X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=weblib%2Ftutorial%2Fchapter2.ma;h=6784de617d3c5462cbba74856bc80079ed70e974;hb=647b419e96770d90a82d7a9e5e8843566a9f93ee;hp=fba2b61ca904072bd5f2d8e700d3cf96a5b7ef49;hpb=b0747f3cb4a22db0024aacaa46e98eccb69ee72d;p=helm.git diff --git a/weblib/tutorial/chapter2.ma b/weblib/tutorial/chapter2.ma index fba2b61ca..6784de617 100644 --- a/weblib/tutorial/chapter2.ma +++ b/weblib/tutorial/chapter2.ma @@ -1,50 +1,55 @@ -include "basics/logic.ma". - -(* Most of the types we have seen so far are enumerated types, composed by -a finite set of alternatives, and records, composed by tuples of -heteregoneous elements. A more interesting case of type definition is -when some of the rules defining its elements are recursive, i.e. they -allow the formation of more elements of the type in terms of the already -defined ones. The most typical case is provided by the natural numbers, -that can be defined as the smallest set generated by a constant 0 and a -successor function from natural numbers to natural numbers *) - -inductive nat : Type[0] ≝ +(* +h1 class="section"Induction and Recursion/h1 +*) +include "basics/types.ma". + +(* Most of the types we have seen so far are enumerated types, composed by a +finite set of alternatives, and records, composed by tuples of heteregoneous +elements. A more interesting case of type definition is when some of the rules +defining its elements are recursive, i.e. they allow the formation of more +elements of the type in terms of the already defined ones. The most typical case +is provided by the natural numbers, that can be defined as the smallest set +generated by a constant 0 and a successor function from natural numbers to natural +numbers *) + +img class="anchor" src="icons/tick.png" id="nat"inductive nat : Type[0] ≝ | O :nat | S: nat →nat. -(* The two terms O and S are called constructors: they define the -signature of the type, whose objects are the elements freely generated -by means of them. So, examples of natural numbers are O, S O, S (S O), -S (S (S O)) and so on. +(* The two terms O and S are called constructors: they define the signature of the +type, whose objects are the elements freely generated by means of them. So, +examples of natural numbers are O, S O, S (S O), S (S (S O)) and so on. -The language of Matita allows the definition of well founded recursive functions -over inductive types; in order to guarantee termination of recursion you are -only allowed to make recursive calls on structurally smaller arguments than the -ones your received in input. -Most mathematical functions can be naturally defined in this way. For instance, -the sum of two natural numbers can be defined as follows *) +The language of Matita allows the definition of well founded recursive functions +over inductive types; in order to guarantee termination of recursion you are only +allowed to make recursive calls on structurally smaller arguments than the ones +you received in input. Most mathematical functions can be naturally defined in this +way. For instance, the sum of two natural numbers can be defined as follows *) -let rec add n m ≝ +img class="anchor" src="icons/tick.png" id="add"let rec add n m ≝ match n with [ O ⇒ m | S a ⇒ a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a (add a m) ]. -(* It is worth to observe that the previous algorithm works by recursion over the -first argument. This means that, for instance, (add 0 x) will reduce to x, as expected, -but (add x 0) is stack. How can we prove that, for a generic x, (add x 0) = x? The -mathematical tool do it is called induction. The induction principle states that, -given a property P(n) over natural numbers, if we prove P(0) and prove that, for any -m, P(m) implies P(S m), than we can conclude P(n) for any n. - -The elim tactic, allow you to apply induction in a vcery simple way. If your -goal is P(n), the invocation of +(* +h2 class="section"Elimination/h2 +It is worth to observe that the previous algorithm works by recursion over the +first argument. This means that, for instance, (add O x) will reduce to x, as +expected, but (add x O) is stuck. +How can we prove that, for a generic x, (add x O) = x? The mathematical tool to do +it is called induction. The induction principle states that, given a property P(n) +over natural numbers, if we prove P(0) and prove that, for any m, P(m) implies P(S m), +than we can conclude P(n) for any n. + +The elim tactic, allow you to apply induction in a very simple way. If your goal is +P(n), the invocation of elim n will break down your task to prove the two subgoals P(0) and ∀m.P(m) → P(S m). + Let us apply it to our case *) -lemma add_0: ∀a. a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a a a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a. +img class="anchor" src="icons/tick.png" id="add_0"lemma add_0: ∀a. a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a a a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a. #a elim a (* If you stop the computation here, you will see on the right the two subgoals @@ -55,10 +60,10 @@ After normalization, both goals are trivial. normalize // qed. - (* In a similar way, it is convenient to state a lemma about the behaviour of add when the -second argument is not zero. *) +(* In a similar way, it is convenient to state a lemma about the behaviour of +add when the second argument is not zero. *) -lemma add_S : ∀a,b. a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a a (a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a b) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a (a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a a b). +img class="anchor" src="icons/tick.png" id="add_S"lemma add_S : ∀a,b. a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a a (a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a b) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a (a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a a b). (* In the same way as before, we proceed by induction over a. *) @@ -67,773 +72,216 @@ qed. (* We are now in the position to prove the commutativity of the sum *) -theorem add_comm : ∀a,b. a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a a b a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a b a. +img class="anchor" src="icons/tick.png" id="add_comm"theorem add_comm : ∀a,b. a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a a b a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a b a. #a elim a normalize (* We have two sub goals: G1: ∀b. b = add b O G2: ∀x.(∀b. add x b = add b x) → ∀b. S (add x b) = add b (S x). -G1 is just our lemma add_O. For G2, we start introducing x and the induction +G1 is just our lemma add_O. For G2, we start introducing x and the induction hypothesis IH; then, the goal is proved by rewriting using add_S and IH. For Matita, the task is trivial and we can simply close the goal with // *) // qed. -(* Let us now define the following function: *) +(* COERCIONS *) -definition twice ≝ λn.a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a n n. +img class="anchor" src="icons/tick.png" id="bool"inductive bool : Type[0] ≝ +| tt : bool +| ff : bool. -(* We are interested to prove that for any natural number m there -exists a natural number m that is the integer half of m. This -will give us the opportunity to introduce new connectives -and quantifiers, and later on to make some interesting consideration -on proofs and computations. *) +img class="anchor" src="icons/tick.png" id="nat_of_bool"definition nat_of_bool ≝ λb. match b with +[ tt ⇒ a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/a +| ff ⇒ a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/a +]. -theorem ex_half: ∀n.a title="exists" href="cic:/fakeuri.def(1)"∃/am. n a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a m a title="logical or" href="cic:/fakeuri.def(1)"∨/a n a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a (a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a m). +(* coercion nat_of_bool. ?? *) + +(* Let us now define the following function: *) +img class="anchor" src="icons/tick.png" id="twice"definition twice ≝ λn.a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a n n. + +(* +h2 class="section"Existential/h2 +We are interested to prove that for any natural number n there exists a natural +number m that is the integer half of n. This will give us the opportunity to +introduce new connectives and quantifiers and, later on, to make some interesting +consideration on proofs and computations. *) + +img class="anchor" src="icons/tick.png" id="ex_half"theorem ex_half: ∀n.a title="exists" href="cic:/fakeuri.def(1)"∃/am. n a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a m a title="logical or" href="cic:/fakeuri.def(1)"∨/a n a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a (a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a m). +#n elim n normalize + +(* We proceed by induction on n, that breaks down to the following goals: + G1: ∃m.O = add O O ∨ O = S (add m m) + G2: ∀x.(∃m. x = add m m ∨ x = S (add m m))→ ∃m. S x = add m m ∨ S x = S (add m m) +The only way we have to prove an existential goal is by exhibiting the witness, +that in the case of first goal is O. We do it by apply the term called ex_intro +instantiated by the witness. Then, it is clear that we must follow the left branch +of the disjunction. One way to do it is by applying the term or_introl, that is +the first constructor of the disjunction. However, remembering the names of +constructors can be annyoing: we can invoke the application of the n-th +constructor of an inductive type (inferred by the current goal) by typing %n. At +this point we are left with the subgoal O = add O O, that is closed by +computation. It is worth to observe that invoking automation at depth /3/ would +also automatically close G1. +*) + [@(a href="cic:/matita/basics/logic/ex.con(0,1,2)"ex_intro/a … a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/a) %1 // + +(* +h2 class="section"Destructuration/h2 +The case of G2 is more complex. We should start introducing x and the +inductive hypothesis + IH: ∃m. x = add m m ∨ x = S (add m m) +At this point we should assume the existence of m enjoying the inductive +hypothesis. To eliminate the existential from the context we can just use the +case tactic. This situation where we introduce something into the context and +immediately eliminate it by case analysis is so frequent that Matita provides a +convenient shorthand: you can just type a single "*". +The star symbol should be reminiscent of an explosion: the idea is that you have +a structured hypothesis, and you ask to explode it into its constituents. In the +case of the existential, it allows to pass from a goal of the shape + (∃x.P x) → Q +to a goal of the shape + ∀x.P x → Q +*) + |#x * +(* At this point we are left with a new goal with the following shape + G3: ∀m. x = add m m ∨ x = S (add m m) → .... +We should introduce m, the hypothesis H: x = add m m ∨ x = S (add m m), and +then reason by cases on this hypothesis. It is the same situation as before: +we explode the disjunctive hypothesis into its possible consituents. In the case +of a disjunction, the * tactic allows to pass from a goal of the form + A∨B → Q +to two subgoals of the form + A → Q and B → Q +*) + #m * #eqx +(* In the first subgoal, we are under the assumption that x = add m m. The half +of (S x) is hence m, and we have to prove the right branch of the disjunction. +In the second subgoal, we are under the assumption that x = S (add m m). The halh +of (S x) is hence (S m), and have to follow the left branch of the disjunction. +*) + [@(a href="cic:/matita/basics/logic/ex.con(0,1,2)"ex_intro/a … m) /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,2,2)"or_intror/a/span/span/ | @(a href="cic:/matita/basics/logic/ex.con(0,1,2)"ex_intro/a … (a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a m)) normalize /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/basics/logic/Or.con(0,1,2)"or_introl/a/span/span/ + ] +qed. +(* +h2 class="section"Computing vs. Proving/h2 +Instead of proving the existence of a number corresponding to the half of n, +we could be interested in computing it. The best way to do it is to define this +division operation together with the remainder, that in our case is just a +boolean value: tt if the input term is even, and ff if the input term is odd. +Since we must return a pair, we could use a suitably defined record type, or +simply a product type nat × bool, defined in the basic library. The product type +is just a sort of general purpose record, with standard fields fst and snd, called +projections. +A pair of values n and m is written (pair … m n) or \langle n,m \rangle - visually +rendered as 〈n,m〉 + +We first write down the function, and then discuss it.*) + +img class="anchor" src="icons/tick.png" id="div2"let rec div2 n ≝ +match n with +[ O ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/aspan class="error" title="Parse error: [sym,] expected after [term level 19] (in [term])"/span,a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"ff/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a +| S a ⇒ span style="text-decoration: underline;"/span + let p ≝ (div2 a) in + match (a href="cic:/matita/basics/types/snd.fix(0,2,1)"snd/aspan class="error" title="Parse error: SYMBOL ':' or RPAREN expected after [term] (in [term])"/span … p) with + [ tt ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a (a href="cic:/matita/basics/types/fst.fix(0,2,1)"fst/a … p),a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"ff/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a + | ff ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/types/fst.fix(0,2,1)"fst/a … p, a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"tt/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a + ] +]. + +(* The function is computed by recursion over the input n. If n is 0, then the +quotient is 0 and the remainder is tt. If n = S a, we start computing the half +of a, say 〈q,b〉. Then we have two cases according to the possible values of b: +if b is tt, then we must return 〈q,ff〉, while if b = ff then we must return +〈S q,tt〉. + +It is important to point out the deep, substantial analogy between the algorithm +for computing div2 and the the proof of ex_half. In particular ex_half returns a +proof of the kind ∃n.A(n)∨B(n): the really informative content in it is the +witness n and a boolean indicating which one between the two conditions A(n) and +B(n) is met. This is precisely the quotient-remainder pair returned by div2. +In both cases we proceed by recurrence (respectively, induction or recursion) over +the input argument n. In case n = 0, we conclude the proof in ex_half by providing +the witness O and a proof of A(O); this corresponds to returning the pair 〈O,ff〉 in +div2. Similarly, in the inductive case n = S a, we must exploit the inductive +hypothesis for a (i.e. the result of the recursive call), distinguishing two subcases +according to the the two possibilites A(a) or B(a) (i.e. the two possibile values of +the remainder for a). The reader is strongly invited to check all remaining details. + +Let us now prove that our div2 function has the expected behaviour. +*) - include "basics.ma". -include "basics/list.ma". +img class="anchor" src="icons/tick.png" id="surjective_pairing"lemma surjective_pairing: ∀A,B.∀p:Aa title="Product" href="cic:/fakeuri.def(1)"×/aB. p a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/types/fst.fix(0,2,1)"fst/a … p,a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/aspan class="error" title="Parse error: [sym〉] or [sym,] expected after [term level 19] (in [term])"/span … pa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a. +#A #B * // qed. + +img class="anchor" src="icons/tick.png" id="div2SO"lemma div2SO: ∀n,q. a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"div2/a n a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aq,a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"ff/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a → a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"div2/a (a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a n) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aspan style="text-decoration: underline;"/spanq,a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"tt/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a. +#n #q #H normalize >H normalize // qed. + +img class="anchor" src="icons/tick.png" id="div2S1"lemma div2S1: ∀n,q. a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"div2/a n a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aq,a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"tt/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a → a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"div2/a (a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a n) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/aspan class="error" title="Parse error: [term] expected after [sym=] (in [term])"/span a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a q,a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"ff/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a. +#n #q #H normalize >H normalize // qed. + +img class="anchor" src="icons/tick.png" id="div2_ok"lemma div2_ok: ∀n,q,r. a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"div2/a n a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aq,ra title="Pair construction" href="cic:/fakeuri.def(1)"〉/a → n a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a (a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a q) (a href="cic:/matita/tutorial/chapter2/nat_of_bool.def(1)"nat_of_bool/a r). +#n elim n + [#q #r normalize #H destruct // + |#a #Hind #q #r + cut (a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"div2/a a a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/types/fst.fix(0,2,1)"fst/a … (a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"div2/a a), a href="cic:/matita/basics/types/snd.fix(0,2,1)"snd/a … (a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"div2/a a)a title="Pair construction" href="cic:/fakeuri.def(1)"〉/a) [//] + cases (a href="cic:/matita/basics/types/snd.fix(0,2,1)"snd/a … (a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"div2/a a)) + [#H >(a href="cic:/matita/tutorial/chapter2/div2S1.def(3)"div2S1/a … H) #H1 destruct @a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a span style="text-decoration: underline;">/spana href="cic:/matita/tutorial/chapter2/add_S.def(2)"add_S/a whd in ⊢ (???%); <a href="cic:/matita/tutorial/chapter2/add_S.def(2)"add_S/a @(Hind … H) + |#H >(a href="cic:/matita/tutorial/chapter2/div2SO.def(3)"div2SO/a … H) #H1 destruct >a href="cic:/matita/tutorial/chapter2/add_S.def(2)"add_S/a @a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a @(Hind … H) + ] +qed. + +(* +h2 class="section"Mixing proofs and computations/h2 +There is still another possibility, however, namely to mix the program and its +specification into a single entity. The idea is to refine the output type of the +div2 function: it should not be just a generic pair 〈q,r〉 of natural numbers but a +specific pair satisfying the specification of the function. In other words, we need +the possibility to define, for a type A and a property P over A, the subset type +{a:A|P(a)} of all elements a of type A that satisfy the property P. Subset types +are just a particular case of the so called dependent types, that is types that +can depend over arguments (such as arrays of a specified length, taken as a +parameter).These kind of types are quite unusual in traditional programming +languages, and their study is one of the new frontiers of the current research on +type systems. + +There is nothing special in a subset type {a:A|P(a)}: it is just a record composed +by an element of a of type A and a proof of P(a). The crucial point is to have a +language reach enough to comprise proofs among its expressions. +*) -interpretation "iff" 'iff a b = (iff a b). +img class="anchor" src="icons/tick.png" id="Sub"record Sub (A:Type[0]) (P:A → Prop) : Type[0] ≝ + {witness: A; + proof: P witness}. -record Alpha : Type[1] ≝ { carr :> Type[0]; - eqb: carr → carr → a href="cic:/matita/basics/bool/bool.ind(1,0,0)"bool/a; - eqb_true: ∀x,y. (eqb x y a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a) a title="iff" href="cic:/fakeuri.def(1)"↔/a (x a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a y) -}. - -notation "a == b" non associative with precedence 45 for @{ 'eqb $a $b }. -interpretation "eqb" 'eqb a b = (eqb ? a b). - -definition word ≝ λS:a href="cic:/matita/tutorial/re/Alpha.ind(1,0,0)"Alpha/a.a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a S. - -inductive re (S: a href="cic:/matita/tutorial/re/Alpha.ind(1,0,0)"Alpha/a) : Type[0] ≝ - z: re S - | e: re S - | s: S → re S - | c: re S → re S → re S - | o: re S → re S → re S - | k: re S → re S. - -notation < "a \sup ⋇" non associative with precedence 90 for @{ 'pk $a}. -notation > "a ^ *" non associative with precedence 90 for @{ 'pk $a}. -interpretation "star" 'pk a = (k ? a). -interpretation "or" 'plus a b = (o ? a b). - -notation "a · b" non associative with precedence 60 for @{ 'pc $a $b}. -interpretation "cat" 'pc a b = (c ? a b). - -(* to get rid of \middot -coercion c : ∀S:Alpha.∀p:re S. re S → re S ≝ c on _p : re ? to ∀_:?.?. *) - -notation < "a" non associative with precedence 90 for @{ 'ps $a}. -notation > "` term 90 a" non associative with precedence 90 for @{ 'ps $a}. -interpretation "atom" 'ps a = (s ? a). - -notation "ϵ" non associative with precedence 90 for @{ 'epsilon }. -interpretation "epsilon" 'epsilon = (e ?). - -notation "∅" non associative with precedence 90 for @{ 'empty }. -interpretation "empty" 'empty = (z ?). - -let rec flatten (S : a href="cic:/matita/tutorial/re/Alpha.ind(1,0,0)"Alpha/a) (l : a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a (a href="cic:/matita/tutorial/re/word.def(3)"word/a S)) on l : a href="cic:/matita/tutorial/re/word.def(3)"word/a S ≝ -match l with [ nil ⇒ a title="nil" href="cic:/fakeuri.def(1)"[/a ] | cons w tl ⇒ w a title="append" href="cic:/fakeuri.def(1)"@/a flatten ? tl ]. - -let rec conjunct (S : a href="cic:/matita/tutorial/re/Alpha.ind(1,0,0)"Alpha/a) (l : a href="cic:/matita/basics/list/list.ind(1,0,1)"list/a (a href="cic:/matita/tutorial/re/word.def(3)"word/a S)) (r : a href="cic:/matita/tutorial/re/word.def(3)"word/a S → Prop) on l: Prop ≝ -match l with [ nil ⇒ a href="cic:/matita/basics/logic/True.ind(1,0,0)"True/a | cons w tl ⇒ r w a title="logical and" href="cic:/fakeuri.def(1)"∧/a conjunct ? tl r ]. - -definition empty_lang ≝ λS.λw:a href="cic:/matita/tutorial/re/word.def(3)"word/a S.a href="cic:/matita/basics/logic/False.ind(1,0,0)"False/a. -notation "{}" non associative with precedence 90 for @{'empty_lang}. -interpretation "empty lang" 'empty_lang = (empty_lang ?). - -definition sing_lang ≝ λS.λx,w:a href="cic:/matita/tutorial/re/word.def(3)"word/a S.xa title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/aw. -notation "{x}" non associative with precedence 90 for @{'sing_lang $x}. -interpretation "sing lang" 'sing_lang x = (sing_lang ? x). - -definition union : ∀S,l1,l2,w.Prop ≝ λS.λl1,l2.λw:a href="cic:/matita/tutorial/re/word.def(3)"word/a S.l1 w a title="logical or" href="cic:/fakeuri.def(1)"∨/a l2 w. -interpretation "union lang" 'union a b = (union ? a b). - -definition cat : ∀S,l1,l2,w.Prop ≝ - λS.λl1,l2.λw:a href="cic:/matita/tutorial/re/word.def(3)"word/a S.a title="exists" href="cic:/fakeuri.def(1)"∃/aw1,w2.w1 a title="append" href="cic:/fakeuri.def(1)"@/a w2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a w a title="logical and" href="cic:/fakeuri.def(1)"∧/a l1 w1 a title="logical and" href="cic:/fakeuri.def(1)"∧/a l2 w2. -interpretation "cat lang" 'pc a b = (cat ? a b). - -definition star ≝ λS.λl.λw:a href="cic:/matita/tutorial/re/word.def(3)"word/a S.a title="exists" href="cic:/fakeuri.def(1)"∃/alw.a href="cic:/matita/tutorial/re/flatten.fix(0,1,4)"flatten/a ? lw a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a w a title="logical and" href="cic:/fakeuri.def(1)"∧/a a href="cic:/matita/tutorial/re/conjunct.fix(0,1,4)"conjunct/a ? lw l. -interpretation "star lang" 'pk l = (star ? l). - -notation > "𝐋 term 70 E" non associative with precedence 75 for @{in_l ? $E}. - -let rec in_l (S : Alpha) (r : re S) on r : word S → Prop ≝ -match r with -[ z ⇒ {} -| e ⇒ { [ ] } -| s x ⇒ { [x] } -| c r1 r2 ⇒ 𝐋 r1 · 𝐋 r2 -| o r1 r2 ⇒ 𝐋 r1 ∪ 𝐋 r2 -| k r1 ⇒ (𝐋 r1) ^*]. - -notation "𝐋 term 70 E" non associative with precedence 75 for @{'in_l $E}. -interpretation "in_l" 'in_l E = (in_l ? E). -interpretation "in_l mem" 'mem w l = (in_l ? l w). - -notation "a || b" left associative with precedence 30 for @{'orb $a $b}. -interpretation "orb" 'orb a b = (orb a b). - -ndefinition if_then_else ≝ λT:Type[0].λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. -notation > "'if' term 19 e 'then' term 19 t 'else' term 19 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -interpretation "if_then_else" 'if_then_else e t f = (if_then_else ? e t f). - -ninductive pitem (S: Alpha) : Type[0] ≝ - pz: pitem S - | pe: pitem S - | ps: S → pitem S - | pp: S → pitem S - | pc: pitem S → pitem S → pitem S - | po: pitem S → pitem S → pitem S - | pk: pitem S → pitem S. - -ndefinition pre ≝ λS.pitem S × bool. - -interpretation "pstar" 'pk a = (pk ? a). -interpretation "por" 'plus a b = (po ? a b). -interpretation "pcat" 'pc a b = (pc ? a b). -notation < ".a" non associative with precedence 90 for @{ 'pp $a}. -notation > "`. term 90 a" non associative with precedence 90 for @{ 'pp $a}. -interpretation "ppatom" 'pp a = (pp ? a). -(* to get rid of \middot *) -ncoercion pc : ∀S.∀p:pitem S. pitem S → pitem S ≝ pc on _p : pitem ? to ∀_:?.?. -interpretation "patom" 'ps a = (ps ? a). -interpretation "pepsilon" 'epsilon = (pe ?). -interpretation "pempty" 'empty = (pz ?). - -notation > "|term 19 e|" non associative with precedence 70 for @{forget ? $e}. -nlet rec forget (S: Alpha) (l : pitem S) on l: re S ≝ - match l with - [ pz ⇒ ∅ - | pe ⇒ ϵ - | ps x ⇒ `x - | pp x ⇒ `x - | pc E1 E2 ⇒ (|E1| · |E2|) - | po E1 E2 ⇒ (|E1| + |E2|) - | pk E ⇒ |E|^* ]. -notation < "|term 19 e|" non associative with precedence 70 for @{'forget $e}. -interpretation "forget" 'forget a = (forget ? a). - -notation "\fst term 90 x" non associative with precedence 90 for @{'fst $x}. -interpretation "fst" 'fst x = (fst ? ? x). -notation > "\snd term 90 x" non associative with precedence 90 for @{'snd $x}. -interpretation "snd" 'snd x = (snd ? ? x). - -notation > "𝐋\p\ term 70 E" non associative with precedence 75 for @{in_pl ? $E}. -nlet rec in_pl (S : Alpha) (r : pitem S) on r : word S → Prop ≝ -match r with -[ pz ⇒ {} -| pe ⇒ {} -| ps _ ⇒ {} -| pp x ⇒ { [x] } -| pc r1 r2 ⇒ 𝐋\p\ r1 · 𝐋 |r2| ∪ 𝐋\p\ r2 -| po r1 r2 ⇒ 𝐋\p\ r1 ∪ 𝐋\p\ r2 -| pk r1 ⇒ 𝐋\p\ r1 · 𝐋 (|r1|^* ) ]. -notation > "𝐋\p term 70 E" non associative with precedence 75 for @{'in_pl $E}. -notation "𝐋\sub(\p) term 70 E" non associative with precedence 75 for @{'in_pl $E}. -interpretation "in_pl" 'in_pl E = (in_pl ? E). -interpretation "in_pl mem" 'mem w l = (in_pl ? l w). - -ndefinition epsilon ≝ λS,b.if b then { ([ ] : word S) } else {}. - -interpretation "epsilon" 'epsilon = (epsilon ?). -notation < "ϵ b" non associative with precedence 90 for @{'app_epsilon $b}. -interpretation "epsilon lang" 'app_epsilon b = (epsilon ? b). - -ndefinition in_prl ≝ λS : Alpha.λp:pre S. 𝐋\p (\fst p) ∪ ϵ (\snd p). +img class="anchor" src="icons/tick.png" id="qr_spec"definition qr_spec ≝ λn.λp.∀q,r. p a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aq,ra title="Pair construction" href="cic:/fakeuri.def(1)"〉/a → n a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a href="cic:/matita/tutorial/chapter2/add.fix(0,0,1)"add/a (a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a q) (a href="cic:/matita/tutorial/chapter2/nat_of_bool.def(1)"nat_of_bool/a r). -interpretation "in_prl mem" 'mem w l = (in_prl ? l w). -interpretation "in_prl" 'in_pl E = (in_prl ? E). - -nlemma append_eq_nil : ∀S.∀w1,w2:word S. w1 @ w2 = [ ] → w1 = [ ]. -#S w1; nelim w1; //. #x tl IH w2; nnormalize; #abs; ndestruct; nqed. - -(* lemma 12 *) -nlemma epsilon_in_true : ∀S.∀e:pre S. [ ] ∈ e ↔ \snd e = true. -#S r; ncases r; #e b; @; ##[##2: #H; nrewrite > H; @2; /2/; ##] ncases b;//; -nnormalize; *; ##[##2:*] nelim e; -##[ ##1,2: *; ##| #c; *; ##| #c; nnormalize; #; ndestruct; ##| ##7: #p H; -##| #r1 r2 H G; *; ##[##2: /3/ by or_intror] -##| #r1 r2 H1 H2; *; /3/ by or_intror, or_introl; ##] -*; #w1; *; #w2; *; *; #defw1; nrewrite > (append_eq_nil … w1 w2 …); /3/ by {};//; -nqed. - -nlemma not_epsilon_lp : ∀S:Alpha.∀e:pitem S. ¬ ((𝐋\p e) [ ]). -#S e; nelim e; nnormalize; /2/ by nmk; -##[ #; @; #; ndestruct; -##| #r1 r2 n1 n2; @; *; /2/; *; #w1; *; #w2; *; *; #H; - nrewrite > (append_eq_nil …H…); /2/; -##| #r1 r2 n1 n2; @; *; /2/; -##| #r n; @; *; #w1; *; #w2; *; *; #H; - nrewrite > (append_eq_nil …H…); /2/;##] -nqed. - -ndefinition lo ≝ λS:Alpha.λa,b:pre S.〈\fst a + \fst b,\snd a || \snd b〉. -notation "a ⊕ b" left associative with precedence 60 for @{'oplus $a $b}. -interpretation "oplus" 'oplus a b = (lo ? a b). - -ndefinition lc ≝ λS:Alpha.λbcast:∀S:Alpha.∀E:pitem S.pre S.λa,b:pre S. - match a with [ mk_pair e1 b1 ⇒ - match b1 with - [ false ⇒ 〈e1 · \fst b, \snd b〉 - | true ⇒ 〈e1 · \fst (bcast ? (\fst b)),\snd b || \snd (bcast ? (\fst b))〉]]. - -notation < "a ⊙ b" left associative with precedence 60 for @{'lc $op $a $b}. -interpretation "lc" 'lc op a b = (lc ? op a b). -notation > "a ⊙ b" left associative with precedence 60 for @{'lc eclose $a $b}. - -ndefinition lk ≝ λS:Alpha.λbcast:∀S:Alpha.∀E:pitem S.pre S.λa:pre S. - match a with [ mk_pair e1 b1 ⇒ - match b1 with - [ false ⇒ 〈e1^*, false〉 - | true ⇒ 〈(\fst (bcast ? e1))^*, true〉]]. - -notation < "a \sup ⊛" non associative with precedence 90 for @{'lk $op $a}. -interpretation "lk" 'lk op a = (lk ? op a). -notation > "a^⊛" non associative with precedence 90 for @{'lk eclose $a}. - -notation > "•" non associative with precedence 60 for @{eclose ?}. -nlet rec eclose (S: Alpha) (E: pitem S) on E : pre S ≝ - match E with - [ pz ⇒ 〈 ∅, false 〉 - | pe ⇒ 〈 ϵ, true 〉 - | ps x ⇒ 〈 `.x, false 〉 - | pp x ⇒ 〈 `.x, false 〉 - | po E1 E2 ⇒ •E1 ⊕ •E2 - | pc E1 E2 ⇒ •E1 ⊙ 〈 E2, false 〉 - | pk E ⇒ 〈(\fst (•E))^*,true〉]. -notation < "• x" non associative with precedence 60 for @{'eclose $x}. -interpretation "eclose" 'eclose x = (eclose ? x). -notation > "• x" non associative with precedence 60 for @{'eclose $x}. - -ndefinition reclose ≝ λS:Alpha.λp:pre S.let p' ≝ •\fst p in 〈\fst p',\snd p || \snd p'〉. -interpretation "reclose" 'eclose x = (reclose ? x). - -ndefinition eq_f1 ≝ λS.λa,b:word S → Prop.∀w.a w ↔ b w. -notation > "A =1 B" non associative with precedence 45 for @{'eq_f1 $A $B}. -notation "A =\sub 1 B" non associative with precedence 45 for @{'eq_f1 $A $B}. -interpretation "eq f1" 'eq_f1 a b = (eq_f1 ? a b). - -naxiom extP : ∀S.∀p,q:word S → Prop.(p =1 q) → p = q. - -nlemma epsilon_or : ∀S:Alpha.∀b1,b2. ϵ(b1 || b2) = ϵ b1 ∪ ϵ b2. ##[##2: napply S] -#S b1 b2; ncases b1; ncases b2; napply extP; #w; nnormalize; @; /2/; *; //; *; -nqed. - -nlemma cupA : ∀S.∀a,b,c:word S → Prop.a ∪ b ∪ c = a ∪ (b ∪ c). -#S a b c; napply extP; #w; nnormalize; @; *; /3/; *; /3/; nqed. - -nlemma cupC : ∀S. ∀a,b:word S → Prop.a ∪ b = b ∪ a. -#S a b; napply extP; #w; @; *; nnormalize; /2/; nqed. - -(* theorem 16: 2 *) -nlemma oplus_cup : ∀S:Alpha.∀e1,e2:pre S.𝐋\p (e1 ⊕ e2) = 𝐋\p e1 ∪ 𝐋\p e2. -#S r1; ncases r1; #e1 b1 r2; ncases r2; #e2 b2; -nwhd in ⊢ (??(??%)?); -nchange in ⊢(??%?) with (𝐋\p (e1 + e2) ∪ ϵ (b1 || b2)); -nchange in ⊢(??(??%?)?) with (𝐋\p (e1) ∪ 𝐋\p (e2)); -nrewrite > (epsilon_or S …); nrewrite > (cupA S (𝐋\p e1) …); -nrewrite > (cupC ? (ϵ b1) …); nrewrite < (cupA S (𝐋\p e2) …); -nrewrite > (cupC ? ? (ϵ b1) …); nrewrite < (cupA …); //; -nqed. - -nlemma odotEt : - ∀S.∀e1,e2:pitem S.∀b2. 〈e1,true〉 ⊙ 〈e2,b2〉 = 〈e1 · \fst (•e2),b2 || \snd (•e2)〉. -#S e1 e2 b2; nnormalize; ncases (•e2); //; nqed. - -nlemma LcatE : ∀S.∀e1,e2:pitem S.𝐋\p (e1 · e2) = 𝐋\p e1 · 𝐋 |e2| ∪ 𝐋\p e2. //; nqed. - -nlemma cup_dotD : ∀S.∀p,q,r:word S → Prop.(p ∪ q) · r = (p · r) ∪ (q · r). -#S p q r; napply extP; #w; nnormalize; @; -##[ *; #x; *; #y; *; *; #defw; *; /7/ by or_introl, or_intror, ex_intro, conj; -##| *; *; #x; *; #y; *; *; /7/ by or_introl, or_intror, ex_intro, conj; ##] -nqed. - -nlemma cup0 :∀S.∀p:word S → Prop.p ∪ {} = p. -#S p; napply extP; #w; nnormalize; @; /2/; *; //; *; nqed. - -nlemma erase_dot : ∀S.∀e1,e2:pitem S.𝐋 |e1 · e2| = 𝐋 |e1| · 𝐋 |e2|. -#S e1 e2; napply extP; nnormalize; #w; @; *; #w1; *; #w2; *; *; /7/ by ex_intro, conj; -nqed. - -nlemma erase_plus : ∀S.∀e1,e2:pitem S.𝐋 |e1 + e2| = 𝐋 |e1| ∪ 𝐋 |e2|. -#S e1 e2; napply extP; nnormalize; #w; @; *; /4/ by or_introl, or_intror; nqed. - -nlemma erase_star : ∀S.∀e1:pitem S.𝐋 |e1|^* = 𝐋 |e1^*|. //; nqed. - -ndefinition substract := λS.λp,q:word S → Prop.λw.p w ∧ ¬ q w. -interpretation "substract" 'minus a b = (substract ? a b). - -nlemma cup_sub: ∀S.∀a,b:word S → Prop. ¬ (a []) → a ∪ (b - {[]}) = (a ∪ b) - {[]}. -#S a b c; napply extP; #w; nnormalize; @; *; /4/; *; /4/; nqed. - -nlemma sub0 : ∀S.∀a:word S → Prop. a - {} = a. -#S a; napply extP; #w; nnormalize; @; /3/; *; //; nqed. - -nlemma subK : ∀S.∀a:word S → Prop. a - a = {}. -#S a; napply extP; #w; nnormalize; @; *; /2/; nqed. - -nlemma subW : ∀S.∀a,b:word S → Prop.∀w.(a - b) w → a w. -#S a b w; nnormalize; *; //; nqed. - -nlemma erase_bull : ∀S.∀a:pitem S. |\fst (•a)| = |a|. -#S a; nelim a; // by {}; -##[ #e1 e2 IH1 IH2; nchange in ⊢ (???%) with (|e1| · |e2|); - nrewrite < IH1; nrewrite < IH2; - nchange in ⊢ (??(??%)?) with (\fst (•e1 ⊙ 〈e2,false〉)); - ncases (•e1); #e3 b; ncases b; nnormalize; - ##[ ncases (•e2); //; ##| nrewrite > IH2; //] -##| #e1 e2 IH1 IH2; nchange in ⊢ (???%) with (|e1| + |e2|); - nrewrite < IH2; nrewrite < IH1; - nchange in ⊢ (??(??%)?) with (\fst (•e1 ⊕ •e2)); - ncases (•e1); ncases (•e2); //; -##| #e IH; nchange in ⊢ (???%) with (|e|^* ); nrewrite < IH; - nchange in ⊢ (??(??%)?) with (\fst (•e))^*; //; ##] -nqed. - -nlemma eta_lp : ∀S.∀p:pre S.𝐋\p p = 𝐋\p 〈\fst p, \snd p〉. -#S p; ncases p; //; nqed. - -nlemma epsilon_dot: ∀S.∀p:word S → Prop. {[]} · p = p. -#S e; napply extP; #w; nnormalize; @; ##[##2: #Hw; @[]; @w; /3/; ##] -*; #w1; *; #w2; *; *; #defw defw1 Hw2; nrewrite < defw; nrewrite < defw1; -napply Hw2; nqed. - -(* theorem 16: 1 → 3 *) -nlemma odot_dot_aux : ∀S.∀e1,e2: pre S. - 𝐋\p (•(\fst e2)) = 𝐋\p (\fst e2) ∪ 𝐋 |\fst e2| → - 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 |\fst e2| ∪ 𝐋\p e2. -#S e1 e2 th1; ncases e1; #e1' b1'; ncases b1'; -##[ nwhd in ⊢ (??(??%)?); nletin e2' ≝ (\fst e2); nletin b2' ≝ (\snd e2); - nletin e2'' ≝ (\fst (•(\fst e2))); nletin b2'' ≝ (\snd (•(\fst e2))); - nchange in ⊢ (??%?) with (?∪?); - nchange in ⊢ (??(??%?)?) with (?∪?); - nchange in match (𝐋\p 〈?,?〉) with (?∪?); - nrewrite > (epsilon_or …); nrewrite > (cupC ? (ϵ ?)…); - nrewrite > (cupA …);nrewrite < (cupA ?? (ϵ?)…); - nrewrite > (?: 𝐋\p e2'' ∪ ϵ b2'' = 𝐋\p e2' ∪ 𝐋 |e2'|); ##[##2: - nchange with (𝐋\p 〈e2'',b2''〉 = 𝐋\p e2' ∪ 𝐋 |e2'|); - ngeneralize in match th1; - nrewrite > (eta_lp…); #th1; nrewrite > th1; //;##] - nrewrite > (eta_lp ? e2); - nchange in match (𝐋\p 〈\fst e2,?〉) with (𝐋\p e2'∪ ϵ b2'); - nrewrite > (cup_dotD …); nrewrite > (epsilon_dot…); - nrewrite > (cupC ? (𝐋\p e2')…); nrewrite > (cupA…);nrewrite > (cupA…); - nrewrite < (erase_bull S e2') in ⊢ (???(??%?)); //; -##| ncases e2; #e2' b2'; nchange in match (〈e1',false〉⊙?) with 〈?,?〉; - nchange in match (𝐋\p ?) with (?∪?); - nchange in match (𝐋\p (e1'·?)) with (?∪?); - nchange in match (𝐋\p 〈e1',?〉) with (?∪?); - nrewrite > (cup0…); - nrewrite > (cupA…); //;##] -nqed. - -nlemma sub_dot_star : - ∀S.∀X:word S → Prop.∀b. (X - ϵ b) · X^* ∪ {[]} = X^*. -#S X b; napply extP; #w; @; -##[ *; ##[##2: nnormalize; #defw; nrewrite < defw; @[]; @; //] - *; #w1; *; #w2; *; *; #defw sube; *; #lw; *; #flx cj; - @ (w1 :: lw); nrewrite < defw; nrewrite < flx; @; //; - @; //; napply (subW … sube); -##| *; #wl; *; #defw Pwl; nrewrite < defw; nelim wl in Pwl; ##[ #_; @2; //] - #w' wl' IH; *; #Pw' IHp; nlapply (IH IHp); *; - ##[ *; #w1; *; #w2; *; *; #defwl' H1 H2; - @; ncases b in H1; #H1; - ##[##2: nrewrite > (sub0…); @w'; @(w1@w2); - nrewrite > (associative_append ? w' w1 w2); - nrewrite > defwl'; @; ##[@;//] @(wl'); @; //; - ##| ncases w' in Pw'; - ##[ #ne; @w1; @w2; nrewrite > defwl'; @; //; @; //; - ##| #x xs Px; @(x::xs); @(w1@w2); - nrewrite > (defwl'); @; ##[@; //; @; //; @; nnormalize; #; ndestruct] - @wl'; @; //; ##] ##] - ##| #wlnil; nchange in match (flatten ? (w'::wl')) with (w' @ flatten ? wl'); - nrewrite < (wlnil); nrewrite > (append_nil…); ncases b; - ##[ ncases w' in Pw'; /2/; #x xs Pxs; @; @(x::xs); @([]); - nrewrite > (append_nil…); @; ##[ @; //;@; //; nnormalize; @; #; ndestruct] - @[]; @; //; - ##| @; @w'; @[]; nrewrite > (append_nil…); @; ##[##2: @[]; @; //] - @; //; @; //; @; *;##]##]##] -nqed. - -(* theorem 16: 1 *) -alias symbol "pc" (instance 13) = "cat lang". -alias symbol "in_pl" (instance 23) = "in_pl". -alias symbol "in_pl" (instance 5) = "in_pl". -alias symbol "eclose" (instance 21) = "eclose". -ntheorem bull_cup : ∀S:Alpha. ∀e:pitem S. 𝐋\p (•e) = 𝐋\p e ∪ 𝐋 |e|. -#S e; nelim e; //; - ##[ #a; napply extP; #w; nnormalize; @; *; /3/ by or_introl, or_intror; - ##| #a; napply extP; #w; nnormalize; @; *; /3/ by or_introl; *; - ##| #e1 e2 IH1 IH2; - nchange in ⊢ (??(??(%))?) with (•e1 ⊙ 〈e2,false〉); - nrewrite > (odot_dot_aux S (•e1) 〈e2,false〉 IH2); - nrewrite > (IH1 …); nrewrite > (cup_dotD …); - nrewrite > (cupA …); nrewrite > (cupC ?? (𝐋\p ?) …); - nchange in match (𝐋\p 〈?,?〉) with (𝐋\p e2 ∪ {}); nrewrite > (cup0 …); - nrewrite < (erase_dot …); nrewrite < (cupA …); //; - ##| #e1 e2 IH1 IH2; - nchange in match (•(?+?)) with (•e1 ⊕ •e2); nrewrite > (oplus_cup …); - nrewrite > (IH1 …); nrewrite > (IH2 …); nrewrite > (cupA …); - nrewrite > (cupC ? (𝐋\p e2)…);nrewrite < (cupA ??? (𝐋\p e2)…); - nrewrite > (cupC ?? (𝐋\p e2)…); nrewrite < (cupA …); - nrewrite < (erase_plus …); //. - ##| #e; nletin e' ≝ (\fst (•e)); nletin b' ≝ (\snd (•e)); #IH; - nchange in match (𝐋\p ?) with (𝐋\p 〈e'^*,true〉); - nchange in match (𝐋\p ?) with (𝐋\p (e'^* ) ∪ {[ ]}); - nchange in ⊢ (??(??%?)?) with (𝐋\p e' · 𝐋 |e'|^* ); - nrewrite > (erase_bull…e); - nrewrite > (erase_star …); - nrewrite > (?: 𝐋\p e' = 𝐋\p e ∪ (𝐋 |e| - ϵ b')); ##[##2: - nchange in IH : (??%?) with (𝐋\p e' ∪ ϵ b'); ncases b' in IH; - ##[ #IH; nrewrite > (cup_sub…); //; nrewrite < IH; - nrewrite < (cup_sub…); //; nrewrite > (subK…); nrewrite > (cup0…);//; - ##| nrewrite > (sub0 …); #IH; nrewrite < IH; nrewrite > (cup0 …);//; ##]##] - nrewrite > (cup_dotD…); nrewrite > (cupA…); - nrewrite > (?: ((?·?)∪{[]} = 𝐋 |e^*|)); //; - nchange in match (𝐋 |e^*|) with ((𝐋 |e|)^* ); napply sub_dot_star;##] - nqed. - -(* theorem 16: 3 *) -nlemma odot_dot: - ∀S.∀e1,e2: pre S. 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 |\fst e2| ∪ 𝐋\p e2. -#S e1 e2; napply odot_dot_aux; napply (bull_cup S (\fst e2)); nqed. - -nlemma dot_star_epsilon : ∀S.∀e:re S.𝐋 e · 𝐋 e^* ∪ {[]} = 𝐋 e^*. -#S e; napply extP; #w; nnormalize; @; -##[ *; ##[##2: #H; nrewrite < H; @[]; /3/] *; #w1; *; #w2; - *; *; #defw Hw1; *; #wl; *; #defw2 Hwl; @(w1 :: wl); - nrewrite < defw; nrewrite < defw2; @; //; @;//; -##| *; #wl; *; #defw Hwl; ncases wl in defw Hwl; ##[#defw; #; @2; nrewrite < defw; //] - #x xs defw; *; #Hx Hxs; @; @x; @(flatten ? xs); nrewrite < defw; - @; /2/; @xs; /2/;##] - nqed. - -nlemma nil_star : ∀S.∀e:re S. [ ] ∈ e^*. -#S e; @[]; /2/; nqed. - -nlemma cupID : ∀S.∀l:word S → Prop.l ∪ l = l. -#S l; napply extP; #w; @; ##[*]//; #; @; //; nqed. - -nlemma cup_star_nil : ∀S.∀l:word S → Prop. l^* ∪ {[]} = l^*. -#S a; napply extP; #w; @; ##[*; //; #H; nrewrite < H; @[]; @; //] #;@; //;nqed. - -nlemma rcanc_sing : ∀S.∀A,C:word S → Prop.∀b:word S . - ¬ (A b) → A ∪ { (b) } = C → A = C - { (b) }. -#S A C b nbA defC; nrewrite < defC; napply extP; #w; @; -##[ #Aw; /3/| *; *; //; #H nH; ncases nH; #abs; nlapply (abs H); *] -nqed. - -(* theorem 16: 4 *) -nlemma star_dot: ∀S.∀e:pre S. 𝐋\p (e^⊛) = 𝐋\p e · (𝐋 |\fst e|)^*. -#S p; ncases p; #e b; ncases b; -##[ nchange in match (〈e,true〉^⊛) with 〈?,?〉; - nletin e' ≝ (\fst (•e)); nletin b' ≝ (\snd (•e)); - nchange in ⊢ (??%?) with (?∪?); - nchange in ⊢ (??(??%?)?) with (𝐋\p e' · 𝐋 |e'|^* ); - nrewrite > (?: 𝐋\p e' = 𝐋\p e ∪ (𝐋 |e| - ϵ b' )); ##[##2: - nlapply (bull_cup ? e); #bc; - nchange in match (𝐋\p (•e)) in bc with (?∪?); - nchange in match b' in bc with b'; - ncases b' in bc; ##[##2: nrewrite > (cup0…); nrewrite > (sub0…); //] - nrewrite > (cup_sub…); ##[napply rcanc_sing] //;##] - nrewrite > (cup_dotD…); nrewrite > (cupA…);nrewrite > (erase_bull…); - nrewrite > (sub_dot_star…); - nchange in match (𝐋\p 〈?,?〉) with (?∪?); - nrewrite > (cup_dotD…); nrewrite > (epsilon_dot…); //; -##| nwhd in match (〈e,false〉^⊛); nchange in match (𝐋\p 〈?,?〉) with (?∪?); - nrewrite > (cup0…); - nchange in ⊢ (??%?) with (𝐋\p e · 𝐋 |e|^* ); - nrewrite < (cup0 ? (𝐋\p e)); //;##] -nqed. - -nlet rec pre_of_re (S : Alpha) (e : re S) on e : pitem S ≝ - match e with - [ z ⇒ pz ? - | e ⇒ pe ? - | s x ⇒ ps ? x - | c e1 e2 ⇒ pc ? (pre_of_re ? e1) (pre_of_re ? e2) - | o e1 e2 ⇒ po ? (pre_of_re ? e1) (pre_of_re ? e2) - | k e1 ⇒ pk ? (pre_of_re ? e1)]. - -nlemma notFalse : ¬False. @; //; nqed. - -nlemma dot0 : ∀S.∀A:word S → Prop. {} · A = {}. -#S A; nnormalize; napply extP; #w; @; ##[##2: *] -*; #w1; *; #w2; *; *; //; nqed. - -nlemma Lp_pre_of_re : ∀S.∀e:re S. 𝐋\p (pre_of_re ? e) = {}. -#S e; nelim e; ##[##1,2,3: //] -##[ #e1 e2 H1 H2; nchange in match (𝐋\p (pre_of_re S (e1 e2))) with (?∪?); - nrewrite > H1; nrewrite > H2; nrewrite > (dot0…); nrewrite > (cupID…);// -##| #e1 e2 H1 H2; nchange in match (𝐋\p (pre_of_re S (e1+e2))) with (?∪?); - nrewrite > H1; nrewrite > H2; nrewrite > (cupID…); // -##| #e1 H1; nchange in match (𝐋\p (pre_of_re S (e1^* ))) with (𝐋\p (pre_of_re ??) · ?); - nrewrite > H1; napply dot0; ##] -nqed. - -nlemma erase_pre_of_reK : ∀S.∀e. 𝐋 |pre_of_re S e| = 𝐋 e. -#S A; nelim A; //; -##[ #e1 e2 H1 H2; nchange in match (𝐋 (e1 · e2)) with (𝐋 e1·?); - nrewrite < H1; nrewrite < H2; // -##| #e1 e2 H1 H2; nchange in match (𝐋 (e1 + e2)) with (𝐋 e1 ∪ ?); - nrewrite < H1; nrewrite < H2; // -##| #e1 H1; nchange in match (𝐋 (e1^* )) with ((𝐋 e1)^* ); - nrewrite < H1; //] -nqed. - -(* corollary 17 *) -nlemma L_Lp_bull : ∀S.∀e:re S.𝐋 e = 𝐋\p (•pre_of_re ? e). -#S e; nrewrite > (bull_cup…); nrewrite > (Lp_pre_of_re…); -nrewrite > (cupC…); nrewrite > (cup0…); nrewrite > (erase_pre_of_reK…); //; -nqed. - -nlemma Pext : ∀S.∀f,g:word S → Prop. f = g → ∀w.f w → g w. -#S f g H; nrewrite > H; //; nqed. - -(* corollary 18 *) -ntheorem bull_true_epsilon : ∀S.∀e:pitem S. \snd (•e) = true ↔ [ ] ∈ |e|. -#S e; @; -##[ #defsnde; nlapply (bull_cup ? e); nchange in match (𝐋\p (•e)) with (?∪?); - nrewrite > defsnde; #H; - nlapply (Pext ??? H [ ] ?); ##[ @2; //] *; //; - -STOP - -notation > "\move term 90 x term 90 E" -non associative with precedence 60 for @{move ? $x $E}. -nlet rec move (S: Alpha) (x:S) (E: pitem S) on E : pre S ≝ - match E with - [ pz ⇒ 〈 ∅, false 〉 - | pe ⇒ 〈 ϵ, false 〉 - | ps y ⇒ 〈 `y, false 〉 - | pp y ⇒ 〈 `y, x == y 〉 - | po e1 e2 ⇒ \move x e1 ⊕ \move x e2 - | pc e1 e2 ⇒ \move x e1 ⊙ \move x e2 - | pk e ⇒ (\move x e)^⊛ ]. -notation < "\move\shy x\shy E" non associative with precedence 60 for @{'move $x $E}. -notation > "\move term 90 x term 90 E" non associative with precedence 60 for @{'move $x $E}. -interpretation "move" 'move x E = (move ? x E). - -ndefinition rmove ≝ λS:Alpha.λx:S.λe:pre S. \move x (\fst e). -interpretation "rmove" 'move x E = (rmove ? x E). - -nlemma XXz : ∀S:Alpha.∀w:word S. w ∈ ∅ → False. -#S w abs; ninversion abs; #; ndestruct; -nqed. - - -nlemma XXe : ∀S:Alpha.∀w:word S. w .∈ ϵ → False. -#S w abs; ninversion abs; #; ndestruct; -nqed. - -nlemma XXze : ∀S:Alpha.∀w:word S. w .∈ (∅ · ϵ) → False. -#S w abs; ninversion abs; #; ndestruct; /2/ by XXz,XXe; -nqed. - - -naxiom in_move_cat: - ∀S.∀w:word S.∀x.∀E1,E2:pitem S. w .∈ \move x (E1 · E2) → - (∃w1.∃w2. w = w1@w2 ∧ w1 .∈ \move x E1 ∧ w2 ∈ .|E2|) ∨ w .∈ \move x E2. -#S w x e1 e2 H; nchange in H with (w .∈ \move x e1 ⊙ \move x e2); -ncases e1 in H; ncases e2; -##[##1: *; ##[*; nnormalize; #; ndestruct] - #H; ninversion H; ##[##1,4,5,6: nnormalize; #; ndestruct] - nnormalize; #; ndestruct; ncases (?:False); /2/ by XXz,XXze; -##|##2: *; ##[*; nnormalize; #; ndestruct] - #H; ninversion H; ##[##1,4,5,6: nnormalize; #; ndestruct] - nnormalize; #; ndestruct; ncases (?:False); /2/ by XXz,XXze; -##| #r; *; ##[ *; nnormalize; #; ndestruct] - #H; ninversion H; ##[##1,4,5,6: nnormalize; #; ndestruct] - ##[##2: nnormalize; #; ndestruct; @2; @2; //.##] - nnormalize; #; ndestruct; ncases (?:False); /2/ by XXz; -##| #y; *; ##[ *; nnormalize; #defw defx; ndestruct; @2; @1; /2/ by conj;##] - #H; ninversion H; nnormalize; #; ndestruct; - ##[ncases (?:False); /2/ by XXz] /3/ by or_intror; -##| #r1 r2; *; ##[ *; #defw] - ... -nqed. - -ntheorem move_ok: - ∀S:Alpha.∀E:pre S.∀a,w.w .∈ \move a E ↔ (a :: w) .∈ E. -#S E; ncases E; #r b; nelim r; -##[##1,2: #a w; @; - ##[##1,3: nnormalize; *; ##[##1,3: *; #; ndestruct; ##| #abs; ncases (XXz … abs); ##] - #H; ninversion H; #; ndestruct; - ##|##*:nnormalize; *; ##[##1,3: *; #; ndestruct; ##| #H1; ncases (XXz … H1); ##] - #H; ninversion H; #; ndestruct;##] -##|#a c w; @; nnormalize; ##[*; ##[*; #; ndestruct; ##] #abs; ninversion abs; #; ndestruct;##] - *; ##[##2: #abs; ninversion abs; #; ndestruct; ##] *; #; ndestruct; -##|#a c w; @; nnormalize; - ##[ *; ##[ *; #defw; nrewrite > defw; #ca; @2; nrewrite > (eqb_t … ca); @; ##] - #H; ninversion H; #; ndestruct; - ##| *; ##[ *; #; ndestruct; ##] #H; ninversion H; ##[##2,3,4,5,6: #; ndestruct] - #d defw defa; ndestruct; @1; @; //; nrewrite > (eqb_true S d d); //. ##] -##|#r1 r2 H1 H2 a w; @; - ##[ #H; ncases (in_move_cat … H); - ##[ *; #w1; *; #w2; *; *; #defw w1m w2m; - ncases (H1 a w1); #H1w1; #_; nlapply (H1w1 w1m); #good; - nrewrite > defw; @2; @2 (a::w1); //; ncases good; ##[ *; #; ndestruct] //. - ##| - ... -##| -##| -##] -nqed. - - -notation > "x ↦* E" non associative with precedence 60 for @{move_star ? $x $E}. -nlet rec move_star (S : decidable) w E on w : bool × (pre S) ≝ - match w with - [ nil ⇒ E - | cons x w' ⇒ w' ↦* (x ↦ \snd E)]. - -ndefinition in_moves ≝ λS:decidable.λw.λE:bool × (pre S). \fst(w ↦* E). - -ncoinductive equiv (S:decidable) : bool × (pre S) → bool × (pre S) → Prop ≝ - mk_equiv: - ∀E1,E2: bool × (pre S). - \fst E1 = \fst E2 → - (∀x. equiv S (x ↦ \snd E1) (x ↦ \snd E2)) → - equiv S E1 E2. - -ndefinition NAT: decidable. - @ nat eqb; /2/. -nqed. - -include "hints_declaration.ma". - -alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". -unification hint 0 ≔ ; X ≟ NAT ⊢ carr X ≡ nat. - -ninductive unit: Type[0] ≝ I: unit. - -nlet corec foo_nop (b: bool): - equiv ? - 〈 b, pc ? (ps ? 0) (pk ? (pc ? (ps ? 1) (ps ? 0))) 〉 - 〈 b, pc ? (pk ? (pc ? (ps ? 0) (ps ? 1))) (ps ? 0) 〉 ≝ ?. - @; //; #x; ncases x - [ nnormalize in ⊢ (??%%); napply (foo_nop false) - | #y; ncases y - [ nnormalize in ⊢ (??%%); napply (foo_nop false) - | #w; nnormalize in ⊢ (??%%); napply (foo_nop false) ]##] -nqed. +(* We can now construct a function from n to {p|qr_spec n p} by composing the objects +we already have *) + +img class="anchor" src="icons/tick.png" id="div2P"definition div2P: ∀n. a href="cic:/matita/tutorial/chapter2/Sub.ind(1,0,2)"Sub/a (a href="cic:/matita/tutorial/chapter2/nat.ind(1,0,0)"nat/aa title="Product" href="cic:/fakeuri.def(1)"×/aspan style="text-decoration: underline;"a href="cic:/matita/tutorial/chapter2/bool.ind(1,0,0)"bool/a/span) (a href="cic:/matita/tutorial/chapter2/qr_spec.def(3)"qr_spec/a n) ≝ λn. + a href="cic:/matita/tutorial/chapter2/Sub.con(0,1,2)"mk_Sub/a ?? (a href="cic:/matita/tutorial/chapter2/div2.fix(0,0,2)"div2/a n) (a href="cic:/matita/tutorial/chapter2/div2_ok.def(4)"div2_ok/a n). + +(* But we can also try do directly build such an object *) + +img class="anchor" src="icons/tick.png" id="div2Pagain"definition div2Pagain : ∀n.a href="cic:/matita/tutorial/chapter2/Sub.ind(1,0,2)"Sub/a (a href="cic:/matita/tutorial/chapter2/nat.ind(1,0,0)"nat/aa title="Product" href="cic:/fakeuri.def(1)"×/aspan style="text-decoration: underline;"/spana href="cic:/matita/tutorial/chapter2/bool.ind(1,0,0)"bool/a) (a href="cic:/matita/tutorial/chapter2/qr_spec.def(3)"qr_spec/a n). +#n elim n + [@(a href="cic:/matita/tutorial/chapter2/Sub.con(0,1,2)"mk_Sub/a … a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/a,a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"ff/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a) normalize #q #r #H destruct // + |#a * #p #qrspec + cut (p a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/types/fst.fix(0,2,1)"fst/a … p, a href="cic:/matita/basics/types/snd.fix(0,2,1)"snd/a … pa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a) [//] + cases (a href="cic:/matita/basics/types/snd.fix(0,2,1)"snd/a … p) + [#H @(a href="cic:/matita/tutorial/chapter2/Sub.con(0,1,2)"mk_Sub/a … a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a (a href="cic:/matita/basics/types/fst.fix(0,2,1)"fst/a … p),a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"ff/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a) whd #q #r #H1 destruct @a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a span style="text-decoration: underline;">/spana href="cic:/matita/tutorial/chapter2/add_S.def(2)"add_S/a + whd in ⊢ (???%); <a href="cic:/matita/tutorial/chapter2/add_S.def(2)"add_S/a @(qrspec … H) + |#H @(a href="cic:/matita/tutorial/chapter2/Sub.con(0,1,2)"mk_Sub/a … a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/basics/types/fst.fix(0,2,1)"fst/a … p,a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"tt/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a) whd #q #r #H1 destruct >a href="cic:/matita/tutorial/chapter2/add_S.def(2)"add_S/a @a href="cic:/matita/basics/logic/eq_f.def(3)"eq_f/a @(qrspec … H) + ] +qed. -(* -nlet corec foo (a: unit): - equiv NAT - (eclose NAT (pc ? (ps ? 0) (pk ? (pc ? (ps ? 1) (ps ? 0))))) - (eclose NAT (pc ? (pk ? (pc ? (ps ? 0) (ps ? 1))) (ps ? 0))) -≝ ?. - @; - ##[ nnormalize; // - ##| #x; ncases x - [ nnormalize in ⊢ (??%%); - nnormalize in foo: (? → ??%%); - @; //; #y; ncases y - [ nnormalize in ⊢ (??%%); napply foo_nop - | #y; ncases y - [ nnormalize in ⊢ (??%%); - - ##| #z; nnormalize in ⊢ (??%%); napply foo_nop ]##] - ##| #y; nnormalize in ⊢ (??%%); napply foo_nop - ##] -nqed. -*) +img class="anchor" src="icons/tick.png" id="quotient7"example quotient7: a href="cic:/matita/tutorial/chapter2/witness.fix(0,2,1)"witness/a … (a href="cic:/matita/tutorial/chapter2/div2Pagain.def(4)"div2Pagain/a (a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a(a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a(a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a(a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a(a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a(a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a(a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/a)))))))) a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a(a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a(a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/a)),a href="cic:/matita/tutorial/chapter2/bool.con(0,1,0)"tt/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a. +// qed. -ndefinition test1 : pre ? ≝ ❨ `0 | `1 ❩^* `0. -ndefinition test2 : pre ? ≝ ❨ (`0`1)^* `0 | (`0`1)^* `1 ❩. -ndefinition test3 : pre ? ≝ (`0 (`0`1)^* `1)^*. - - -nlemma foo: in_moves ? [0;0;1;0;1;1] (ɛ test3) = true. - nnormalize in match test3; - nnormalize; -//; -nqed. - -(**********************************************************) - -ninductive der (S: Type[0]) (a: S) : re S → re S → CProp[0] ≝ - der_z: der S a (z S) (z S) - | der_e: der S a (e S) (z S) - | der_s1: der S a (s S a) (e ?) - | der_s2: ∀b. a ≠ b → der S a (s S b) (z S) - | der_c1: ∀e1,e2,e1',e2'. in_l S [] e1 → der S a e1 e1' → der S a e2 e2' → - der S a (c ? e1 e2) (o ? (c ? e1' e2) e2') - | der_c2: ∀e1,e2,e1'. Not (in_l S [] e1) → der S a e1 e1' → - der S a (c ? e1 e2) (c ? e1' e2) - | der_o: ∀e1,e2,e1',e2'. der S a e1 e1' → der S a e2 e2' → - der S a (o ? e1 e2) (o ? e1' e2'). - -nlemma eq_rect_CProp0_r: - ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → CProp[0]. P a (refl A a) → P x p. - #A; #a; #x; #p; ncases p; #P; #H; nassumption. -nqed. - -nlemma append1: ∀A.∀a:A.∀l. [a] @ l = a::l. //. nqed. - -naxiom in_l1: ∀S,r1,r2,w. in_l S [ ] r1 → in_l S w r2 → in_l S w (c S r1 r2). -(* #S; #r1; #r2; #w; nelim r1 - [ #K; ninversion K - | #H1; #H2; napply (in_c ? []); // - | (* tutti casi assurdi *) *) - -ninductive in_l' (S: Type[0]) : word S → re S → CProp[0] ≝ - in_l_empty1: ∀E.in_l S [] E → in_l' S [] E - | in_l_cons: ∀a,w,e,e'. in_l' S w e' → der S a e e' → in_l' S (a::w) e. - -ncoinductive eq_re (S: Type[0]) : re S → re S → CProp[0] ≝ - mk_eq_re: ∀E1,E2. - (in_l S [] E1 → in_l S [] E2) → - (in_l S [] E2 → in_l S [] E1) → - (∀a,E1',E2'. der S a E1 E1' → der S a E2 E2' → eq_re S E1' E2') → - eq_re S E1 E2. - -(* serve il lemma dopo? *) -ntheorem eq_re_is_eq: ∀S.∀E1,E2. eq_re S E1 E2 → ∀w. in_l ? w E1 → in_l ? w E2. - #S; #E1; #E2; #H1; #w; #H2; nelim H2 in E2 H1 ⊢ % - [ #r; #K (* ok *) - | #a; #w; #R1; #R2; #K1; #K2; #K3; #R3; #K4; @2 R2; //; ncases K4; - -(* IL VICEVERSA NON VALE *) -naxiom in_l_to_in_l: ∀S,w,E. in_l' S w E → in_l S w E. -(* #S; #w; #E; #H; nelim H - [ // - | #a; #w'; #r; #r'; #H1; (* e si cade qua sotto! *) - ] -nqed. *) - -ntheorem der1: ∀S,a,e,e',w. der S a e e' → in_l S w e' → in_l S (a::w) e. - #S; #a; #E; #E'; #w; #H; nelim H - [##1,2: #H1; ninversion H1 - [##1,8: #_; #K; (* non va ndestruct K; *) ncases (?:False); (* perche' due goal?*) /2/ - |##2,9: #X; #Y; #K; ncases (?:False); /2/ - |##3,10: #x; #y; #z; #w; #a; #b; #c; #d; #e; #K; ncases (?:False); /2/ - |##4,11: #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - |##5,12: #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - |##6,13: #x; #y; #K; ncases (?:False); /2/ - |##7,14: #x; #y; #z; #w; #a; #b; #c; #d; #K; ncases (?:False); /2/] -##| #H1; ninversion H1 - [ // - | #X; #Y; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #c; #d; #e; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - | #x; #y; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #c; #d; #K; ncases (?:False); /2/ ] -##| #H1; #H2; #H3; ninversion H3 - [ #_; #K; ncases (?:False); /2/ - | #X; #Y; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #c; #d; #e; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #K; ncases (?:False); /2/ - | #x; #y; #K; ncases (?:False); /2/ - | #x; #y; #z; #w; #a; #b; #c; #d; #K; ncases (?:False); /2/ ] -##| #r1; #r2; #r1'; #r2'; #H1; #H2; #H3; #H4; #H5; #H6; \ No newline at end of file +img class="anchor" src="icons/tick.png" id="quotient8"example quotient8: a href="cic:/matita/tutorial/chapter2/witness.fix(0,2,1)"witness/a … (a href="cic:/matita/tutorial/chapter2/div2Pagain.def(4)"div2Pagain/a (a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a (a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a (a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a (a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a (a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/a)))))) + a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a (a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a (a href="cic:/matita/tutorial/chapter2/twice.def(2)"twice/a (a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"S/a a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"O/a))), a href="cic:/matita/tutorial/chapter2/bool.con(0,2,0)"ff/aa title="Pair construction" href="cic:/fakeuri.def(1)"〉/a. +// qed. +prepre /pre/pre \ No newline at end of file