/3 width=4 by lfxs_sort, tc_lfxs_step_dx, inj/
qed.
-lemma tc_lfxs_zero: ∀R. (∀L. reflexive … (R L)) →
+lemma tc_lfxs_pair: ∀R. (∀L. reflexive … (R L)) →
∀I,L1,L2,V. L1 ⪤**[R, V] L2 →
L1.ⓑ{I}V ⪤**[R, #0] L2.ⓑ{I}V.
#R #HR #I #L1 #L2 #V #H elim H -L2
-/3 width=5 by lfxs_zero, tc_lfxs_step_dx, inj/
+/3 width=5 by lfxs_pair, tc_lfxs_step_dx, inj/
qed.
+lemma tc_lfxs_unit: ∀R,f,I,L1,L2. 𝐈⦃f⦄ → L1 ⪤*[cext2 R, cfull, f] L2 →
+ L1.ⓤ{I} ⪤**[R, #0] L2.ⓤ{I}.
+/3 width=3 by lfxs_unit, inj/ qed.
+
lemma tc_lfxs_lref: ∀R,I,L1,L2,V1,V2,i.
L1 ⪤**[R, #i] L2 → L1.ⓑ{I}V1 ⪤**[R, #⫯i] L2.ⓑ{I}V2.
#R #I #L1 #L2 #V1 #V2 #i #H elim H -L2
/3 width=4 by lfxs_gref, tc_lfxs_step_dx, inj/
qed.
-lemma tc_lfxs_sym: ∀R. lexs_frees_confluent R cfull →
+lemma tc_lfxs_sym: ∀R. lexs_frees_confluent (cext2 R) cfull →
(∀L1,L2,T1,T2. R L1 T1 T2 → R L2 T2 T1) →
∀T. symmetric … (tc_lfxs R T).
#R #H1R #H2R #T #L1 #L2 #H elim H -L2
qed-.
lemma tc_lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⪤**[R, ⋆s] Y2 →
- (Y1 = ⋆ ∧ Y2 = ⋆) ∨
- ∃∃I,L1,L2,V1,V2. L1 ⪤**[R, ⋆s] L2 &
- Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+ ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
+ | ∃∃I1,I2,L1,L2. L1 ⪤**[R, ⋆s] L2 &
+ Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
#R #Y1 #Y2 #s #H elim H -Y2
[ #Y2 #H elim (lfxs_inv_sort … H) -H *
- /4 width=8 by ex3_5_intro, inj, or_introl, or_intror, conj/
+ /4 width=8 by ex3_4_intro, inj, or_introl, or_intror, conj/
| #Y #Y2 #_ #H elim (lfxs_inv_sort … H) -H *
- [ #H #H2 * * /3 width=8 by ex3_5_intro, or_introl, or_intror, conj/
- | #I #L #L2 #V #V2 #HL2 #H #H2 * *
+ [ #H #H2 * * /3 width=7 by ex3_4_intro, or_introl, or_intror, conj/
+ | #I #I2 #L #L2 #HL2 #H #H2 * *
[ #H1 #H0 destruct
- | #I0 #L1 #L0 #V1 #V0 #HL10 #H1 #H0 destruct
- /4 width=8 by ex3_5_intro, tc_lfxs_step_dx, or_intror/
+ | #I1 #I0 #L1 #L0 #HL10 #H1 #H0 destruct
+ /4 width=7 by ex3_4_intro, tc_lfxs_step_dx, or_intror/
]
]
]
qed-.
lemma tc_lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⪤**[R, §l] Y2 →
- (Y1 = ⋆ ∧ Y2 = ⋆) ∨
- ∃∃I,L1,L2,V1,V2. L1 ⪤**[R, §l] L2 &
- Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+ ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
+ | ∃∃I1,I2,L1,L2. L1 ⪤**[R, §l] L2 &
+ Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
#R #Y1 #Y2 #l #H elim H -Y2
[ #Y2 #H elim (lfxs_inv_gref … H) -H *
- /4 width=8 by ex3_5_intro, inj, or_introl, or_intror, conj/
+ /4 width=8 by ex3_4_intro, inj, or_introl, or_intror, conj/
| #Y #Y2 #_ #H elim (lfxs_inv_gref … H) -H *
- [ #H #H2 * * /3 width=8 by ex3_5_intro, or_introl, or_intror, conj/
- | #I #L #L2 #V #V2 #HL2 #H #H2 * *
+ [ #H #H2 * * /3 width=7 by ex3_4_intro, or_introl, or_intror, conj/
+ | #I #I2 #L #L2 #HL2 #H #H2 * *
[ #H1 #H0 destruct
- | #I0 #L1 #L0 #V1 #V0 #HL10 #H1 #H0 destruct
- /4 width=8 by ex3_5_intro, tc_lfxs_step_dx, or_intror/
+ | #I1 #I0 #L1 #L0 #HL10 #H1 #H0 destruct
+ /4 width=7 by ex3_4_intro, tc_lfxs_step_dx, or_intror/
]
]
]
(* Advanced inversion lemmas ************************************************)
-lemma tc_lfxs_inv_sort_pair_sn: ∀R,I,Y2,L1,V1,s. L1.ⓑ{I}V1 ⪤**[R, ⋆s] Y2 →
- ∃∃L2,V2. L1 ⪤**[R, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
-#R #I #Y2 #L1 #V1 #s #H elim (tc_lfxs_inv_sort … H) -H *
+lemma tc_lfxs_inv_sort_bind_sn: ∀R,I1,Y2,L1,s. L1.ⓘ{I1} ⪤**[R, ⋆s] Y2 →
+ ∃∃I2,L2. L1 ⪤**[R, ⋆s] L2 & Y2 = L2.ⓘ{I2}.
+#R #I1 #Y2 #L1 #s #H elim (tc_lfxs_inv_sort … H) -H *
[ #H destruct
-| #J #Y1 #L2 #X1 #V2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
+| #Z #I2 #Y1 #L2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
]
qed-.
-lemma tc_lfxs_inv_sort_pair_dx: ∀R,I,Y1,L2,V2,s. Y1 ⪤**[R, ⋆s] L2.ⓑ{I}V2 →
- ∃∃L1,V1. L1 ⪤**[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
-#R #I #Y1 #L2 #V2 #s #H elim (tc_lfxs_inv_sort … H) -H *
+lemma tc_lfxs_inv_sort_bind_dx: ∀R,I2,Y1,L2,s. Y1 ⪤**[R, ⋆s] L2.ⓘ{I2} →
+ ∃∃I1,L1. L1 ⪤**[R, ⋆s] L2 & Y1 = L1.ⓘ{I1}.
+#R #I2 #Y1 #L2 #s #H elim (tc_lfxs_inv_sort … H) -H *
[ #_ #H destruct
-| #J #L1 #Y2 #V1 #X2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
+| #I1 #Z #L1 #Y2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
]
qed-.
-lemma tc_lfxs_inv_gref_pair_sn: ∀R,I,Y2,L1,V1,l. L1.ⓑ{I}V1 ⪤**[R, §l] Y2 →
- ∃∃L2,V2. L1 ⪤**[R, §l] L2 & Y2 = L2.ⓑ{I}V2.
-#R #I #Y2 #L1 #V1 #l #H elim (tc_lfxs_inv_gref … H) -H *
+lemma tc_lfxs_inv_gref_bind_sn: ∀R,I1,Y2,L1,l. L1.ⓘ{I1} ⪤**[R, §l] Y2 →
+ ∃∃I2,L2. L1 ⪤**[R, §l] L2 & Y2 = L2.ⓘ{I2}.
+#R #I1 #Y2 #L1 #l #H elim (tc_lfxs_inv_gref … H) -H *
[ #H destruct
-| #J #Y1 #L2 #X1 #V2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
+| #Z #I2 #Y1 #L2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
]
qed-.
-lemma tc_lfxs_inv_gref_pair_dx: ∀R,I,Y1,L2,V2,l. Y1 ⪤**[R, §l] L2.ⓑ{I}V2 →
- ∃∃L1,V1. L1 ⪤**[R, §l] L2 & Y1 = L1.ⓑ{I}V1.
-#R #I #Y1 #L2 #V2 #l #H elim (tc_lfxs_inv_gref … H) -H *
+lemma tc_lfxs_inv_gref_bind_dx: ∀R,I2,Y1,L2,l. Y1 ⪤**[R, §l] L2.ⓘ{I2} →
+ ∃∃I1,L1. L1 ⪤**[R, §l] L2 & Y1 = L1.ⓘ{I1}.
+#R #I2 #Y1 #L2 #l #H elim (tc_lfxs_inv_gref … H) -H *
[ #_ #H destruct
-| #J #L1 #Y2 #V1 #X2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
+| #I1 #Z #L1 #Y2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
]
qed-.