X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=weblib%2Fcicm2012%2Fpart2.ma;fp=weblib%2Fcicm2012%2Fpart2.ma;h=ad8f06a4f41ac499b22fe6c7beb807823e51eb49;hb=c4c8ca100c2fecb3a17aea95b925f7dc19856eea;hp=0000000000000000000000000000000000000000;hpb=d9c3d76b3a4d3917d95fd7e64bf1a64b53598c9c;p=helm.git diff --git a/weblib/cicm2012/part2.ma b/weblib/cicm2012/part2.ma new file mode 100644 index 000000000..ad8f06a4f --- /dev/null +++ b/weblib/cicm2012/part2.ma @@ -0,0 +1,314 @@ +(* +h1 class="section"Naif Set Theory/h1 +*) +include "basics/types.ma". +include "basics/bool.ma". +(* +In this Chapter we shall develop a naif theory of sets represented as +characteristic predicates over some universe codeA/code, that is as objects of type +A→Prop. +For instance the empty set is defined by the always false function: *) + +img class="anchor" src="icons/tick.png" id="empty_set"definition empty_set ≝ λA:Type[0].λa:A.a href="cic:/matita/basics/logic/False.ind(1,0,0)"False/a. +notation "∅" non associative with precedence 90 for @{'empty_set}. +interpretation "empty set" 'empty_set = (empty_set ?). + +(* Similarly, a singleton set containing an element a, is defined +by the characteristic function asserting equality with a *) + +img class="anchor" src="icons/tick.png" id="singleton"definition singleton ≝ λA.λx,a:A.xa title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/aa. +(* notation "{x}" non associative with precedence 90 for @{'singl $x}. *) +interpretation "singleton" 'singl x = (singleton ? x). + +(* The membership relation between an element of type A and a set S:A →Prop is +simply the predicate resulting from the application of S to a. +The operations of union, intersection, complement and substraction +are easily defined in terms of the propositional connectives of dijunction, +conjunction and negation *) + +img class="anchor" src="icons/tick.png" id="union"definition union : ∀A:Type[0].∀P,Q.A → Prop ≝ λA,P,Q,a.P a a title="logical or" href="cic:/fakeuri.def(1)"∨/a Q a. +interpretation "union" 'union a b = (union ? a b). + +img class="anchor" src="icons/tick.png" id="intersection"definition intersection : ∀A:Type[0].∀P,Q.A→Prop ≝ λA,P,Q,a.P a a title="logical and" href="cic:/fakeuri.def(1)"∧/a Q a. +interpretation "intersection" 'intersects a b = (intersection ? a b). + +img class="anchor" src="icons/tick.png" id="complement"definition complement ≝ λU:Type[0].λA:U → Prop.λw.a title="logical not" href="cic:/fakeuri.def(1)"¬/a A w. +interpretation "complement" 'not a = (complement ? a). + +img class="anchor" src="icons/tick.png" id="difference"definition difference := λU:Type[0].λA,B:U → Prop.λw.A w a title="logical and" href="cic:/fakeuri.def(1)"∧/a a title="logical not" href="cic:/fakeuri.def(1)"¬/a B w. +interpretation "difference" 'minus a b = (difference ? a b). + +(* Finally, we use implication to define the inclusion relation between +sets *) + +img class="anchor" src="icons/tick.png" id="subset"definition subset: ∀A:Type[0].∀P,Q:A→Prop.Prop ≝ λA,P,Q.∀a:A.(P a → Q a). +interpretation "subset" 'subseteq a b = (subset ? a b). + +(* +h2 class="section"Set Equality/h2 +Two sets are equals if and only if they have the same elements, that is, +if the two characteristic functions are extensionally equivalent: *) + +img class="anchor" src="icons/tick.png" id="eqP"definition eqP ≝ λA:Type[0].λP,Q:A → Prop.∀a:A.P a a title="iff" href="cic:/fakeuri.def(1)"↔/a Q a. +notation "A =1 B" non associative with precedence 45 for @{'eqP $A $B}. +interpretation "extensional equality" 'eqP a b = (eqP ? a b). + +(* the fact it defines an equivalence relation must be explicitly proved: *) + +img class="anchor" src="icons/tick.png" id="eqP_sym"lemma eqP_sym: ∀U.∀A,B:U →Prop. + A =1 B → B =1 A. +#U #A #B #eqAB #a @a href="cic:/matita/basics/logic/iff_sym.def(2)"iff_sym/a @eqAB qed. + +img class="anchor" src="icons/tick.png" id="eqP_trans"lemma eqP_trans: ∀U.∀A,B,C:U →Prop. + A =1 B → B =1 C → A =1 C. +#U #A #B #C #eqAB #eqBC #a @a href="cic:/matita/basics/logic/iff_trans.def(2)"iff_trans/a // qed. + +(* For the same reason, we must also prove that all the operations behave well +with respect to eqP: *) + +img class="anchor" src="icons/tick.png" id="eqP_union_r"lemma eqP_union_r: ∀U.∀A,B,C:U →Prop. + A =1 C → A a title="union" href="cic:/fakeuri.def(1)"∪/a B =1 C a title="union" href="cic:/fakeuri.def(1)"∪/a B. +#U #A #B #C #eqAB #a @a href="cic:/matita/basics/logic/iff_or_r.def(2)"iff_or_r/a @eqAB qed. + +img class="anchor" src="icons/tick.png" id="eqP_union_l"lemma eqP_union_l: ∀U.∀A,B,C:U →Prop. + B =1 C → A a title="union" href="cic:/fakeuri.def(1)"∪/a B =1 A a title="union" href="cic:/fakeuri.def(1)"∪/a C. +#U #A #B #C #eqBC #a @a href="cic:/matita/basics/logic/iff_or_l.def(2)"iff_or_l/a @eqBC qed. + +img class="anchor" src="icons/tick.png" id="eqP_intersect_r"lemma eqP_intersect_r: ∀U.∀A,B,C:U →Prop. + A =1 C → A a title="intersection" href="cic:/fakeuri.def(1)"∩/a B =1 C a title="intersection" href="cic:/fakeuri.def(1)"∩/a B. +#U #A #B #C #eqAB #a @a href="cic:/matita/basics/logic/iff_and_r.def(2)"iff_and_r/a @eqAB qed. + +img class="anchor" src="icons/tick.png" id="eqP_intersect_l"lemma eqP_intersect_l: ∀U.∀A,B,C:U →Prop. + B =1 C → A a title="intersection" href="cic:/fakeuri.def(1)"∩/a B =1 A a title="intersection" href="cic:/fakeuri.def(1)"∩/a C. +#U #A #B #C #eqBC #a @a href="cic:/matita/basics/logic/iff_and_l.def(2)"iff_and_l/a @eqBC qed. + +img class="anchor" src="icons/tick.png" id="eqP_substract_r"lemma eqP_substract_r: ∀U.∀A,B,C:U →Prop. + A =1 C → A a title="difference" href="cic:/fakeuri.def(1)"-/a B =1 C a title="difference" href="cic:/fakeuri.def(1)"-/a B. +#U #A #B #C #eqAB #a @a href="cic:/matita/basics/logic/iff_and_r.def(2)"iff_and_r/a @eqAB qed. + +img class="anchor" src="icons/tick.png" id="eqP_substract_l"lemma eqP_substract_l: ∀U.∀A,B,C:U →Prop. + B =1 C → A a title="difference" href="cic:/fakeuri.def(1)"-/a B =1 A a title="difference" href="cic:/fakeuri.def(1)"-/a C. +#U #A #B #C #eqBC #a @a href="cic:/matita/basics/logic/iff_and_l.def(2)"iff_and_l/a /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/iff_not.def(4)"iff_not/a/span/span/ qed. + +(* +h2 class="section"Simple properties of sets/h2 +We can now prove several properties of the previous set-theoretic operations. +In particular, union is commutative and associative, and the empty set is an +identity element: *) + +img class="anchor" src="icons/tick.png" id="union_empty_r"lemma union_empty_r: ∀U.∀A:U→Prop. + A a title="union" href="cic:/fakeuri.def(1)"∪/a a title="empty set" href="cic:/fakeuri.def(1)"∅/a =1 A. +#U #A #w % [* // normalize #abs @a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"False_ind/a /span class="autotactic"2span class="autotrace" trace /span/span/ | /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a/span/span/] +qed. + +img class="anchor" src="icons/tick.png" id="union_comm"lemma union_comm : ∀U.∀A,B:U →Prop. + A a title="union" href="cic:/fakeuri.def(1)"∪/a B =1 B a title="union" href="cic:/fakeuri.def(1)"∪/a A. +#U #A #B #a % * /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a, a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a/span/span/ qed. + +img class="anchor" src="icons/tick.png" id="union_assoc"lemma union_assoc: ∀U.∀A,B,C:U → Prop. + A a title="union" href="cic:/fakeuri.def(1)"∪/a B a title="union" href="cic:/fakeuri.def(1)"∪/a C =1 A a title="union" href="cic:/fakeuri.def(1)"∪/a (B a title="union" href="cic:/fakeuri.def(1)"∪/a C). +#S #A #B #C #w % [* [* /span class="autotactic"3span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a, a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a/span/span/ | /span class="autotactic"3span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a, a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a/span/span/ ] | * [/span class="autotactic"3span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a/span/span/ | * /span class="autotactic"3span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a, a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a/span/span/] +qed. + +(* In the same way we prove commutativity and associativity for set +interesection *) + +img class="anchor" src="icons/tick.png" id="cap_comm"lemma cap_comm : ∀U.∀A,B:U →Prop. + A a title="intersection" href="cic:/fakeuri.def(1)"∩/a B =1 B a title="intersection" href="cic:/fakeuri.def(1)"∩/a A. +#U #A #B #a % * /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/And.con(0,1,2)"conj/a/span/span/ qed. + +img class="anchor" src="icons/tick.png" id="cap_assoc"lemma cap_assoc: ∀U.∀A,B,C:U→Prop. + A a title="intersection" href="cic:/fakeuri.def(1)"∩/a (B a title="intersection" href="cic:/fakeuri.def(1)"∩/a C) =1 (A a title="intersection" href="cic:/fakeuri.def(1)"∩/a B) a title="intersection" href="cic:/fakeuri.def(1)"∩/a C. +#U #A #B #C #w % [ * #Aw * /span class="autotactic"3span class="autotrace" trace a href="cic:/matita/basics/logic/And.con(0,1,2)"conj/a/span/span/ span class="autotactic"span class="autotrace"/span/span| * * /span class="autotactic"3span class="autotrace" trace a href="cic:/matita/basics/logic/And.con(0,1,2)"conj/a/span/span/ ] +qed. + +(* We can also easily prove idempotency for union and intersection *) + +img class="anchor" src="icons/tick.png" id="union_idemp"lemma union_idemp: ∀U.∀A:U →Prop. + A a title="union" href="cic:/fakeuri.def(1)"∪/a A =1 A. +#U #A #a % [* // | /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a/span/span/] qed. + +img class="anchor" src="icons/tick.png" id="cap_idemp"lemma cap_idemp: ∀U.∀A:U →Prop. + A a title="intersection" href="cic:/fakeuri.def(1)"∩/a A =1 A. +#U #A #a % [* // | /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/And.con(0,1,2)"conj/a/span/span/] qed. + +(* We conclude our examples with a couple of distributivity theorems, and a +characterization of substraction in terms of interesection and complementation. *) + +img class="anchor" src="icons/tick.png" id="distribute_intersect"lemma distribute_intersect : ∀U.∀A,B,C:U→Prop. + (A a title="union" href="cic:/fakeuri.def(1)"∪/a B) a title="intersection" href="cic:/fakeuri.def(1)"∩/a C =1 (A a title="intersection" href="cic:/fakeuri.def(1)"∩/a C) a title="union" href="cic:/fakeuri.def(1)"∪/a (B a title="intersection" href="cic:/fakeuri.def(1)"∩/a C). +#U #A #B #C #w % [* * /span class="autotactic"3span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a, a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a, a href="cic:/matita/basics/logic/And.con(0,1,2)"conj/a/span/span/ | * * /span class="autotactic"3span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a, a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a, a href="cic:/matita/basics/logic/And.con(0,1,2)"conj/a/span/span/] +qed. + +img class="anchor" src="icons/tick.png" id="distribute_substract"lemma distribute_substract : ∀U.∀A,B,C:U→Prop. + (A a title="union" href="cic:/fakeuri.def(1)"∪/a B) a title="difference" href="cic:/fakeuri.def(1)"-/a C =1 (A a title="difference" href="cic:/fakeuri.def(1)"-/a C) a title="union" href="cic:/fakeuri.def(1)"∪/a (B a title="difference" href="cic:/fakeuri.def(1)"-/a C). +#U #A #B #C #w % [* * /span class="autotactic"3span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a, a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a, a href="cic:/matita/basics/logic/And.con(0,1,2)"conj/a/span/span/ | * * /span class="autotactic"3span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a, a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a, a href="cic:/matita/basics/logic/And.con(0,1,2)"conj/a/span/span/] +qed. + +img class="anchor" src="icons/tick.png" id="substract_def"lemma substract_def:∀U.∀A,B:U→Prop. Aa title="difference" href="cic:/fakeuri.def(1)"-/aB =1 A a title="intersection" href="cic:/fakeuri.def(1)"∩/a a title="complement" href="cic:/fakeuri.def(1)"¬/aB. +#U #A #B #w normalize /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/And.con(0,1,2)"conj/a/span/span/ +qed. + +(* +h2 class="section"Bool vs. Prop/h2 +In several situation it is important to assume to have a decidable equality +between elements of a set U, namely a boolean function eqb: U→U→bool such that +for any pair of elements a and b in U, (eqb x y) is true if and only if x=y. +A set equipped with such an equality is called a DeqSet: *) + +img class="anchor" src="icons/tick.png" id="DeqSet"record DeqSet : Type[1] ≝ { carr :> Type[0]; + eqb: carr → carr → a href="cic:/matita/basics/bool/bool.ind(1,0,0)"bool/a; + eqb_true: ∀x,y. (eqb x y a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a) a title="iff" href="cic:/fakeuri.def(1)"↔/a (x a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a y) +}. + +(* We use the notation == to denote the decidable equality, to distinguish it +from the propositional equality. In particular, a term of the form a==b is a +boolean, while a=b is a proposition. *) + +notation "a == b" non associative with precedence 45 for @{ 'eqb $a $b }. +interpretation "eqb" 'eqb a b = (eqb ? a b). + +(* +h2 class="section"Small Scale Reflection/h2 +It is convenient to have a simple way to reflect a proof of the fact +that (eqb a b) is true into a proof of the proposition (a = b); to this aim, +we introduce two operators "\P" and "\b". *) + +notation "\P H" non associative with precedence 90 + for @{(proj1 … (eqb_true ???) $H)}. + +notation "\b H" non associative with precedence 90 + for @{(proj2 … (eqb_true ???) $H)}. + +(* If H:eqb a b = true, then \P H: a = b, and conversely if h:a = b, then +\b h: eqb a b = true. Let us see an example of their use: the following +statement asserts that we can reflect a proof that eqb a b is false into +a proof of the proposition a ≠ b. *) + +img class="anchor" src="icons/tick.png" id="eqb_false"lemma eqb_false: ∀S:a href="cic:/matita/cicm2012/part2/DeqSet.ind(1,0,0)"DeqSet/a.∀a,b:S. + (a href="cic:/matita/cicm2012/part2/eqb.fix(0,0,3)"eqb/a ? a b) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a a title="iff" href="cic:/fakeuri.def(1)"↔/a a a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"≠/a b. +#S #a #b % +(* same tactic on two goals *) +#H + [@(a href="cic:/matita/basics/logic/not_to_not.def(3)"not_to_not/a … a href="cic:/matita/basics/bool/not_eq_true_false.def(3)"not_eq_true_false/a) #H1 + (\P eqa) >(\P eqb) // + |#H destruct normalize >(\b (a href="cic:/matita/basics/logic/eq.con(0,1,2)"refl/a … a2)) >(\b (a href="cic:/matita/basics/logic/eq.con(0,1,2)"refl/a … b2)) // + ] +qed. + +img class="anchor" src="icons/tick.png" id="DeqProd"definition DeqProd ≝ λA,B:a href="cic:/matita/cicm2012/part2/DeqSet.ind(1,0,0)"DeqSet/a. + a href="cic:/matita/cicm2012/part2/DeqSet.con(0,1,0)"mk_DeqSet/a (Aa title="Product" href="cic:/fakeuri.def(1)"×/aB) (a href="cic:/matita/cicm2012/part2/eq_pairs.def(4)"eq_pairs/a A B) (a href="cic:/matita/cicm2012/part2/eq_pairs_true.def(6)"eq_pairs_true/a A B). + +(* Having a unification problem of the kind T1×T2 = carr X, what kind +of hint can we give to the system? We expect T1 to be the carrier of a +DeqSet C1, T2 to be the carrier of a DeqSet C2, and X to be DeqProd C1 C2. +This is expressed by the following hint: *) + +unification hint 0 a href="cic:/fakeuri.def(1)" title="hint_decl_Type1"≔/a C1,C2; + T1 ≟ a href="cic:/matita/cicm2012/part2/carr.fix(0,0,2)"carr/a C1, + T2 ≟ a href="cic:/matita/cicm2012/part2/carr.fix(0,0,2)"carr/a C2, + X ≟ a href="cic:/matita/cicm2012/part2/DeqProd.def(7)"DeqProd/a C1 C2 +(* ---------------------------------------- *) ⊢ + T1a title="Product" href="cic:/fakeuri.def(1)"×/aT2 ≡ a href="cic:/matita/cicm2012/part2/carr.fix(0,0,2)"carr/a X. + +unification hint 0 a href="cic:/fakeuri.def(1)" title="hint_decl_Type0"≔/a T1,T2,p1,p2; + X ≟ a href="cic:/matita/cicm2012/part2/DeqProd.def(7)"DeqProd/a T1 T2 +(* ---------------------------------------- *) ⊢ + a href="cic:/matita/cicm2012/part2/eq_pairs.def(4)"eq_pairs/a T1 T2 p1 p2 ≡ a href="cic:/matita/cicm2012/part2/eqb.fix(0,0,3)"eqb/a X p1 p2. + +img class="anchor" src="icons/tick.png" id="hint2"example hint2: ∀b1,b2. + 〈b1,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a=a title="eqb" href="cic:/fakeuri.def(1)"=/a〈a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,b2a title="Pair construction" href="cic:/fakeuri.def(1)"〉/aa title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/aa href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a → 〈b1,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/aa title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a〈a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a,b2a title="Pair construction" href="cic:/fakeuri.def(1)"〉/a. +#b1 #b2 #H @(\P H) +qed.