+qed.
+
+axiom daemon: False.
+
+lemma o_continuous_relation_of_continuous_relation_morphism :
+ ∀S,T:category2_of_category1 BTop.
+ unary_morphism2 (arrows2 (category2_of_category1 BTop) S T)
+ (arrows2 OBTop (o_basic_topology_of_basic_topology S) (o_basic_topology_of_basic_topology T)).
+intros (S T);
+ constructor 1;
+ [ apply (o_continuous_relation_of_continuous_relation S T);
+ | cases daemon (*apply (o_relation_pair_of_relation_pair_is_morphism S T)*)]
+qed.
+
+definition BTop_to_OBTop: carr3 (arrows3 CAT2 (category2_of_category1 BTop) OBTop).
+ constructor 1;
+ [ apply o_basic_topology_of_basic_topology;
+ | intros; apply o_continuous_relation_of_continuous_relation_morphism;
+ | cases daemon (*apply o_relation_topology_of_relation_topology_morphism_respects_id*);
+ | cases daemon (*apply o_relation_topology_of_relation_topology_morphism_respects_comp*);]
+qed.
+
+(*
+alias symbol "eq" (instance 2) = "setoid1 eq".
+alias symbol "eq" (instance 1) = "setoid2 eq".
+theorem BTop_to_OBTop_faithful:
+ ∀S,T.∀f,g:arrows2 (category2_of_category1 BTop) S T.
+ map_arrows2 ?? BTop_to_OBTop ?? f = map_arrows2 ?? BTop_to_OBTop ?? g → f=g.
+ intros; change with (∀b.A ? (ext ?? f b) = A ? (ext ?? g b));
+ apply (POW_faithful);
+ apply (.= respects_comp2 ?? POW (concr S) (concr T) (form T) f \sub \c (⊩ \sub T));
+ apply sym2;
+ apply (.= respects_comp2 ?? POW (concr S) (concr T) (form T) g \sub \c (⊩ \sub T));
+ apply sym2;
+ apply e;
+qed.
+*)
+
+include "notation.ma".
+
+theorem BTop_to_OBTop_full:
+ ∀S,T.∀f. exT22 ? (λg. map_arrows2 ?? BTop_to_OBTop S T g = f).
+ intros;
+ cases (POW_full (carrbt S) (carrbt T) (Ocont_rel ?? f)) (g Hg);
+ exists[
+ constructor 1;
+ [ apply g
+ | apply hide; intros; lapply (Oreduced ?? f ? e);
+ cases Hg; lapply (e3 U) as K; apply (.= K);
+ apply (.= Hletin); apply rule (†(K^-1));
+ | apply hide; intros; lapply (Osaturated ?? f ? e);
+ cases Hg; lapply (e1 U) as K; apply (.= K);
+ apply (.= Hletin); apply rule (†(K^-1));
+ ]
+ | simplify; unfold BTop_to_OBTop; simplify;
+ unfold o_continuous_relation_of_continuous_relation_morphism; simplify;
+ cases Hg; whd; simplify; intro;