1,0,0)"True/a | cons hd tl ⇒ a href="cic:/matita/basics/logic/False.ind(1,0,0)"False/a ]. theorem nil_cons: - ∀A:Type[0].∀l:list A.∀a:A. a::l ≠ []. - #A #l #a @nmk #Heq (change with (not_nil ? (a::l))) >Heq // + ∀A:Type[0].∀l:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A.∀a:A. aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/al a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"≠/a a title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a. + #A #l #a @a href="cic:/matita/basics/logic/Not.con(0,1,1)"nmk/a #Heq (change with (a href="cic:/matita/basics/list/not_nil.def(1)"not_nil/a ? (aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/al))) >Heq // qed. (* @@ -45,24 +44,24 @@ let rec id_list A (l: list A) on l := [ nil => [] | (cons hd tl) => hd :: id_list A tl ]. *) -let rec append A (l1: list A) l2 on l1 ≝ +let rec append A (l1: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A) l2 on l1 ≝ match l1 with [ nil ⇒ l2 - | cons hd tl ⇒ hd :: append A tl l2 ]. + | cons hd tl ⇒ hd a title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/a append A tl l2 ]. -definition hd ≝ λA.λl: list A.λd:A. +definition hd ≝ λA.λl: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A.λd:A. match l with [ nil ⇒ d | cons a _ ⇒ a]. -definition tail ≝ λA.λl: list A. - match l with [ nil ⇒ [] | cons hd tl ⇒ tl]. +definition tail ≝ λA.λl: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A. + match l with [ nil ⇒ a title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a | cons hd tl ⇒ tl]. interpretation "append" 'append l1 l2 = (append ? l1 l2). -theorem append_nil: ∀A.∀l:list A.l @ [] = l. +theorem append_nil: ∀A.∀l:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A.l a title="append" href="cic:/fakeuri.def(1)"@/a a title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a l. #A #l (elim l) normalize // qed. theorem associative_append: - ∀A.associative (list A) (append A). + ∀A.a href="cic:/matita/basics/relations/associative.def(1)"associative/a (a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A) (a href="cic:/matita/basics/list/append.fix(0,1,1)"append/a A). #A #l1 #l2 #l3 (elim l1) normalize // qed. (* deleterio per auto @@ -71,71 +70,128 @@ ntheorem cons_append_commute: a :: (l1 @ l2) = (a :: l1) @ l2. //; nqed. *) -theorem append_cons:∀A.∀a:A.∀l,l1.l@(a::l1)=(l@[a])@l1. -/2/ qed. +theorem append_cons:∀A.∀a:A.∀l,l1.la title="append" href="cic:/fakeuri.def(1)"@/a(aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/al1)a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a(la title="append" href="cic:/fakeuri.def(1)"@/a(aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/aa title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a))a title="append" href="cic:/fakeuri.def(1)"@/al1.span style="text-decoration: underline;"/spanspan class="autotactic"/span +#A #a #l1 #l2 >a href="cic:/matita/basics/list/associative_append.def(4)"associative_append/a // qed. -theorem nil_append_elim: ∀A.∀l1,l2: list A.∀P:?→?→Prop. - l1@l2=[] → P (nil A) (nil A) → P l1 l2. +theorem nil_append_elim: ∀A.∀l1,l2: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A.∀P:?→?→Prop. + l1a title="append" href="cic:/fakeuri.def(1)"@/al2a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/aa title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a → P (a href="cic:/matita/basics/list/list.con(0,1,1)"nil/a A) (a href="cic:/matita/basics/list/list.con(0,1,1)"nil/a A) → P l1 l2. #A #l1 #l2 #P (cases l1) normalize // #a #l3 #heq destruct qed. -theorem nil_to_nil: ∀A.∀l1,l2:list A. - l1@l2 = [] → l1 = [] ∧ l2 = []. -#A #l1 #l2 #isnil @(nil_append_elim A l1 l2) /2/ +theorem nil_to_nil: ∀A.∀l1,l2:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A. + l1a title="append" href="cic:/fakeuri.def(1)"@/al2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a → l1 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a a title="logical and" href="cic:/fakeuri.def(1)"∧/a l2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a. +#A #l1 #l2 #isnil @(a href="cic:/matita/basics/list/nil_append_elim.def(4)"nil_append_elim/a A l1 l2) /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/And.con(0,1,2)"conj/a/span/span/ qed. (* iterators *) -let rec map (A,B:Type[0]) (f: A → B) (l:list A) on l: list B ≝ - match l with [ nil ⇒ nil ? | cons x tl ⇒ f x :: (map A B f tl)]. +let rec map (A,B:Type[0]) (f: A → B) (l:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A) on l: a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a B ≝ + match l with [ nil ⇒ a href="cic:/matita/basics/list/list.con(0,1,1)"nil/a ? | cons x tl ⇒ f x a title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/a (map A B f tl)]. -let rec foldr (A,B:Type[0]) (f:A → B → B) (b:B) (l:list A) on l :B ≝ +lemma map_append : ∀A,B,f,l1,l2. + (a href="cic:/matita/basics/list/map.fix(0,3,1)"map/a A B f l1) a title="append" href="cic:/fakeuri.def(1)"@/a (a href="cic:/matita/basics/list/map.fix(0,3,1)"map/a A B f l2) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/list/map.fix(0,3,1)"map/a A B f (l1a title="append" href="cic:/fakeuri.def(1)"@/al2). +#A #B #f #l1 elim l1 +[ #l2 @a href="cic:/matita/basics/logic/eq.con(0,1,2)"refl/a +| #h #t #IH #l2 normalize // +] qed. + +let rec foldr (A,B:Type[0]) (f:A → B → B) (b:B) (l:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A) on l :B ≝ match l with [ nil ⇒ b | cons a l ⇒ f a (foldr A B f b l)]. definition filter ≝ - λT.λp:T → bool. - foldr T (list T) (λx,l0.if_then_else ? (p x) (x::l0) l0) (nil T). + λT.λp:T → a href="cic:/matita/basics/bool/bool.ind(1,0,0)"bool/a. + a href="cic:/matita/basics/list/foldr.fix(0,4,1)"foldr/a T (a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a T) (λx,l0.if (p x) then (xa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/al0) else l0) (a href="cic:/matita/basics/list/list.con(0,1,1)"nil/a T). -lemma filter_true : ∀A,l,a,p. p a = true → - filter A p (a::l) = a :: filter A p l. +definition compose ≝ λA,B,C.λf:A→B→C.λl1,l2. + a href="cic:/matita/basics/list/foldr.fix(0,4,1)"foldr/a ?? (λi,acc.(a href="cic:/matita/basics/list/map.fix(0,3,1)"map/a ?? (f i) l2)a title="append" href="cic:/fakeuri.def(1)"@/aacc) a title="nil" href="cic:/fakeuri.def(1)"[/a a title="nil" href="cic:/fakeuri.def(1)"]/a l1. + +lemma filter_true : ∀A,l,a,p. p a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → + a href="cic:/matita/basics/list/filter.def(2)"filter/a A p (aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/al) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a a title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/a a href="cic:/matita/basics/list/filter.def(2)"filter/a A p l. #A #l #a #p #pa (elim l) normalize >pa normalize // qed. -lemma filter_false : ∀A,l,a,p. p a = false → - filter A p (a::l) = filter A p l. +lemma filter_false : ∀A,l,a,p. p a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a → + a href="cic:/matita/basics/list/filter.def(2)"filter/a A p (aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/al) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/list/filter.def(2)"filter/a A p l. #A #l #a #p #pa (elim l) normalize >pa normalize // qed. -theorem eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l. +theorem eq_map : ∀A,B,f,g,l. (∀x.f x a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a g x) → a href="cic:/matita/basics/list/map.fix(0,3,1)"map/a A B f l a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/list/map.fix(0,3,1)"map/a A B g l. #A #B #f #g #l #eqfg (elim l) normalize // qed. +(* let rec dprodl (A:Type[0]) (f:A→Type[0]) (l1:list A) (g:(∀a:A.list (f a))) on l1 ≝ match l1 with - [ nil ⇒ nil ? + [ nil ⇒ nil ? | cons a tl ⇒ (map ??(dp ?? a) (g a)) @ dprodl A f tl g - ]. + ]. *) + +(**************************** reverse *****************************) +let rec rev_append S (l1,l2:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a S) on l1 ≝ + match l1 with + [ nil ⇒ l2 + | cons a tl ⇒ rev_append S tl (aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/al2) + ] +. + +definition reverse ≝λS.λl.a href="cic:/matita/basics/list/rev_append.fix(0,1,1)"rev_append/a S l a title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a. -(**************************** length ******************************) +lemma reverse_single : ∀S,a. a href="cic:/matita/basics/list/reverse.def(2)"reverse/a S (aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/aa title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a (aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/aa title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a). +// qed. + +lemma rev_append_def : ∀S,l1,l2. + a href="cic:/matita/basics/list/rev_append.fix(0,1,1)"rev_append/a S l1 l2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a (a href="cic:/matita/basics/list/reverse.def(2)"reverse/a S l1) a title="append" href="cic:/fakeuri.def(1)"@/a l2 . +#S #l1 elim l1 normalize // +qed. + +lemma reverse_cons : ∀S,a,l. a href="cic:/matita/basics/list/reverse.def(2)"reverse/a S (aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/al) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a (a href="cic:/matita/basics/list/reverse.def(2)"reverse/a S l)a title="append" href="cic:/fakeuri.def(1)"@/a(aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/aa title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a). +#S #a #l whd in ⊢ (??%?); // +qed. -let rec length (A:Type[0]) (l:list A) on l ≝ +lemma reverse_append: ∀S,l1,l2. + a href="cic:/matita/basics/list/reverse.def(2)"reverse/a S (l1 a title="append" href="cic:/fakeuri.def(1)"@/a l2) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a (a href="cic:/matita/basics/list/reverse.def(2)"reverse/a S l2)a title="append" href="cic:/fakeuri.def(1)"@/a(a href="cic:/matita/basics/list/reverse.def(2)"reverse/a S l1). +#S #l1 elim l1 [normalize // | #a #tl #Hind #l2 >a href="cic:/matita/basics/list/reverse_cons.def(7)"reverse_cons/a +>a href="cic:/matita/basics/list/reverse_cons.def(7)"reverse_cons/a // qed. + +lemma reverse_reverse : ∀S,l. a href="cic:/matita/basics/list/reverse.def(2)"reverse/a S (a href="cic:/matita/basics/list/reverse.def(2)"reverse/a S l) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a l. +#S #l elim l // #a #tl #Hind >a href="cic:/matita/basics/list/reverse_cons.def(7)"reverse_cons/a >a href="cic:/matita/basics/list/reverse_append.def(8)"reverse_append/a +normalize // qed. + +(* an elimination principle for lists working on the tail; +useful for strings *) +lemma list_elim_left: ∀S.∀P:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a S → Prop. P (a href="cic:/matita/basics/list/list.con(0,1,1)"nil/a S) → +(∀a.∀tl.P tl → P (tla title="append" href="cic:/fakeuri.def(1)"@/a(aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/aa title="nil" href="cic:/fakeuri.def(1)"[/aa title="nil" href="cic:/fakeuri.def(1)"]/a))) → ∀l. P l. +#S #P #Pnil #Pstep #l <(a href="cic:/matita/basics/list/reverse_reverse.def(9)"reverse_reverse/a … l) +generalize in match (a href="cic:/matita/basics/list/reverse.def(2)"reverse/a S l); #l elim l // +#a #tl #H >a href="cic:/matita/basics/list/reverse_cons.def(7)"reverse_cons/a @Pstep // +qed. + +(**************************** length *******************************) + +let rec length (A:Type[0]) (l:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A) on l ≝ match l with - [ nil ⇒ 0 - | cons a tl ⇒ S (length A tl)]. + [ nil ⇒ a title="natural number" href="cic:/fakeuri.def(1)"0/a + | cons a tl ⇒ a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"S/a (length A tl)]. notation "|M|" non associative with precedence 60 for @{'norm $M}. interpretation "norm" 'norm l = (length ? l). -let rec nth n (A:Type[0]) (l:list A) (d:A) ≝ +lemma length_append: ∀A.∀l1,l2:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A. + a title="norm" href="cic:/fakeuri.def(1)"|/al1a title="append" href="cic:/fakeuri.def(1)"@/al2a title="norm" href="cic:/fakeuri.def(1)"|/a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="norm" href="cic:/fakeuri.def(1)"|/al1a title="norm" href="cic:/fakeuri.def(1)"|/aa title="natural plus" href="cic:/fakeuri.def(1)"+/aa title="norm" href="cic:/fakeuri.def(1)"|/al2a title="norm" href="cic:/fakeuri.def(1)"|/a. +#A #l1 elim l1 // normalize /span class="autotactic"2span class="autotrace" trace /span/span/ +qed. + +let rec nth n (A:Type[0]) (l:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A) (d:A) ≝ match n with - [O ⇒ hd A l d - |S m ⇒ nth m A (tail A l) d]. + [O ⇒ a href="cic:/matita/basics/list/hd.def(1)"hd/a A l d + |S m ⇒ nth m A (a href="cic:/matita/basics/list/tail.def(1)"tail/a A l) d]. -(**************************** fold *******************************) +(***************************** fold *******************************) -let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→bool) (f:A→B) (l:list A) on l :B ≝ +let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→a href="cic:/matita/basics/bool/bool.ind(1,0,0)"bool/a) (f:A→B) (l:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A) on l :B ≝ match l with [ nil ⇒ b - | cons a l ⇒ if_then_else ? (p a) (op (f a) (fold A B op b p f l)) - (fold A B op b p f l)]. + | cons a l ⇒ if (p a) then (op (f a) (fold A B op b p f l)) + else (fold A B op b p f l) + ]. notation "\fold [ op , nil ]_{ ident i ∈ l | p} f" with precedence 80 @@ -148,38 +204,37 @@ for @{'fold $op $nil (λ${ident i}.true) (λ${ident i}. $f) $l}. interpretation "\fold" 'fold op nil p f l = (fold ? ? op nil p f l). theorem fold_true: -∀A,B.∀a:A.∀l.∀p.∀op:B→B→B.∀nil.∀f:A→B. p a = true → - \fold[op,nil]_{i ∈ a::l| p i} (f i) = - op (f a) \fold[op,nil]_{i ∈ l| p i} (f i). +∀A,B.∀a:A.∀l.∀p.∀op:B→B→B.∀nil.∀f:A→B. p a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → + a title="\fold" href="cic:/fakeuri.def(1)"\fold/a[op,nil]_{i ∈ aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/al| p ia title="\fold" href="cic:/fakeuri.def(1)"}/a (f i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a + op (f a) a title="\fold" href="cic:/fakeuri.def(1)"\fold/a[op,nil]_{i ∈ l| p ia title="\fold" href="cic:/fakeuri.def(1)"}/a (f i). #A #B #a #l #p #op #nil #f #pa normalize >pa // qed. theorem fold_false: ∀A,B.∀a:A.∀l.∀p.∀op:B→B→B.∀nil.∀f. -p a = false → \fold[op,nil]_{i ∈ a::l| p i} (f i) = - \fold[op,nil]_{i ∈ l| p i} (f i). +p a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a → a title="\fold" href="cic:/fakeuri.def(1)"\fold/a[op,nil]_{i ∈ aa title="cons" href="cic:/fakeuri.def(1)":/aa title="cons" href="cic:/fakeuri.def(1)":/al| p ia title="\fold" href="cic:/fakeuri.def(1)"}/a (f i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a + a title="\fold" href="cic:/fakeuri.def(1)"\fold/a[op,nil]_{i ∈ l| p ia title="\fold" href="cic:/fakeuri.def(1)"}/a (f i). #A #B #a #l #p #op #nil #f #pa normalize >pa // qed. theorem fold_filter: ∀A,B.∀a:A.∀l.∀p.∀op:B→B→B.∀nil.∀f:A →B. - \fold[op,nil]_{i ∈ l| p i} (f i) = - \fold[op,nil]_{i ∈ (filter A p l)} (f i). + a title="\fold" href="cic:/fakeuri.def(1)"\fold/a[op,nil]_{i ∈ l| p ia title="\fold" href="cic:/fakeuri.def(1)"}/a (f i) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a + a title="\fold" href="cic:/fakeuri.def(1)"\fold/a[op,nil]_{i ∈ (a href="cic:/matita/basics/list/filter.def(2)"filter/a A p l)a title="\fold" href="cic:/fakeuri.def(1)"}/a (f i). #A #B #a #l #p #op #nil #f elim l // -#a #tl #Hind cases(true_or_false (p a)) #pa - [ >filter_true // > fold_true // >fold_true // - | >filter_false // >fold_false // ] +#a #tl #Hind cases(a href="cic:/matita/basics/bool/true_or_false.def(1)"true_or_false/a (p a)) #pa + [ >a href="cic:/matita/basics/list/filter_true.def(3)"filter_true/a // > a href="cic:/matita/basics/list/fold_true.def(3)"fold_true/a // >a href="cic:/matita/basics/list/fold_true.def(3)"fold_true/a // + | >a href="cic:/matita/basics/list/filter_false.def(3)"filter_false/a // >a href="cic:/matita/basics/list/fold_false.def(3)"fold_false/a // ] qed. record Aop (A:Type[0]) (nil:A) : Type[0] ≝ {op :2> A → A → A; - nill:∀a. op nil a = a; - nilr:∀a. op a nil = a; - assoc: ∀a,b,c.op a (op b c) = op (op a b) c + nill:∀a. op nil a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a; + nilr:∀a. op a nil a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a; + assoc: ∀a,b,c.op a (op b c) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a op (op a b) c }. -theorem fold_sum: ∀A,B. ∀I,J:list A.∀nil.∀op:Aop B nil.∀f. - op (\fold[op,nil]_{i∈I} (f i)) (\fold[op,nil]_{i∈J} (f i)) = - \fold[op,nil]_{i∈(I@J)} (f i). +theorem fold_sum: ∀A,B. ∀I,J:a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a A.∀nil.∀op:a href="cic:/matita/basics/list/Aop.ind(1,0,2)"Aop/a B nil.∀f. + op (a title="\fold" href="cic:/fakeuri.def(1)"\fold/a[op,nil]_{i∈Ia title="\fold" href="cic:/fakeuri.def(1)"}/a (f i)) (a title="\fold" href="cic:/fakeuri.def(1)"\fold/a[op,nil]_{i∈Ja title="\fold" href="cic:/fakeuri.def(1)"}/a (f i)) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a + a title="\fold" href="cic:/fakeuri.def(1)"\fold/a[op,nil]_{i∈(Ia title="append" href="cic:/fakeuri.def(1)"@/aJ)a title="\fold" href="cic:/fakeuri.def(1)"}/a (f i). #A #B #I #J #nil #op #f (elim I) normalize - [>nill //|#a #tl #Hind a href="cic:/matita/basics/list/nill.fix(0,2,2)"nill/a //|#a #tl #Hind <a href="cic:/matita/basics/list/assoc.fix(0,2,2)"assoc/a //] +qed. \ No newline at end of file