let rec aux = function
| `N _ -> 0
| `Var(_,ar) -> if ar = min_int then 0 else max 0 ar (*assert (ar >= 0); ar*)
- | `Lam(_,t) -> aux t
+ | `Lam(_,t,g) -> assert (g = []); aux t
| `I(v,args) -> aux (`Var v) + aux_many (Listx.to_list args :> nf list)
| `Match(u,(_,ar),_,_,args) -> aux (u :> nf) + (if ar <= 0 then 0 else ar - 1) + aux_many args
and aux_many tms = List.fold_right ((+) ++ aux) tms 0 in
let rec aux = function
| `N _ -> 0
| `Var(_,ar) -> if ar = min_int then 1 else 0
- | `Lam(_,t) -> aux t
+ | `Lam(_,t,g) -> assert (g = []); aux t
| `I(v,args) -> aux (`Var v) + aux_many (Listx.to_list args)
| `Match(u,v,_,_,args) -> aux (u :> nf) + aux (`Var v) + aux_many args
and aux_many tms = List.fold_right ((+) ++ aux) tms 0 in
let simple_expand_match ps =
let rec aux level = function
| #i_num_var as t -> (aux_i_num_var level t :> nf)
- | `Lam(b,t) -> `Lam(b,aux (level+1) t)
+ | `Lam(b,t,g) -> assert (g = []); `Lam(b,aux (level+1) t,[])
and aux_i_num_var level = function
| `Match(u,v,bs_lift,bs,args) as torig ->
let (u : i_num_var) = aux_i_num_var level u in
let args = Listx.from_list (vars :> nf list) in
let bs = ref [] in
(* 666, since it will be replaced anyway during subst: *)
- let inst = `Lam(false,`Match(`I((0,min_int),Listx.map (lift 1) args),(x,-666),1,bs,[])) in
+ let inst = `Lam(false,`Match(`I((0,min_int),Listx.map (lift 1) args),(x,-666),1,bs,[]),[]) in
let p = {p with deltas=bs::p.deltas} in
subst_in_problem x inst p
;;
let compute_special_k tms =
let rec aux k (t: nf) = Pervasives.max k (match t with
- | `Lam(b,t) -> aux (k + if b then 1 else 0) t
+ | `Lam(b,t,g) -> assert (g = []); aux (k + if b then 1 else 0) t
| `I(n, tms) -> Listx.max (Listx.map (aux 0) tms)
| `Match(t, _, liftno, bs, args) ->
List.fold_left max 0 (List.map (aux 0) ((t :> nf)::args@List.map snd !bs))
| `Var _ -> 0
) in
let rec aux' top t = match t with
- | `Lam(_,t) -> aux' false t
+ | `Lam(_,t,g) -> assert (g = []); aux' false t
| `I((_,ar), tms) -> max ar
(Listx.max (Listx.map (aux' false) (tms :> nf Listx.listx)))
| `Match(t, _, liftno, bs, args) ->
| `N n -> `N (List.nth perm n)
| `I _ -> assert false
| `Var _ as t -> t
- | `Lam(v,t) -> `Lam(v, aux t)
+ | `Lam(v,t,g) -> assert (g = []); `Lam(v, aux t,[])
| `Match(_,_,_,bs,_) as t -> (bs := List.map (fun (n,t) -> (List.nth perm n, t)) !bs); t
in List.map (fun (n,t) -> (n,aux t))
in
| 'nf i_n_var_
| `Match of 'nf i_num_var_ * (* originating var *) var * (*lift*) int * (*branches*)(int * 'nf) list ref * (*args*)'nf list
]
-type 'nf nf_ = [ `Lam of (* was_unpacked *) bool * 'nf nf_ | 'nf i_num_var_ ]
+type 'nf nf_ = [ `Lam of (* was_unpacked *) bool * 'nf nf_ * ('nf nf_) list | 'nf i_num_var_ ]
type nf = nf nf_
type i_var = nf i_var_;;
type i_n_var = nf i_n_var_;;
and aux l =
function
#i_num_var as x -> (aux_i_num_var l x :> nf)
- | `Lam(b,nf) -> `Lam (b, aux (l+1) nf)
+ | `Lam(b,nf,g) -> `Lam (b, aux (l+1) nf, List.map (aux (l+1)) g)
in
(aux 0 t : nf)
;;
let rec make_lams t =
function
0 -> t
- | n when n > 0 -> `Lam (false, lift 1 (make_lams t (n-1)))
+ | n when n > 0 -> `Lam (false, lift 1 (make_lams t (n-1)), [])
| _ -> assert false
let free_vars' =
| `I((x,ar),args) ->
(if x < n then [] else [(x-n,ar)]) @
List.concat (List.map (aux n) (Listx.to_list args))
- | `Lam(_,t) -> aux (n+1) t
+ | `Lam(_,t,g) -> List.concat (List.map (aux (n+1)) (t::g))
| `Match(t,_,liftno,bs,args) ->
aux n (t :> nf) @
List.concat (List.map (fun (_,t) -> aux (n-liftno) t) !bs) @
and t_of_nf =
function
| #i_num_var as x -> t_of_i_num_var x
- | `Lam(b,f) -> Pure.L (t_of_nf f)
+ | `Lam(b,f,g) ->
+ let t = t_of_nf (lift (List.length g) f) in
+ let t = List.fold_left (fun t g -> Pure.A(Pure.L t, t_of_nf g)) t g in
+ Pure.L t
end
| `I((n,ar), args) -> varname lev l n ^ (if debug_display_arities then ":" ^ string_of_int ar else "") ^ " " ^ String.concat " " (List.map (string_of_term_w_pars lev l) (Listx.to_list args :> nf list))
| #nf as t -> string_of_term_w_pars lev l t
and string_of_term_no_pars_lam lev l = function
- | `Lam(_,t) -> "λ" ^ boundvar lev ^ ". " ^ (string_of_term_no_pars_lam (lev+1) l t)
+ | `Lam(_,t,g) -> "λ" ^ boundvar lev ^ ". " ^ (string_of_term_no_pars_lam (lev+1) l t)
+ ^ (if g = [] then "" else String.concat ", " ("" :: List.map (string_of_term_no_pars (lev+1) l) g))
| _ as t -> string_of_term_no_pars lev l t
and string_of_term_no_pars lev l = function
| `Lam _ as t -> string_of_term_no_pars_lam lev l t
(* FIXME because onlt variables should be in branches of matches, one day *)
| `Var(n,_) -> `Var(n,arity)
| `N _ as t -> t
-| `Lam(false, t) -> `Lam(false, set_arity arity t)
+| `Lam(false, t, []) -> `Lam(false, set_arity arity t, [])
| `Match(t,(n,_),bs_lift,bs,args) -> `Match(t,(n,arity),bs_lift,bs,args)
| `I _ | `Lam _ -> assert false
match h with
`I(v,args) -> `I(v,Listx.append (Listx.Nil arg) args)
| `Var v -> `I(v, Listx.Nil arg)
- | `Lam(truelam,nf) -> subst truelam true 0 arg (nf : nf) (* AC FIXME sanity check on arity *)
+ | `Lam(truelam,nf,g) -> assert (g = []); subst truelam true 0 arg (nf : nf) (* AC FIXME sanity check on arity *)
| `Match(t,v,lift,bs,args) -> `Match(t,v,lift,bs,List.append args [arg])
| `N _ -> assert false (* Numbers cannot be applied *)
(*in let l = ["v0";"v1";"v2"] in
and subst truelam delift_by_one what (with_what : nf) (where : nf) =
let rec aux_propagate_arity ar = function
- | `Lam(false, t) when not delift_by_one -> `Lam(false, aux_propagate_arity ar t)
+ | `Lam(false,t,g) when not delift_by_one -> assert (g = []); `Lam(false,aux_propagate_arity ar t,[])
| `Match(`I(v,args),(x,_),liftno,bs,args') when not delift_by_one ->
`Match(`I(v,args),(x,ar),liftno,bs,args')
| `Var(i,oldar) -> `Var(i, if truelam then (assert (oldar = min_int); ar) else oldar)
(*function iii -> let res = match iii with*)
function
| #i_num_var as x -> aux_i_num_var l x
- | `Lam(b, nf) -> `Lam(b, aux (l+1) nf)
+ | `Lam(b, nf, g) -> `Lam(b, aux (l+1) nf, List.map (aux (l+1)) g)
(*in let ll = ["v0";"v1";"v2"] in
prerr_endline ("subst l:" ^ string_of_int l ^ " delift_by_one:" ^ string_of_bool delift_by_one ^ " what:" ^ (List.nth ll what) ^ " with_what:" ^ print ~l:ll with_what ^ " where:" ^ print ~l:ll iii ^ " res:" ^ print ~l:ll res); res*)
in
clex compare (lex aux) (n1, Listx.to_list l1) (n2, Listx.to_list l2)
| `Lam _, `N _ -> -1
| `N _, `Lam _ -> 1
- | `Lam(_,t1), `Lam(_,t2) -> aux t1 t2
- | `Lam(_,t1), t2 -> - aux t1 (mk_app (lift 1 t2) (`Var(0,-666)))
- | t2, `Lam(_,t1) -> aux t1 (mk_app (lift 1 t2) (`Var(0,-666)))
+ | `Lam(_,t1,_), `Lam(_,t2,_) -> aux t1 t2
+ | `Lam(_,t1,_), t2 -> - aux t1 (mk_app (lift 1 t2) (`Var(0,-666)))
+ | t2, `Lam(_,t1,_) -> aux t1 (mk_app (lift 1 t2) (`Var(0,-666)))
| `N n1, `N n2 -> compare n1 n2
| `Match(u,_,bs_lift,bs,args), `Match(u',_,bs_lift',bs',args') ->
let bs = List.sort (fun (n,_) (m,_) -> compare n m) !bs in
let rec eta_subterm sub t =
if eta_eq sub t then true else
match t with
- | `Lam(_,t') -> eta_subterm (lift 1 sub) t'
+ | `Lam(_,t,g) -> List.exists (eta_subterm (lift 1 sub)) (t::g)
| `Match(u,ar,liftno,bs,args) ->
eta_subterm sub (u :> nf)
|| List.exists (fun (_, t) -> eta_subterm sub (lift liftno t)) !bs
let rec aux l = function
| `Var v -> aux_var l v
| `I(v,tms) -> max (aux_var l v) (aux_tms l (Listx.to_list tms))
- | `Lam(_,t) -> aux (l+1) t
+ | `Lam(_,t, g) -> List.fold_left (fun n t -> max n (aux (l+1) t)) None (t::g)
| `Match(u,_,_,bs,args) -> max (max (aux l (u :> nf)) (aux_tms l args)) (aux_tms l (List.map snd !bs))
| `N _ -> None
and aux_tms l =
let get_first_args var =
let rec aux l = function
-| `Lam(_,t) -> aux (l+1) t
+| `Lam(_,t,_) -> aux (l+1) t
| `Match(u,orig,liftno,bs,args) -> Util.concat_map (aux l) args
| `I((n,_), args) -> if n = var + l then [Listx.last args] else []
| `N _
if n = 0
then []
else
- let tms = Util.filter_map (function `Lam(_,t) -> Some t | _ -> None ) tms in
+ let tms = Util.filter_map (function `Lam(_,t,_) -> Some t | _ -> None ) tms in
let arity = match max_arity_tms (m-n) tms with None -> -666 | Some x -> x in
arity :: (aux (n-1) tms)
in fun tms -> List.rev (aux m tms)
| `Var of var ]
type 'nf nf_ =
[ `I of var * 'nf Listx.listx
- | `Lam of bool * 'nf nf_
+ | `Lam of bool * 'nf nf_ * ('nf nf_) list
| `Match of 'nf i_num_var_ * var * int * (int * 'nf) list ref * 'nf list
| `N of int
| `Var of var ]
exception ParsingError of string;;\r
\r
let mk_app x y = Num.mk_app x y;;\r
-let mk_lam x = `Lam(true, x);;\r
+let mk_lam x g = `Lam(true, x, g);;\r
let mk_var x = `Var(x, -666);;\r
\r
let isAlphaNum c = let n = Char.code c in\r
| Some x, cs -> match strip_spaces cs with\r
| [] -> false\r
| c::_ -> c = '.'\r
+ in let rec read_garbage (bound, free) = function\r
+ | ',' :: cs ->\r
+ (match read_smt (bound,free) cs with\r
+ | Some [x], cs, (_, free) ->\r
+ let g, cs, free = read_garbage (bound,free) cs in x::g, cs, free\r
+ | _, _, _ -> raise (ParsingError "Garbage expected after ','"))\r
+ | cs -> [], cs, free\r
in let read_lambda (bound, free) cs = (\r
match read_var (strip_spaces cs) with\r
| Some varname, cs ->\r
- let vars' = (varname::bound, free) in\r
+ let bound' = varname::bound in\r
(match strip_spaces cs with\r
| [] -> raise (ParsingError "Lambda expression incomplete")\r
- | c::cs -> (if c = '.' then (match read_smt vars' cs with\r
+ | '.' :: cs -> (match read_smt (bound', free) cs with\r
| None, _, _ -> raise (ParsingError "Lambda body expected")\r
- | Some [x], y, (_, free) -> Some [mk_lam x], y, (bound, free)\r
+ | Some [t], cs, (_, free) ->\r
+ let g, cs, free = read_garbage (bound', free) (strip_spaces cs) in\r
+ Some [mk_lam t g], cs, (bound, free)\r
| Some _, _, _ -> assert false\r
- ) else raise (ParsingError "Expected `.` after variable in lambda")\r
- ))\r
+ )\r
+ | _::_ -> raise (ParsingError "Expected `.` after variable in lambda"))\r
| _, _ -> assert false\r
) in let rec aux vars cs =\r
match strip_spaces cs with\r
| c::_ as x ->\r
let tms, cs, vars = (\r
if c = '(' then read_pars vars x\r
- else if c = ')' then (None, x, vars)\r
+ else if c = ')' || c = ',' then (None, x, vars)\r
else if check_if_lambda x then read_lambda vars x\r
else read_var' vars x) in\r
match tms with\r
let rec aux lev : nf -> nf = function\r
| `I((n,_), args) -> `I((n,(if lev = 0 then 0 else 1) + Listx.length args), Listx.map (aux lev) args)\r
| `Var(n,_) -> fix lev n\r
- | `Lam(_,t) -> `Lam (true, aux (lev+1) t)\r
+ | `Lam(_,t,g) -> `Lam (true, aux (lev+1) t, List.map (aux (lev+1)) g)\r
| `Match _ | `N _ -> assert false in\r
let all_tms = List.map (aux 0) (tms :> Num.nf list) in\r
\r
--- /dev/null
+$? check for eta_subterms in garbage\r
+D x a\r
+C x (y. y , x a)\r
+\r
+$! garbage may be `dangerous`\r
+D x @\r
+C @ (y. y, x @, x @)\r
let problem_of (label, div, convs, ps, var_names) =\r
print_hline ();\r
let rec aux lev = function\r
- | `Lam(_, t) -> L (aux (lev+1) t, [])\r
+ | `Lam(_, t, g) -> L (aux (lev+1) t, List.map (aux (lev+1)) g)\r
| `I (v, args) -> Listx.fold_left (fun x y -> fst (mk_app x (aux lev y))) (aux lev (`Var v)) args\r
| `Var(v,_) -> if v >= lev && List.nth var_names (v-lev) = "C" then C else V v\r
| `N _ | `Match _ -> assert false in\r