X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=weblib%2Ftutorial%2Fchapter7.ma;h=b9a35a8ad93214da1f607dec2f9c2d1f9623bb0d;hb=c65aeeb22bdc7bf289e5db108c358b199773c857;hp=da90566e88cb4e1754096fbcf189d51fe15dd5cc;hpb=55be7edb5a8249fa65746a47ea1b702881cbc979;p=helm.git diff --git a/weblib/tutorial/chapter7.ma b/weblib/tutorial/chapter7.ma index da90566e8..b9a35a8ad 100644 --- a/weblib/tutorial/chapter7.ma +++ b/weblib/tutorial/chapter7.ma @@ -1,4 +1,5 @@ -(* We shall apply all the previous machinery to the study of regular languages +(*

Regular Expressions

+We shall apply all the previous machinery to the study of regular languages and the constructions of the associated finite automata. *) include "tutorial/chapter6.ma". @@ -46,7 +47,8 @@ lemma rsem_star : ∀S.∀r: a href="cic:/matita/tutorial/chapter7/re.ind(1,0,1 // qed. -(* We now introduce pointed regular expressions, that are the main tool we shall +(*

Pointed Regular expressions

+We now introduce pointed regular expressions, that are the main tool we shall use for the construction of the automaton. A pointed regular expression is just a regular expression internally labelled with some additional points. Intuitively, points mark the positions inside the @@ -128,7 +130,8 @@ lemma erase_plus : ∀S.∀i1,i2:pitem S. lemma erase_star : ∀S.∀i:pitem S.|i^*| = |i|^*. // qed. -(* Items and pres are very concrete datatypes: they can be effectively compared, +(*

Comparing items and pres

+Items and pres are very concrete datatypes: they can be effectively compared, and enumerated. In particular, we can define a boolean equality beqitem and a proof beqitem_true that it refects propositional equality, enriching the set (pitem S) to a DeqSet. *) @@ -195,7 +198,8 @@ unification hint 0 ≔ S,i1,i2; (* ---------------------------------------- *) ⊢ beqitem S i1 i2 ≡ eqb X i1 i2. -(* The intuitive semantic of a point is to mark the position where +(*

Semantics of pointed regular expression

+The intuitive semantic of a point is to mark the position where we should start reading the regular expression. The language associated to a pre is the union of the languages associated with its points. *) @@ -295,295 +299,3 @@ lemma minus_eps_pre: ∀S.∀e:pre S. \sem{\fst e} =1 \sem{e}-{[ ]}. ] qed. -definition lo ≝ λS:DeqSet.λa,b:pre S.〈\fst a + \fst b,\snd a ∨ \snd b〉. -notation "a ⊕ b" left associative with precedence 60 for @{'oplus $a $b}. -interpretation "oplus" 'oplus a b = (lo ? a b). - -lemma lo_def: ∀S.∀i1,i2:pitem S.∀b1,b2. 〈i1,b1〉⊕〈i2,b2〉=〈i1+i2,b1∨b2〉. -// qed. - -definition pre_concat_r ≝ λS:DeqSet.λi:pitem S.λe:pre S. - match e with [ mk_Prod i1 b ⇒ 〈i · i1, b〉]. - -notation "i ◃ e" left associative with precedence 60 for @{'lhd $i $e}. -interpretation "pre_concat_r" 'lhd i e = (pre_concat_r ? i e). - -lemma eq_to_ex_eq: ∀S.∀A,B:word S → Prop. - A = B → A =1 B. -#S #A #B #H >H /2/ qed. - -lemma sem_pre_concat_r : ∀S,i.∀e:pre S. - \sem{i ◃ e} =1 \sem{i} · \sem{|\fst e|} ∪ \sem{e}. -#S #i * #i1 #b1 cases b1 [2: @eq_to_ex_eq //] ->sem_pre_true >sem_cat >sem_pre_true /2/ -qed. - -definition pre_concat_l ≝ λS:DeqSet.λbcast:∀S:DeqSet.pitem S → pre S.λe1:pre S.λi2:pitem S. - match e1 with - [ mk_Prod i1 b1 ⇒ match b1 with - [ true ⇒ (i1 ◃ (bcast ? i2)) - | false ⇒ 〈i1 · i2,false〉 - ] - ]. - -notation "a ▹ b" left associative with precedence 60 for @{'tril eclose $a $b}. -interpretation "item-pre concat" 'tril op a b = (pre_concat_l ? op a b). - -notation "•" non associative with precedence 60 for @{eclose ?}. - -let rec eclose (S: DeqSet) (i: pitem S) on i : pre S ≝ - match i with - [ pz ⇒ 〈 `∅, false 〉 - | pe ⇒ 〈 ϵ, true 〉 - | ps x ⇒ 〈 `.x, false〉 - | pp x ⇒ 〈 `.x, false 〉 - | po i1 i2 ⇒ •i1 ⊕ •i2 - | pc i1 i2 ⇒ •i1 ▹ i2 - | pk i ⇒ 〈(\fst (•i))^*,true〉]. - -notation "• x" non associative with precedence 60 for @{'eclose $x}. -interpretation "eclose" 'eclose x = (eclose ? x). - -lemma eclose_plus: ∀S:DeqSet.∀i1,i2:pitem S. - •(i1 + i2) = •i1 ⊕ •i2. -// qed. - -lemma eclose_dot: ∀S:DeqSet.∀i1,i2:pitem S. - •(i1 · i2) = •i1 ▹ i2. -// qed. - -lemma eclose_star: ∀S:DeqSet.∀i:pitem S. - •i^* = 〈(\fst(•i))^*,true〉. -// qed. - -definition lift ≝ λS.λf:pitem S →pre S.λe:pre S. - match e with - [ mk_Prod i b ⇒ 〈\fst (f i), \snd (f i) ∨ b〉]. - -definition preclose ≝ λS. lift S (eclose S). -interpretation "preclose" 'eclose x = (preclose ? x). - -(* theorem 16: 2 *) -lemma sem_oplus: ∀S:DeqSet.∀e1,e2:pre S. - \sem{e1 ⊕ e2} =1 \sem{e1} ∪ \sem{e2}. -#S * #i1 #b1 * #i2 #b2 #w % - [cases b1 cases b2 normalize /2/ * /3/ * /3/ - |cases b1 cases b2 normalize /2/ * /3/ * /3/ - ] -qed. - -lemma odot_true : - ∀S.∀i1,i2:pitem S. - 〈i1,true〉 ▹ i2 = i1 ◃ (•i2). -// qed. - -lemma odot_true_bis : - ∀S.∀i1,i2:pitem S. - 〈i1,true〉 ▹ i2 = 〈i1 · \fst (•i2), \snd (•i2)〉. -#S #i1 #i2 normalize cases (•i2) // qed. - -lemma odot_false: - ∀S.∀i1,i2:pitem S. - 〈i1,false〉 ▹ i2 = 〈i1 · i2, false〉. -// qed. - -lemma LcatE : ∀S.∀e1,e2:pitem S. - \sem{e1 · e2} = \sem{e1} · \sem{|e2|} ∪ \sem{e2}. -// qed. - -lemma erase_bull : ∀S.∀i:pitem S. |\fst (•i)| = |i|. -#S #i elim i // - [ #i1 #i2 #IH1 #IH2 >erase_dot eclose_dot - cases (•i1) #i11 #b1 cases b1 // odot_true_bis // - | #i1 #i2 #IH1 #IH2 >eclose_plus >(erase_plus … i1) eclose_star >(erase_star … i) odot_false >sem_pre_false >sem_pre_false >sem_cat /2/ - |#H >odot_true >sem_pre_true @(eqP_trans … (sem_pre_concat_r …)) - >erase_bull @eqP_trans [|@(eqP_union_l … H)] - @eqP_trans [|@eqP_union_l[|@union_comm ]] - @eqP_trans [|@eqP_sym @union_assoc ] /3/ - ] -qed. - -lemma minus_eps_pre_aux: ∀S.∀e:pre S.∀i:pitem S.∀A. - \sem{e} =1 \sem{i} ∪ A → \sem{\fst e} =1 \sem{i} ∪ (A - {[ ]}). -#S #e #i #A #seme -@eqP_trans [|@minus_eps_pre] -@eqP_trans [||@eqP_union_r [|@eqP_sym @minus_eps_item]] -@eqP_trans [||@distribute_substract] -@eqP_substract_r // -qed. - -(* theorem 16: 1 *) -theorem sem_bull: ∀S:DeqSet. ∀i:pitem S. \sem{•i} =1 \sem{i} ∪ \sem{|i|}. -#S #e elim e - [#w normalize % [/2/ | * //] - |/2/ - |#x normalize #w % [ /2/ | * [@False_ind | //]] - |#x normalize #w % [ /2/ | * // ] - |#i1 #i2 #IH1 #IH2 >eclose_dot - @eqP_trans [|@odot_dot_aux //] >sem_cat - @eqP_trans - [|@eqP_union_r - [|@eqP_trans [|@(cat_ext_l … IH1)] @distr_cat_r]] - @eqP_trans [|@union_assoc] - @eqP_trans [||@eqP_sym @union_assoc] - @eqP_union_l // - |#i1 #i2 #IH1 #IH2 >eclose_plus - @eqP_trans [|@sem_oplus] >sem_plus >erase_plus - @eqP_trans [|@(eqP_union_l … IH2)] - @eqP_trans [|@eqP_sym @union_assoc] - @eqP_trans [||@union_assoc] @eqP_union_r - @eqP_trans [||@eqP_sym @union_assoc] - @eqP_trans [||@eqP_union_l [|@union_comm]] - @eqP_trans [||@union_assoc] /2/ - |#i #H >sem_pre_true >sem_star >erase_bull >sem_star - @eqP_trans [|@eqP_union_r [|@cat_ext_l [|@minus_eps_pre_aux //]]] - @eqP_trans [|@eqP_union_r [|@distr_cat_r]] - @eqP_trans [|@union_assoc] @eqP_union_l >erase_star - @eqP_sym @star_fix_eps - ] -qed. - -(* blank item *) -let rec blank (S: DeqSet) (i: re S) on i :pitem S ≝ - match i with - [ z ⇒ `∅ - | e ⇒ ϵ - | s y ⇒ `y - | o e1 e2 ⇒ (blank S e1) + (blank S e2) - | c e1 e2 ⇒ (blank S e1) · (blank S e2) - | k e ⇒ (blank S e)^* ]. - -lemma forget_blank: ∀S.∀e:re S.|blank S e| = e. -#S #e elim e normalize // -qed. - -lemma sem_blank: ∀S.∀e:re S.\sem{blank S e} =1 ∅. -#S #e elim e - [1,2:@eq_to_ex_eq // - |#s @eq_to_ex_eq // - |#e1 #e2 #Hind1 #Hind2 >sem_cat - @eqP_trans [||@(union_empty_r … ∅)] - @eqP_trans [|@eqP_union_l[|@Hind2]] @eqP_union_r - @eqP_trans [||@(cat_empty_l … ?)] @cat_ext_l @Hind1 - |#e1 #e2 #Hind1 #Hind2 >sem_plus - @eqP_trans [||@(union_empty_r … ∅)] - @eqP_trans [|@eqP_union_l[|@Hind2]] @eqP_union_r @Hind1 - |#e #Hind >sem_star - @eqP_trans [||@(cat_empty_l … ?)] @cat_ext_l @Hind - ] -qed. - -theorem re_embedding: ∀S.∀e:re S. - \sem{•(blank S e)} =1 \sem{e}. -#S #e @eqP_trans [|@sem_bull] >forget_blank -@eqP_trans [|@eqP_union_r [|@sem_blank]] -@eqP_trans [|@union_comm] @union_empty_r. -qed. - -(* lefted operations *) -definition lifted_cat ≝ λS:DeqSet.λe:pre S. - lift S (pre_concat_l S eclose e). - -notation "e1 ⊙ e2" left associative with precedence 70 for @{'odot $e1 $e2}. - -interpretation "lifted cat" 'odot e1 e2 = (lifted_cat ? e1 e2). - -lemma odot_true_b : ∀S.∀i1,i2:pitem S.∀b. - 〈i1,true〉 ⊙ 〈i2,b〉 = 〈i1 · (\fst (•i2)),\snd (•i2) ∨ b〉. -#S #i1 #i2 #b normalize in ⊢ (??%?); cases (•i2) // -qed. - -lemma odot_false_b : ∀S.∀i1,i2:pitem S.∀b. - 〈i1,false〉 ⊙ 〈i2,b〉 = 〈i1 · i2 ,b〉. -// -qed. - -lemma erase_odot:∀S.∀e1,e2:pre S. - |\fst (e1 ⊙ e2)| = |\fst e1| · (|\fst e2|). -#S * #i1 * * #i2 #b2 // >odot_true_b >erase_dot // -qed. - -definition lk ≝ λS:DeqSet.λe:pre S. - match e with - [ mk_Prod i1 b1 ⇒ - match b1 with - [true ⇒ 〈(\fst (eclose ? i1))^*, true〉 - |false ⇒ 〈i1^*,false〉 - ] - ]. - -(* notation < "a \sup ⊛" non associative with precedence 90 for @{'lk $a}.*) -interpretation "lk" 'lk a = (lk ? a). -notation "a^⊛" non associative with precedence 90 for @{'lk $a}. - - -lemma ostar_true: ∀S.∀i:pitem S. - 〈i,true〉^⊛ = 〈(\fst (•i))^*, true〉. -// qed. - -lemma ostar_false: ∀S.∀i:pitem S. - 〈i,false〉^⊛ = 〈i^*, false〉. -// qed. - -lemma erase_ostar: ∀S.∀e:pre S. - |\fst (e^⊛)| = |\fst e|^*. -#S * #i * // qed. - -lemma sem_odot_true: ∀S:DeqSet.∀e1:pre S.∀i. - \sem{e1 ⊙ 〈i,true〉} =1 \sem{e1 ▹ i} ∪ { [ ] }. -#S #e1 #i -cut (e1 ⊙ 〈i,true〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ true〉) [//] -#H >H cases (e1 ▹ i) #i1 #b1 cases b1 - [>sem_pre_true @eqP_trans [||@eqP_sym @union_assoc] - @eqP_union_l /2/ - |/2/ - ] -qed. - -lemma eq_odot_false: ∀S:DeqSet.∀e1:pre S.∀i. - e1 ⊙ 〈i,false〉 = e1 ▹ i. -#S #e1 #i -cut (e1 ⊙ 〈i,false〉 = 〈\fst (e1 ▹ i), \snd(e1 ▹ i) ∨ false〉) [//] -cases (e1 ▹ i) #i1 #b1 cases b1 #H @H -qed. - -lemma sem_odot: - ∀S.∀e1,e2: pre S. \sem{e1 ⊙ e2} =1 \sem{e1}· \sem{|\fst e2|} ∪ \sem{e2}. -#S #e1 * #i2 * - [>sem_pre_true - @eqP_trans [|@sem_odot_true] - @eqP_trans [||@union_assoc] @eqP_union_r @odot_dot_aux // - |>sem_pre_false >eq_odot_false @odot_dot_aux // - ] -qed. - -(* theorem 16: 4 *) -theorem sem_ostar: ∀S.∀e:pre S. - \sem{e^⊛} =1 \sem{e} · \sem{|\fst e|}^*. -#S * #i #b cases b - [>sem_pre_true >sem_pre_true >sem_star >erase_bull - @eqP_trans [|@eqP_union_r[|@cat_ext_l [|@minus_eps_pre_aux //]]] - @eqP_trans [|@eqP_union_r [|@distr_cat_r]] - @eqP_trans [||@eqP_sym @distr_cat_r] - @eqP_trans [|@union_assoc] @eqP_union_l - @eqP_trans [||@eqP_sym @epsilon_cat_l] @eqP_sym @star_fix_eps - |>sem_pre_false >sem_pre_false >sem_star /2/ - ] -qed. \ No newline at end of file