record function_space (A,B: setoid): Type ≝
{ f:1> A → B;
- f_ok: ∀a,a':A. eq ? a a' → eq ? (f a) (f a')
+ f_ok: ∀a,a':A. proofs (eq ? a a') → proofs (eq ? (f a) (f a'))
}.
notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }.
interpretation "function_space" 'Imply a b = (function_space a b).
-record function_space1 (A: setoid) (B: setoid1): Type ≝
+record function_space1 (A: setoid1) (B: setoid1): Type ≝
{ f1:1> A → B;
- f1_ok: ∀a,a':A. eq ? a a' → eq1 ? (f1 a) (f1 a')
+ f1_ok: ∀a,a':A. proofs (eq1 ? a a') → proofs (eq1 ? (f1 a) (f1 a'))
}.
definition function_space_setoid: setoid → setoid → setoid.
constructor 1;
[ apply (A ⇒ B);
| intros;
- apply (∀a:A. eq ? (f a) (f1 a));
+ apply (∀a:A. proofs (eq ? (f a) (f1 a)));
| simplify;
intros;
apply (f_ok ? ? x);
+ unfold carr; unfold proofs; simplify;
apply (refl A)
| simplify;
intros;
+ unfold carr; unfold proofs; simplify;
apply (sym B);
- apply (H a)
+ apply (f a)
| simplify;
intros;
+ unfold carr; unfold proofs; simplify;
apply (trans B ? (y a));
- [ apply (H a)
- | apply (H1 a)]]
+ [ apply (f a)
+ | apply (f1 a)]]
qed.
interpretation "function_space_setoid" 'Imply a b = (function_space_setoid a b).
+definition function_space_setoid1: setoid1 → setoid1 → setoid.
+ intros (A B);
+ constructor 1;
+ [ apply (function_space1 A B);
+ | intros;
+ apply (∀a:A. proofs (eq1 ? (f a) (f1 a)));
+ | simplify;
+ intros;
+ apply (f1_ok ? ? x);
+ unfold proofs; simplify;
+ apply (refl1 A)
+ | simplify;
+ intros;
+ unfold proofs; simplify;
+ apply (sym1 B);
+ apply (f a)
+ | simplify;
+ intros;
+ unfold carr; unfold proofs; simplify;
+ apply (trans1 B ? (y a));
+ [ apply (f a)
+ | apply (f1 a)]]
+qed.
+
record isomorphism (A,B: setoid): Type ≝
{ map1:> A ⇒ B;
map2:> B ⇒ A;
- inv1: ∀a:A. eq ? (map2 (map1 a)) a;
- inv2: ∀b:B. eq ? (map1 (map2 b)) b
+ inv1: ∀a:A. proofs (eq ? (map2 (map1 a)) a);
+ inv2: ∀b:B. proofs (eq ? (map1 (map2 b)) b)
}.
interpretation "isomorphism" 'iff x y = (isomorphism x y).
|3,4:
intros;
simplify;
+ unfold carr; unfold proofs; simplify;
apply refl;]
|*: elim daemon]
qed.
-record dependent_product (A:setoid) (B: function_space1 A setoids): Type ≝
+definition setoid1_of_setoid: setoid → setoid1.
+ intro;
+ constructor 1;
+ [ apply (carr s)
+ | apply (eq s)
+ | apply (refl s)
+ | apply (sym s)
+ | apply (trans s)
+ ]
+qed.
+
+coercion setoid1_of_setoid.
+
+(*
+record dependent_product (A:setoid1) (B: function_space1 A setoids): Type ≝
{ dp:> ∀a:A.carr (B a);
- dp_ok: ∀a,a':A. ∀p:eq ? a a'. eq ? (dp a) (map2 ?? (f1_ok ?? B ?? p) (dp a'))
+ dp_ok: ∀a,a':A. ∀p:proofs (eq1 ? a a'). proofs (eq1 ? (dp a) (map2 ?? (f1_ok A ? B ?? p) (dp a')))
}.
+*)
-record forall (A:setoid) (B: function_space1 A CCProp): Type ≝
+record forall (A:setoid) (B: function_space1 A CCProp): CProp ≝
{ fo:> ∀a:A.proofs (B a)
}.
-record subset (A: setoid) : Type ≝
+record subset (A: setoid) : CProp ≝
{ mem: function_space1 A CCProp
}.
-
-definition subset_eq ≝ λA:setoid.λU,V: subset A. ∀a:A. mem ? U a \liff mem ? V a.
-lemma mem_ok:
- ∀A:setoid.∀a,a':A.∀U,V: subset A.
- eq ? a a' → subset_eq ? U V → mem ? U a \liff mem ? V a'.
- intros;
- cases (H1 a);
- split; intro H4;
- [ lapply (H2 H4); clear H2 H3 H4;
- apply (if ?? (f1_ok ?? (mem ? V) ?? H));
+definition ssubset: setoid → setoid1.
+ intro;
+ constructor 1;
+ [ apply (subset s);
+ | apply (λU,V:subset s. ∀a. mem ? U a \liff mem ? V a)
+ | simplify;
+ intros;
+ split;
+ intro;
assumption
- | apply H3; clear H2 H3;
- apply (fi ?? (f1_ok ?? (mem ? V) ?? H));
- apply H4;]
+ | simplify;
+ elim daemon
+ | elim daemon]
qed.
-
+
+definition mmem: ∀A:setoid. function_space_setoid1 (ssubset A) (function_space_setoid1 A CCProp).
+ intros;
+ constructor 1;
+ [ apply mem;
+ | unfold function_space_setoid1; simplify;
+ intros (b b');
+ change in ⊢ (? (? (?→? (? %)))) with (mem ? b a \liff mem ? b' a);
+ unfold proofs; simplify; intros;
+ unfold proofs in c; simplify in c;
+ unfold ssubset in c; simplify in c;
+ cases (c a); clear c;
+ split;
+ assumption]
+qed.
\ No newline at end of file