>(commutative_plus p) <plus_minus_m_m //
qed.
+lemma le_plus_minus: ∀a,b,c. c ≤ b → a + b - c = a + (b - c).
+/2/ qed.
+
lemma minus_le_minus_minus_comm: ∀m,p,n.
p ≤ m → m - p ≤ n → n + p - m = n - (m - p).
#m elim m -m
]
qed.
-axiom drop_trans_ge: ∀d1,e1,L1,L. ↑[d1, e1] L ≡ L1 →
+lemma drop_trans_ge: ∀d1,e1,L1,L. ↑[d1, e1] L ≡ L1 →
∀e2,L2. ↑[0, e2] L2 ≡ L → d1 ≤ e2 → ↑[0, e1 + e2] L2 ≡ L1.
+#d1 #e1 #L1 #L #H elim H -H d1 e1 L1 L
+[ //
+| /3/
+| #L1 #L2 #I #V1 #V2 #d #e #H_ #_ #IHL12 #e2 #L #H #Hde2
+ lapply (lt_to_le_to_lt 0 … Hde2) // #He2
+ lapply (lt_to_le_to_lt … (e + e2) He2 ?) // #Hee2
+ lapply (drop_inv_drop1 … H ?) -H // #HL2
+ @drop_drop_lt // >le_plus_minus // @IHL12 /2/ (**) (* explicit constructor *)
+]
+qed.
+
+axiom drop_div: ∀e1,L1. ∀L:lenv. ↑[0, e1] L ≡ L1 → ∀e2,L2. ↑[0, e2] L ≡ L2 →
+ ∃∃L0. ↑[0, e1] L2 ≡ L0 & ↑[e1, e2] L1 ≡ L0.