-include "cahpter9.ma".
+(*
+\ 5h1\ 6Equivalence\ 5/h1\ 6*)
-(* bisimulation *)
-definition cofinal ≝ λS.λp:(pre S)×(pre S).
- \snd (\fst p) = \snd (\snd p).
-
-theorem equiv_sem: ∀S:DeqSet.∀e1,e2:pre S.
- \sem{e1} =1 \sem{e2} ↔ ∀w.cofinal ? 〈moves ? w e1,moves ? w e2〉.
+include "tutorial/chapter9.ma".
+
+(* We say that two pres \langle i_1,b_1\rangle$ and
+$\langle i_1,b_1\rangle$ are {\em cofinal} if and only if
+$b_1 = b_2$. *)
+
+definition cofinal ≝ λS.λp:(\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S)\ 5a title="Product" href="cic:/fakeuri.def(1)"\ 6×\ 5/a\ 6(\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S).
+ \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 p) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 (\ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 p).
+
+(* As a corollary of decidable_sem, we have that two expressions
+e1 and e2 are equivalent iff for any word w the states reachable
+through w are cofinal. *)
+
+theorem equiv_sem: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀e1,e2:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
+ \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e1} \ 5a title="extensional equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 61 \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e2} \ 5a title="iff" href="cic:/fakeuri.def(1)"\ 6↔\ 5/a\ 6 ∀w.\ 5a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"\ 6cofinal\ 5/a\ 6 ? \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w e1,\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w e2〉.
#S #e1 #e2 %
[#same_sem #w
- cut (∀b1,b2. iff (b1 = true) (b2 = true) → (b1 = b2))
- [* * // * #H1 #H2 [@sym_eq @H1 //| @H2 //]]
- #Hcut @Hcut @iff_trans [|@decidable_sem]
- @iff_trans [|@same_sem] @iff_sym @decidable_sem
-|#H #w1 @iff_trans [||@decidable_sem] <H @iff_sym @decidable_sem]
+ cut (∀b1,b2. \ 5a href="cic:/matita/basics/logic/iff.def(1)"\ 6iff\ 5/a\ 6 (b1 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6) (b2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6) → (b1 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b2))
+ [* * // * #H1 #H2 [@\ 5a href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/a\ 6 @H1 //| @H2 //]]
+ #Hcut @Hcut @\ 5a href="cic:/matita/basics/logic/iff_trans.def(2)"\ 6iff_trans\ 5/a\ 6 [|@\ 5a href="cic:/matita/tutorial/chapter9/decidable_sem.def(15)"\ 6decidable_sem\ 5/a\ 6]
+ @\ 5a href="cic:/matita/basics/logic/iff_trans.def(2)"\ 6iff_trans\ 5/a\ 6 [|@same_sem] @\ 5a href="cic:/matita/basics/logic/iff_sym.def(2)"\ 6iff_sym\ 5/a\ 6 @\ 5a href="cic:/matita/tutorial/chapter9/decidable_sem.def(15)"\ 6decidable_sem\ 5/a\ 6
+|#H #w1 @\ 5a href="cic:/matita/basics/logic/iff_trans.def(2)"\ 6iff_trans\ 5/a\ 6 [||@\ 5a href="cic:/matita/tutorial/chapter9/decidable_sem.def(15)"\ 6decidable_sem\ 5/a\ 6] <H @\ 5a href="cic:/matita/basics/logic/iff_sym.def(2)"\ 6iff_sym\ 5/a\ 6 @\ 5a href="cic:/matita/tutorial/chapter9/decidable_sem.def(15)"\ 6decidable_sem\ 5/a\ 6]
qed.
-definition occ ≝ λS.λe1,e2:pre S.
- unique_append ? (occur S (|\fst e1|)) (occur S (|\fst e2|)).
+(* This does not directly imply decidability: we have no bound over the
+length of w; moreover, so far, we made no assumption over the cardinality
+of S. Instead of requiring S to be finite, we may restrict the analysis
+to characters occurring in the given pres. *)
+
+definition occ ≝ λS.λe1,e2:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
+ \ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 ? (\ 5a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"\ 6occur\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e1|)) (\ 5a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"\ 6occur\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e2|)).
-lemma occ_enough: ∀S.∀e1,e2:pre S.
-(∀w.(sublist S w (occ S e1 e2))→ cofinal ? 〈moves ? w e1,moves ? w e2〉)
- →∀w.cofinal ? 〈moves ? w e1,moves ? w e2〉.
+lemma occ_enough: ∀S.∀e1,e2:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
+(∀w.(\ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 S w (\ 5a href="cic:/matita/tutorial/chapter10/occ.def(7)"\ 6occ\ 5/a\ 6 S e1 e2))→ \ 5a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"\ 6cofinal\ 5/a\ 6 ? \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w e1,\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w e2〉)
+ →∀w.\ 5a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"\ 6cofinal\ 5/a\ 6 ? \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w e1,\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w e2〉.
#S #e1 #e2 #H #w
-cases (decidable_sublist S w (occ S e1 e2)) [@H] -H #H
- >to_pit [2: @(not_to_not … H) #H1 #a #memba @sublist_unique_append_l1 @H1 //]
- >to_pit [2: @(not_to_not … H) #H1 #a #memba @sublist_unique_append_l2 @H1 //]
+cases (\ 5a href="cic:/matita/tutorial/chapter5/decidable_sublist.def(6)"\ 6decidable_sublist\ 5/a\ 6 S w (\ 5a href="cic:/matita/tutorial/chapter10/occ.def(7)"\ 6occ\ 5/a\ 6 S e1 e2)) [@H] -H #H
+ >\ 5a href="cic:/matita/tutorial/chapter9/to_pit.def(10)"\ 6to_pit\ 5/a\ 6 [2: @(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … H) #H1 #a #memba @\ 5a href="cic:/matita/tutorial/chapter5/sublist_unique_append_l1.def(6)"\ 6sublist_unique_append_l1\ 5/a\ 6 @H1 //]
+ >\ 5a href="cic:/matita/tutorial/chapter9/to_pit.def(10)"\ 6to_pit\ 5/a\ 6 [2: @(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … H) #H1 #a #memba @\ 5a href="cic:/matita/tutorial/chapter5/sublist_unique_append_l2.def(6)"\ 6sublist_unique_append_l2\ 5/a\ 6 @H1 //]
//
qed.
-lemma equiv_sem_occ: ∀S.∀e1,e2:pre S.
-(∀w.(sublist S w (occ S e1 e2))→ cofinal ? 〈moves ? w e1,moves ? w e2〉)
-→ \sem{e1}=1\sem{e2}.
-#S #e1 #e2 #H @(proj2 … (equiv_sem …)) @occ_enough #w @H
+(* The following is a stronger version of equiv_sem, relative to characters
+occurring the given regular expressions. *)
+
+lemma equiv_sem_occ: ∀S.∀e1,e2:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
+(∀w.(\ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 S w (\ 5a href="cic:/matita/tutorial/chapter10/occ.def(7)"\ 6occ\ 5/a\ 6 S e1 e2))→ \ 5a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"\ 6cofinal\ 5/a\ 6 ? \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w e1,\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w e2〉)
+→ \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e1}\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 61\ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e2}.
+#S #e1 #e2 #H @(\ 5a href="cic:/matita/basics/logic/proj2.def(2)"\ 6proj2\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter10/equiv_sem.def(16)"\ 6equiv_sem\ 5/a\ 6 …)) @\ 5a href="cic:/matita/tutorial/chapter10/occ_enough.def(11)"\ 6occ_enough\ 5/a\ 6 #w @H
qed.
-definition sons ≝ λS:DeqSet.λl:list S.λp:(pre S)×(pre S).
- map ?? (λa.〈move S a (\fst (\fst p)),move S a (\fst (\snd p))〉) l.
+(*
+\ 5h2\ 6Bisimulations\ 5/h2\ 6
+
+We say that a list of pairs of pres is a bisimulation if it is closed
+w.r.t. moves, and all its members are cofinal.
+*)
+
+definition sons ≝ λS:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.λl:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 S.λp:(\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S)\ 5a title="Product" href="cic:/fakeuri.def(1)"\ 6×\ 5/a\ 6(\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S).
+ \ 5a href="cic:/matita/basics/list/map.fix(0,3,1)"\ 6map\ 5/a\ 6 ?? (λa.\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 p)),\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 p))〉) l.
-lemma memb_sons: ∀S,l.∀p,q:(pre S)×(pre S). memb ? p (sons ? l q) = true →
- ∃a.(move ? a (\fst (\fst q)) = \fst p ∧
- move ? a (\fst (\snd q)) = \snd p).
-#S #l elim l [#p #q normalize in ⊢ (%→?); #abs @False_ind /2/]
-#a #tl #Hind #p #q #H cases (orb_true_l … H) -H
- [#H @(ex_intro … a) >(\P H) /2/ |#H @Hind @H]
+lemma memb_sons: ∀S,l.∀p,q:(\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S)\ 5a title="Product" href="cic:/fakeuri.def(1)"\ 6×\ 5/a\ 6(\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S). \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 ? p (\ 5a href="cic:/matita/tutorial/chapter10/sons.def(7)"\ 6sons\ 5/a\ 6 ? l q) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 →
+ \ 5a title="exists" href="cic:/fakeuri.def(1)"\ 6∃\ 5/a\ 6a.(\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 q)) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 p \ 5a title="logical and" href="cic:/fakeuri.def(1)"\ 6∧\ 5/a\ 6
+ \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 q)) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 p).
+#S #l elim l [#p #q normalize in ⊢ (%→?); #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/]
+#a #tl #Hind #p #q #H cases (\ 5a href="cic:/matita/basics/bool/orb_true_l.def(2)"\ 6orb_true_l\ 5/a\ 6 … H) -H
+ [#H @(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 … a) >(\P H) /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"\ 6conj\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/ |#H @Hind @H]
qed.
-definition is_bisim ≝ λS:DeqSet.λl:list ?.λalpha:list S.
- ∀p:(pre S)×(pre S). memb ? p l = true → cofinal ? p ∧ (sublist ? (sons ? alpha p) l).
+definition is_bisim ≝ λS:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.λl:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 ?.λalpha:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 S.
+ ∀p:(\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S)\ 5a title="Product" href="cic:/fakeuri.def(1)"\ 6×\ 5/a\ 6(\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S). \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 ? p l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter10/cofinal.def(2)"\ 6cofinal\ 5/a\ 6 ? p \ 5a title="logical and" href="cic:/fakeuri.def(1)"\ 6∧\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 ? (\ 5a href="cic:/matita/tutorial/chapter10/sons.def(7)"\ 6sons\ 5/a\ 6 ? alpha p) l).
-lemma bisim_to_sem: ∀S:DeqSet.∀l:list ?.∀e1,e2: pre S.
- is_bisim S l (occ S e1 e2) → memb ? 〈e1,e2〉 l = true → \sem{e1}=1\sem{e2}.
-#S #l #e1 #e2 #Hbisim #Hmemb @equiv_sem_occ
-#w #Hsub @(proj1 … (Hbisim 〈moves S w e1,moves S w e2〉 ?))
+(* Using lemma equiv_sem_occ it is easy to prove the following result: *)
+
+lemma bisim_to_sem: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀l:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 ?.∀e1,e2: \ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
+ \ 5a href="cic:/matita/tutorial/chapter10/is_bisim.def(8)"\ 6is_bisim\ 5/a\ 6 S l (\ 5a href="cic:/matita/tutorial/chapter10/occ.def(7)"\ 6occ\ 5/a\ 6 S e1 e2) → \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 ? \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6e1,e2〉 l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e1}\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 61\ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e2}.
+#S #l #e1 #e2 #Hbisim #Hmemb @\ 5a href="cic:/matita/tutorial/chapter10/equiv_sem_occ.def(17)"\ 6equiv_sem_occ\ 5/a\ 6
+#w #Hsub @(\ 5a href="cic:/matita/basics/logic/proj1.def(2)"\ 6proj1\ 5/a\ 6 … (Hbisim \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S w e1,\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S w e2〉 ?))
lapply Hsub @(list_elim_left … w) [//]
#a #w1 #Hind #Hsub >moves_left >moves_left @(proj2 …(Hbisim …(Hind ?)))
[#x #Hx @Hsub @memb_append_l1 //
]
qed.
-(* the algorithm *)
+(* This is already an interesting result: checking if l is a bisimulation
+is decidable, hence we could generate l with some untrusted piece of code
+and then run a (boolean version of) is_bisim to check that it is actually
+a bisimulation.
+However, in order to prove that equivalence of regular expressions
+is decidable we must prove that we can always effectively build such a list
+(or find a counterexample).
+The idea is that the list we are interested in is just the set of
+all pair of pres reachable from the initial pair via some
+sequence of moves.
+
+The algorithm for computing reachable nodes in graph is a very
+traditional one. We split nodes in two disjoint lists: a list of
+visited nodes and a frontier, composed by all nodes connected
+to a node in visited but not visited already. At each step we select a node
+a from the frontier, compute its sons, add a to the set of
+visited nodes and the (not already visited) sons to the frontier.
+
+Instead of fist computing reachable nodes and then performing the
+bisimilarity test we can directly integrate it in the algorithm:
+the set of visited nodes is closed by construction w.r.t. reachability,
+so we have just to check cofinality for any node we add to visited.
+
+Here is the extremely simple algorithm: *)
+
let rec bisim S l n (frontier,visited: list ?) on n ≝
match n with
[ O ⇒ 〈false,visited〉 (* assert false *)
else 〈false,visited〉
]
].
-
+
+(* The integer n is an upper bound to the number of recursive call,
+equal to the dimension of the graph. It returns a pair composed
+by a boolean and a the set of visited nodes; the boolean is true
+if and only if all visited nodes are cofinal.
+
+The following results explicitly state the behaviour of bisim is the general
+case and in some relevant instances *)
+
lemma unfold_bisim: ∀S,l,n.∀frontier,visited: list ?.
bisim S l n frontier visited =
match n with
]
].
#S #l #n cases n // qed.
-
+
lemma bisim_never: ∀S,l.∀frontier,visited: list ?.
bisim S l O frontier visited = 〈false,visited〉.
#frontier #visited >unfold_bisim //
#Sig #l #m #p #frontier #visited #test >unfold_bisim normalize nodelta >test //
qed.
-lemma notb_eq_true_l: ∀b. notb b = true → b = false.
+(* In order to prove termination of bisim we must be able to effectively
+enumerate all possible pres: *)
+
+(* lemma notb_eq_true_l: ∀b. notb b = true → b = false.
#b cases b normalize //
-qed.
+qed. *)
let rec pitem_enum S (i:re S) on i ≝
match i with
definition disjoint ≝ λS:DeqSet.λl1,l2.
∀p:S. memb S p l1 = true → memb S p l2 = false.
+(* We are ready to prove that bisim is correct; we use the invariant
+that at each call of bisim the two lists visited and frontier only contain
+nodes reachable from \langle e_1,e_2\rangle, hence it is absurd to suppose
+to meet a pair which is not cofinal. *)
+
lemma bisim_correct: ∀S.∀e1,e2:pre S.\sem{e1}=1\sem{e2} →
∀l,n.∀frontier,visited:list ((pre S)×(pre S)).
|space_enum S (|\fst e1|) (|\fst e2|)| < n + |visited|→
]
]
]
-qed.
+qed.
+
+(* For completeness, we use the invariant that all the nodes in visited are cofinal,
+and the sons of visited are either in visited or in the frontier; since
+at the end frontier is empty, visited is hence a bisimulation. *)
definition all_true ≝ λS.λl.∀p:(pre S) × (pre S). memb ? p l = true →
(beqb (\snd (\fst p)) (\snd (\snd p)) = true).
]
qed.
+(* We can now give the definition of the equivalence algorithm, and
+prove that two expressions are equivalente if and only if they define
+the same language. *)
+
definition equiv ≝ λSig.λre1,re2:re Sig.
let e1 ≝ •(blank ? re1) in
let e2 ≝ •(blank ? re2) in
-
-
section we shall define several boolean functions acting on lists of elements in
a DeqSet, and prove some of their properties.*)
-include "basics/list.ma".
+include "basics/list.ma".
include "tutorial/chapter4.ma".
(* The first function we define is an effective version of the membership relation,
between an element x and a list l. Its definition is a straightforward recursion on
l.*)
-let rec memb (S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) (x:S) (l: \ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6\ 5span class="error" title="Parse error: RPAREN expected after [term] (in [arg])"\ 6\ 5/span\ 6 S) on l ≝
+let rec memb (S:DeqSet) (x:S) (l: list\ 5span class="error" title="Parse error: RPAREN expected after [term] (in [arg])"\ 6\ 5/span\ 6 S) on l ≝
match l with
- [ nil ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6
- | cons a tl ⇒ (x \ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5span class="error" title="Parse error: NUMBER '1' or [term] or [sym=] expected after [sym=] (in [term])"\ 6\ 5/span\ 6= a) \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 memb S x tl
- ].
+ [ nil ⇒ false
+ | cons a tl ⇒ (x == a) ∨ memb S x tl
+ ]\ 5span class="error" title="Parse error: NUMBER '1' or [term] or [sym=] expected after [sym=] (in [term])"\ 6\ 5/span\ 6\ 5span class="error" title="No choices for ID nil"\ 6\ 5/span\ 6.
notation < "\memb x l" non associative with precedence 90 for @{'memb $x $l}.
interpretation "boolean membership" 'memb a l = (memb ? a l).
(op a b) is a member of (compose op l1 l2)
*)
-lemma memb_hd: ∀S,a,l. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:l) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
-#S #a #l normalize >(\ 5a href="cic:/matita/basics/logic/proj2.def(2)"\ 6proj2\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter4/eqb_true.fix(0,0,4)"\ 6eqb_true\ 5/a\ 6 S …) (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 S a)) //
+lemma memb_hd: ∀S,a,l. memb S a (a::l) = true.
+#S #a #l normalize >(proj2 … (eqb_true S …) (refl S a)) //
qed.
lemma memb_cons: ∀S,a,b,l.
- \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6\ 5span class="error" title="Parse error: SYMBOL '.' expected after [grafite_ncommand] (in [executable])"\ 6\ 5/span\ 6 S a (b\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:l) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
-#S #a #b #l normalize cases (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=b) normalize //
+ memb S a l = true → memb\ 5span class="error" title="Parse error: SYMBOL '.' expected after [grafite_ncommand] (in [executable])"\ 6\ 5/span\ 6 S a (b::l) = true.
+#S #a #b #l normalize cases (a==b) normalize //
qed.
-lemma memb_single: ∀S,a,x. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (x\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:\ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6]) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → a \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 x.
-#S #a #x normalize cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 … (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=x)) #H
- [#_ >(\P H) // |>H normalize #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/]
+lemma memb_single: ∀S,a,x. memb S a (x::[]) = true → a = x.
+#S #a #x normalize cases (true_or_false … (a==x)) #H
+ [#_ >(\P H) // |>H normalize #abs @False_ind /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace absurd\ 5/span\ 6\ 5/span\ 6/]
qed.
lemma memb_append: ∀S,a,l1,l2.
-\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (l1\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6\ 5span class="error" title="Parse error: [term level 46] expected after [sym@] (in [term])"\ 6\ 5/span\ 6l2) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l1\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 \ 5a title="logical or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
-#S #a #l1 elim l1 normalize [#l2 #H %2 //]
-#b #tl #Hind #l2 cases (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=b) normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/bool/orb_true_l.def(2)"\ 6orb_true_l\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
+memb S a (l1@\ 5span class="error" title="Parse error: [term level 46] expected after [sym@] (in [term])"\ 6\ 5/span\ 6l2) = true → memb S a l1= true ∨ memb S a l2 = true.
+#S #a #l1\ 5span class="error" title="Parse error: illegal begin of statement"\ 6\ 5/span\ 6\ 5span class="error" title="Parse error: illegal begin of statement"\ 6\ 5/span\ 6 elim l1 normalize [#l2 #H %2 //]
+#b #tl #Hind #l2 cases (a==b) normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace orb_true_l\ 5/span\ 6\ 5/span\ 6/
qed.
lemma memb_append_l1: ∀S,a,l1,l2.
- \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l1\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (l1\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6l2) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
+ memb S a l1= true → memb S a (l1@l2) = true.
#S #a #l1 elim l1 normalize
- [normalize #le #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
- |#b #tl #Hind #l2 cases (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=b) normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5/span\ 6\ 5/span\ 6/
+ [normalize #le #abs @False_ind /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace absurd\ 5/span\ 6\ 5/span\ 6/
+ |#b #tl #Hind #l2 cases (a==b) normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5/span\ 6\ 5/span\ 6/
]
qed.
lemma memb_append_l2: ∀S,a,l1,l2.
- \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l2\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (l1\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6l2) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
+ memb S a l2= true → memb S a (l1@l2) = true.
#S #a #l1 elim l1 normalize //
-#b #tl #Hind #l2 cases (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=b) normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5/span\ 6\ 5/span\ 6/
+#b #tl #Hind #l2 cases (a==b) normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5/span\ 6\ 5/span\ 6/
qed.
-lemma memb_exists: ∀S,a,l.\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6\ 5span class="error" title="Parse error: SYMBOL '.' expected after [grafite_ncommand] (in [executable])"\ 6\ 5/span\ 6 → \ 5a title="exists" href="cic:/fakeuri.def(1)"\ 6∃\ 5/a\ 6l1,l2.l\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6l1\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6(a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:l2).
-#S #a #l elim l [normalize #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/]
-#b #tl #Hind #H cases (\ 5a href="cic:/matita/basics/bool/orb_true_l.def(2)"\ 6orb_true_l\ 5/a\ 6 … H)
- [#eqba @(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 … (\ 5a href="cic:/matita/basics/list/list.con(0,1,1)"\ 6nil\ 5/a\ 6 S)) @(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 … tl) >(\P eqba) //
+lemma memb_exists: ∀S,a,l.memb S a l = true\ 5span class="error" title="Parse error: SYMBOL '.' expected after [grafite_ncommand] (in [executable])"\ 6\ 5/span\ 6 → ∃l1,l2.l=l1@(a::l2).
+#S #a #l elim l [normalize #abs @False_ind /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace absurd\ 5/span\ 6\ 5/span\ 6/]
+#b #tl #Hind #H cases (orb_true_l … H)
+ [#eqba @(ex_intro … (nil S)) @(ex_intro … tl) >(\P eqba) //
|#mem_tl cases (Hind mem_tl) #l1 * #l2 #eqtl
- @(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 … (b\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:l1)) @(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 … l2) >eqtl //
+ @(ex_intro … (b::l1)) @(ex_intro … l2) >eqtl //
]
qed.
lemma not_memb_to_not_eq: ∀S,a,b,l.
- \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S b l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=b \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6.
-#S #a #b #l cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=b)) //
-#eqab >(\P eqab) #H >H #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
+ memb S a l = false → memb S b l = true → a==b = false.
+#S #a #b #l cases (true_or_false (a==b)) //
+#eqab >(\P eqab) #H >H #abs @False_ind /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace absurd\ 5/span\ 6\ 5/span\ 6/
qed.
-lemma memb_map: ∀S1,S2,f,a,l. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S1 a l\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 →
- \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S2 (f a) (\ 5a href="cic:/matita/basics/list/map.fix(0,3,1)"\ 6map\ 5/a\ 6 … f l) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
+lemma memb_map: ∀S1,S2,f,a,l. memb S1 a l= true →
+ memb S2 (f a) (map … f l) = true.
#S1 #S2 #f #a #l elim l normalize [//]
-#x #tl #memba cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=x))
- [#eqx >eqx >(\P eqx) >(\b (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 … (f x))) normalize //
- |#eqx >eqx cases (f a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=f x) normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5/span\ 6\ 5/span\ 6/
+#x #tl #memba cases (true_or_false (a==x))
+ [#eqx >eqx >(\P eqx) >(\b (refl … (f x))) normalize //
+ |#eqx >eqx cases (f a==f x) normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5/span\ 6\ 5/span\ 6/
]
qed.
lemma memb_compose: ∀S1,S2,S3,op,a1,a2,l1,l2.
- \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S1 a1 l1 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S2 a2 l2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 →
- \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S3 (op a1 a2) (\ 5a href="cic:/matita/basics/list/compose.def(2)"\ 6compose\ 5/a\ 6 S1 S2 S3 op l1 l2) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
+ memb S1 a1 l1 = true → memb S2 a2 l2 = true →
+ memb S3 (op a1 a2) (compose S1 S2 S3 op l1 l2) = true.
#S1 #S2 #S3 #op #a1 #a2 #l1 elim l1 [normalize //]
-#x #tl #Hind #l2 #memba1 #memba2 cases (\ 5a href="cic:/matita/basics/bool/orb_true_l.def(2)"\ 6orb_true_l\ 5/a\ 6 … memba1)
- [#eqa1 >(\P eqa1) @\ 5a href="cic:/matita/tutorial/chapter5/memb_append_l1.def(5)"\ 6memb_append_l1\ 5/a\ 6 @\ 5a href="cic:/matita/tutorial/chapter5/memb_map.def(5)"\ 6memb_map\ 5/a\ 6 //
- |#membtl @\ 5a href="cic:/matita/tutorial/chapter5/memb_append_l2.def(5)"\ 6memb_append_l2\ 5/a\ 6 @Hind //
+#x #tl #Hind #l2 #memba1 #memba2 cases (orb_true_l … memba1)
+ [#eqa1 >(\P eqa1) @memb_append_l1 @memb_map //
+ |#membtl @memb_append_l2 @Hind //
]
qed.
(*************** unicity test *****************)
-let rec uniqueb (S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) l on l : \ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6 ≝
+let rec uniqueb (S:DeqSet) l on l : bool ≝
match l with
- [ nil ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6
- | cons a tl ⇒ \ 5a href="cic:/matita/basics/bool/notb.def(1)"\ 6notb\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a tl) \ 5a title="boolean and" href="cic:/fakeuri.def(1)"\ 6∧\ 5/a\ 6 uniqueb S tl
+ [ nil ⇒ true
+ | cons a tl ⇒ notb (memb S a tl) ∧ uniqueb S tl
].
(* unique_append l1 l2 add l1 in fornt of l2, but preserving unicity *)
-let rec unique_append (S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) (l1,l2: \ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 S) on l1 ≝
+let rec unique_append (S:DeqSet) (l1,l2: list S) on l1 ≝
match l1 with
[ nil ⇒ l2
| cons a tl ⇒
let r ≝ unique_append S tl l2 in
- if \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a r then r else a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:r
+ if memb S a r then r else a::r
].
-axiom unique_append_elim: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀P: S → Prop.∀l1,l2.
-(∀x. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S x l1 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5span class="error" title="Parse error: NUMBER '1' or [term] or [sym=] expected after [sym=] (in [term])"\ 6\ 5/span\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → P x) → (∀x. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S x l2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → P x) →
-∀x. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S x (\ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 S l1 l2) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → P x.
+axiom unique_append_elim: ∀S:DeqSet.∀P: S → Prop.∀l1,l2.
+(∀x. memb S x l1 =\ 5span class="error" title="Parse error: NUMBER '1' or [term] or [sym=] expected after [sym=] (in [term])"\ 6\ 5/span\ 6 true → P x) → (∀x. memb S x l2 = true → P x) →
+∀x. memb S x (unique_append S l1 l2) = true → P x.
-lemma unique_append_unique: ∀S,l1,l2. \ 5a href="cic:/matita/tutorial/chapter5/uniqueb.fix(0,1,5)"\ 6uniqueb\ 5/a\ 6 S l2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 →
- \ 5a href="cic:/matita/tutorial/chapter5/uniqueb.fix(0,1,5)"\ 6uniqueb\ 5/a\ 6 S (\ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 S l1 l2) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
+lemma unique_append_unique: ∀S,l1,l2. uniqueb S l2 = true →
+ uniqueb S (unique_append S l1 l2) = true.
#S #l1 elim l1 normalize // #a #tl #Hind #l2 #uniquel2
-cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (\ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 S tl l2)))
+cases (true_or_false … (memb S a (unique_append S tl l2)))
#H >H normalize [@Hind //] >H normalize @Hind //
qed.
(******************* sublist *******************)
definition sublist ≝
- λS,l1,l2.∀a. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l1 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
+ λS,l1,l2.∀a. memb S a l1 = true → memb S a l2 = true.
lemma sublist_length: ∀S,l1,l2.
- \ 5a href="cic:/matita/tutorial/chapter5/uniqueb.fix(0,1,5)"\ 6uniqueb\ 5/a\ 6 S l1 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 S l1 l2 → \ 5a title="norm" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6l1| \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6≤\ 5/a\ 6 \ 5a title="norm" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6l2|.
+ uniqueb S l1 = true → sublist S l1 l2 → |l1| ≤ |l2|.
#S #l1 elim l1 //
#a #tl #Hind #l2 #unique #sub
-cut (\ 5a title="exists" href="cic:/fakeuri.def(1)"\ 6∃\ 5/a\ 6l3,l4.l2\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6l3\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6(a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:l4)) [@\ 5a href="cic:/matita/tutorial/chapter5/memb_exists.def(5)"\ 6memb_exists\ 5/a\ 6 @sub //]
-* #l3 * #l4 #eql2 >eql2 >\ 5a href="cic:/matita/basics/list/length_append.def(2)"\ 6length_append\ 5/a\ 6 normalize
-applyS \ 5a href="cic:/matita/arithmetics/nat/le_S_S.def(2)"\ 6le_S_S\ 5/a\ 6 <\ 5a href="cic:/matita/basics/list/length_append.def(2)"\ 6length_append\ 5/a\ 6 @Hind [@(\ 5a href="cic:/matita/basics/bool/andb_true_r.def(4)"\ 6andb_true_r\ 5/a\ 6 … unique)]
+cut (∃l3,l4.l2=l3@(a::l4)) [@memb_exists @sub //]
+* #l3 * #l4 #eql2 >eql2 >length_append normalize
+applyS le_S_S <length_append @Hind [@(andb_true_r … unique)]
>eql2 in sub; #sub #x #membx
-cases (\ 5a href="cic:/matita/tutorial/chapter5/memb_append.def(5)"\ 6memb_append\ 5/a\ 6 … (sub x (\ 5a href="cic:/matita/basics/bool/orb_true_r2.def(3)"\ 6orb_true_r2\ 5/a\ 6 … membx)))
- [#membxl3 @\ 5a href="cic:/matita/tutorial/chapter5/memb_append_l1.def(5)"\ 6memb_append_l1\ 5/a\ 6 //
- |#membxal4 cases (\ 5a href="cic:/matita/basics/bool/orb_true_l.def(2)"\ 6orb_true_l\ 5/a\ 6 … membxal4)
- [#eqxa @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 lapply (\ 5a href="cic:/matita/basics/bool/andb_true_l.def(4)"\ 6andb_true_l\ 5/a\ 6 … unique)
- <(\P eqxa) >membx normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/ |#membxl4 @\ 5a href="cic:/matita/tutorial/chapter5/memb_append_l2.def(5)"\ 6memb_append_l2\ 5/a\ 6 //
+cases (memb_append … (sub x (orb_true_r2 … membx)))
+ [#membxl3 @memb_append_l1 //
+ |#membxal4 cases (orb_true_l … membxal4)
+ [#eqxa @False_ind lapply (andb_true_l … unique)
+ <(\P eqxa) >membx normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace absurd\ 5/span\ 6\ 5/span\ 6/ |#membxl4 @memb_append_l2 //
]
]
qed.
lemma sublist_unique_append_l1:
- ∀S,l1,l2. \ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 S l1 (\ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 S l1 l2).
-#S #l1 elim l1 normalize [#l2 #S #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/]
+ ∀S,l1,l2. sublist S l1 (unique_append S l1 l2).
+#S #l1 elim l1 normalize [#l2 #S #abs @False_ind /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace absurd\ 5/span\ 6\ 5/span\ 6/]
#x #tl #Hind #l2 #a
-normalize cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 … (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=x)) #eqax >eqax
-[<(\P eqax) cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (\ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 S tl l2)))
- [#H >H normalize // | #H >H normalize >(\b (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 … a)) //]
-|cases (\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S x (\ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 S tl l2)) normalize
+normalize cases (true_or_false … (a==x)) #eqax >eqax
+[<(\P eqax) cases (true_or_false (memb S a (unique_append S tl l2)))
+ [#H >H normalize // | #H >H normalize >(\b (refl … a)) //]
+|cases (memb S x (unique_append S tl l2)) normalize
[/\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5/span\ 6\ 5/span\ 6/ |>eqax normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5/span\ 6\ 5/span\ 6/]
]
qed.
lemma sublist_unique_append_l2:
- ∀S,l1,l2. \ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 S l2 (\ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 S l1 l2).
+ ∀S,l1,l2. sublist S l2 (unique_append S l1 l2).
#S #l1 elim l1 [normalize //] #x #tl #Hind normalize
-#l2 #a cases (\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S x (\ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 S tl l2)) normalize
-[@Hind | cases (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=x) normalize // @Hind]
+#l2 #a cases (memb S x (unique_append S tl l2)) normalize
+[@Hind | cases (a==x) normalize // @Hind]
qed.
lemma decidable_sublist:∀S,l1,l2.
- (\ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 S l1 l2) \ 5a title="logical or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 \ 5a title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/a\ 6(\ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 S l1 l2).
+ (sublist S l1 l2) ∨ ¬(sublist S l1 l2).
#S #l1 #l2 elim l1
- [%1 #a normalize in ⊢ (%→?); #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
+ [%1 #a normalize in ⊢ (%→?); #abs @False_ind /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace absurd\ 5/span\ 6\ 5/span\ 6/
|#a #tl * #subtl
- [cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l2)) #memba
- [%1 whd #x #membx cases (\ 5a href="cic:/matita/basics/bool/orb_true_l.def(2)"\ 6orb_true_l\ 5/a\ 6 … membx)
+ [cases (true_or_false (memb S a l2)) #memba
+ [%1 whd #x #membx cases (orb_true_l … membx)
[#eqax >(\P eqax) // |@subtl]
- |%2 @(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … (\ 5a href="cic:/matita/basics/bool/eqnot_to_noteq.def(4)"\ 6eqnot_to_noteq\ 5/a\ 6 … \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 memba)) #H1 @H1 @\ 5a href="cic:/matita/tutorial/chapter5/memb_hd.def(5)"\ 6memb_hd\ 5/a\ 6
+ |%2 @(not_to_not … (eqnot_to_noteq … true memba)) #H1 @H1 @memb_hd
]
- |%2 @(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … subtl) #H1 #x #H2 @H1 @\ 5a href="cic:/matita/tutorial/chapter5/memb_cons.def(5)"\ 6memb_cons\ 5/a\ 6 //
+ |%2 @(not_to_not … subtl) #H1 #x #H2 @H1 @memb_cons //
]
]
qed.
(********************* filtering *****************)
lemma filter_true: ∀S,f,a,l.
- \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (\ 5a href="cic:/matita/basics/list/filter.def(2)"\ 6filter\ 5/a\ 6 S f l) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → f a \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
-#S #f #a #l elim l [normalize #H @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/]
-#b #tl #Hind cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 (f b)) #H
+ memb S a (filter S f l) = true → f a = true.
+#S #f #a #l elim l [normalize #H @False_ind /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace absurd\ 5/span\ 6\ 5/span\ 6/]
+#b #tl #Hind cases (true_or_false (f b)) #H
normalize >H normalize [2:@Hind]
-cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=b)) #eqab
+cases (true_or_false (a==b)) #eqab
[#_ >(\P eqab) // | >eqab normalize @Hind]
qed.
lemma memb_filter_memb: ∀S,f,a,l.
- \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (\ 5a href="cic:/matita/basics/list/filter.def(2)"\ 6filter\ 5/a\ 6 S f l) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
+ memb S a (filter S f l) = true → memb S a l = true.
#S #f #a #l elim l [normalize //]
#b #tl #Hind normalize (cases (f b)) normalize
-cases (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=b) normalize // @Hind
+cases (a==b) normalize // @Hind
qed.
-lemma memb_filter: ∀S,f,l,x. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S x (\ 5a href="cic:/matita/basics/list/filter.def(2)"\ 6filter\ 5/a\ 6 ? f l) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 →
-\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S x l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 \ 5a title="logical and" href="cic:/fakeuri.def(1)"\ 6∧\ 5/a\ 6 (f x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6).
-/\ 5span class="autotactic"\ 63\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"\ 6conj\ 5/a\ 6, \ 5a href="cic:/matita/tutorial/chapter5/memb_filter_memb.def(5)"\ 6memb_filter_memb\ 5/a\ 6, \ 5a href="cic:/matita/tutorial/chapter5/filter_true.def(5)"\ 6filter_true\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/ qed.
+lemma memb_filter: ∀S,f,l,x. memb S x (filter ? f l) = true →
+memb S x l = true ∧ (f x = true).
+/\ 5span class="autotactic"\ 63\ 5span class="autotrace"\ 6 trace conj, memb_filter_memb, filter_true\ 5span class="error" title="disambiguation error"\ 6\ 5/span\ 6\ 5/span\ 6\ 5/span\ 6/ qed.
-lemma memb_filter_l: ∀S,f,x,l. (f x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6) → \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S x l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 →
-\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S x (\ 5a href="cic:/matita/basics/list/filter.def(2)"\ 6filter\ 5/a\ 6 ? f l) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
+lemma memb_filter_l: ∀S,f,x,l. (f x = true) → memb S x l = true →
+memb S x (filter ? f l) = true.
#S #f #x #l #fx elim l normalize //
-#b #tl #Hind cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 (x\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=b)) #eqxb
- [<(\P eqxb) >(\b (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 … x)) >fx normalize >(\b (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 … x)) normalize //
+#b #tl #Hind cases (true_or_false (x==b)) #eqxb
+ [<(\P eqxb) >(\b (refl … x)) >fx normalize >(\b (refl … x)) normalize //
|>eqxb cases (f b) normalize [>eqxb normalize @Hind| @Hind]
]
qed.
(********************* exists *****************)
-let rec exists (A:Type[0]) (p:A → \ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6) (l:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A) on l : \ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6 ≝
+let rec exists (A:Type[0]) (p:A → bool) (l:list A) on l : bool ≝
match l with
-[ nil ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6
-| cons h t ⇒ \ 5a href="cic:/matita/basics/bool/orb.def(1)"\ 6orb\ 5/a\ 6 (p h) (exists A p t)
+[ nil ⇒ false
+| cons h t ⇒ orb (p h) (exists A p t)
].
\ No newline at end of file
// qed.
lemma moves_left : ∀S,a,w,e.
- \ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S (w\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6a]) e \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S w e)).
+ \ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S (w\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6(a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:\ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6])) e \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S w e)).
#S #a #w elim w // #x #tl #Hind #e >\ 5a href="cic:/matita/tutorial/chapter9/moves_cons.def(8)"\ 6moves_cons\ 5/a\ 6 >\ 5a href="cic:/matita/tutorial/chapter9/moves_cons.def(8)"\ 6moves_cons\ 5/a\ 6 //
qed.
\ 5h2\ 6Move to pit\ 5/h2\ 6.
We conclude this chapter with a few properties of the move opertions in relation
-with the pit state. *).
+with the pit state. *)
-definition pit_pre ≝ λS.λi.〈blank S (|i|), false〉.
+definition pit_pre ≝ λS.λi.\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter8/blank.fix(0,1,3)"\ 6blank\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6i|), \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉.
-(* The following function compute if a symbol in S occurs in a given
-item i *).
+(* The following function compute the list of characters occurring in a given
+item i. *)
-let rec occur (S: DeqSet) (i: re S) on i ≝
+let rec occur (S: \ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) (i: \ 5a href="cic:/matita/tutorial/chapter7/re.ind(1,0,1)"\ 6re\ 5/a\ 6 S) on i ≝
match i with
- [ z ⇒ [ ]
- | e ⇒ [ ]
- | s y ⇒ [y]
- | o e1 e2 ⇒ unique_append ? (occur S e1) (occur S e2)
- | c e1 e2 ⇒ unique_append ? (occur S e1) (occur S e2)
+ [ z ⇒ \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6 ]
+ | e ⇒ \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6 ]
+ | s y ⇒ y\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:\ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6]
+ | o e1 e2 ⇒ \ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 ? (occur S e1) (occur S e2)
+ | c e1 e2 ⇒ \ 5a href="cic:/matita/tutorial/chapter5/unique_append.fix(0,1,5)"\ 6unique_append\ 5/a\ 6 ? (occur S e1) (occur S e2)
| k e ⇒ occur S e].
(* If a symbol a does not occur in i, then move(i,a) gets to the
-pit state. *).
+pit state. *)
-lemma not_occur_to_pit: ∀S,a.∀i:pitem S. memb S a (occur S (|i|)) ≠ true →
- move S a i = pit_pre S i.
+lemma not_occur_to_pit: ∀S,a.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (\ 5a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"\ 6occur\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6i|)) \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6≠\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 →
+ \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a i \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i.
#S #a #i elim i //
- [#x normalize cases (a==x) normalize // #H @False_ind /2/
- |#i1 #i2 #Hind1 #Hind2 #H >move_cat
- >Hind1 [2:@(not_to_not … H) #H1 @sublist_unique_append_l1 //]
- >Hind2 [2:@(not_to_not … H) #H1 @sublist_unique_append_l2 //] //
- |#i1 #i2 #Hind1 #Hind2 #H >move_plus
- >Hind1 [2:@(not_to_not … H) #H1 @sublist_unique_append_l1 //]
- >Hind2 [2:@(not_to_not … H) #H1 @sublist_unique_append_l2 //] //
- |#i #Hind #H >move_star >Hind //
+ [#x normalize cases (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6=x) normalize // #H @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
+ |#i1 #i2 #Hind1 #Hind2 #H >\ 5a href="cic:/matita/tutorial/chapter9/move_cat.def(7)"\ 6move_cat\ 5/a\ 6
+ >Hind1 [2:@(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … H) #H1 @\ 5a href="cic:/matita/tutorial/chapter5/sublist_unique_append_l1.def(6)"\ 6sublist_unique_append_l1\ 5/a\ 6 //]
+ >Hind2 [2:@(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … H) #H1 @\ 5a href="cic:/matita/tutorial/chapter5/sublist_unique_append_l2.def(6)"\ 6sublist_unique_append_l2\ 5/a\ 6 //] //
+ |#i1 #i2 #Hind1 #Hind2 #H >\ 5a href="cic:/matita/tutorial/chapter9/move_plus.def(7)"\ 6move_plus\ 5/a\ 6
+ >Hind1 [2:@(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … H) #H1 @\ 5a href="cic:/matita/tutorial/chapter5/sublist_unique_append_l1.def(6)"\ 6sublist_unique_append_l1\ 5/a\ 6 //]
+ >Hind2 [2:@(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … H) #H1 @\ 5a href="cic:/matita/tutorial/chapter5/sublist_unique_append_l2.def(6)"\ 6sublist_unique_append_l2\ 5/a\ 6 //] //
+ |#i #Hind #H >\ 5a href="cic:/matita/tutorial/chapter9/move_star.def(7)"\ 6move_star\ 5/a\ 6 >Hind //
]
qed.
-(* We cannot escape form the pit state. *).
+(* We cannot escape form the pit state. *)
-lemma move_pit: ∀S,a,i. move S a (\fst (pit_pre S i)) = pit_pre S i.
+lemma move_pit: ∀S,a,i. \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i)) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i.
#S #a #i elim i //
- [#i1 #i2 #Hind1 #Hind2 >move_cat >Hind1 >Hind2 //
- |#i1 #i2 #Hind1 #Hind2 >move_plus >Hind1 >Hind2 //
- |#i #Hind >move_star >Hind //
+ [#i1 #i2 #Hind1 #Hind2 >\ 5a href="cic:/matita/tutorial/chapter9/move_cat.def(7)"\ 6move_cat\ 5/a\ 6 >Hind1 >Hind2 //
+ |#i1 #i2 #Hind1 #Hind2 >\ 5a href="cic:/matita/tutorial/chapter9/move_plus.def(7)"\ 6move_plus\ 5/a\ 6 >Hind1 >Hind2 //
+ |#i #Hind >\ 5a href="cic:/matita/tutorial/chapter9/move_star.def(7)"\ 6move_star\ 5/a\ 6 >Hind //
]
qed.
-lemma moves_pit: ∀S,w,i. moves S w (pit_pre S i) = pit_pre S i.
+lemma moves_pit: ∀S,w,i. \ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S w (\ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i.
#S #w #i elim w //
qed.
(* If any character in w does not occur in i, then moves(i,w) gets
-to the pit state. *).
+to the pit state. *)
-lemma to_pit: ∀S,w,e. ¬ sublist S w (occur S (|\fst e|)) →
- moves S w e = pit_pre S (\fst e).
+lemma to_pit: ∀S,w,e. \ 5a title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 S w (\ 5a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"\ 6occur\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e|)) →
+ \ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S w e \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e).
#S #w elim w
- [#e * #H @False_ind @H normalize #a #abs @False_ind /2/
- |#a #tl #Hind #e #H cases (true_or_false (memb S a (occur S (|\fst e|))))
- [#Htrue >moves_cons whd in ⊢ (???%); <(same_kernel … a)
- @Hind >same_kernel @(not_to_not … H) #H1 #b #memb cases (orb_true_l … memb)
+ [#e * #H @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 @H normalize #a #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
+ |#a #tl #Hind #e #H cases (\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (\ 5a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"\ 6occur\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e|))))
+ [#Htrue >\ 5a href="cic:/matita/tutorial/chapter9/moves_cons.def(8)"\ 6moves_cons\ 5/a\ 6 whd in ⊢ (???%); <(\ 5a href="cic:/matita/tutorial/chapter9/same_kernel.def(8)"\ 6same_kernel\ 5/a\ 6 … a)
+ @Hind >\ 5a href="cic:/matita/tutorial/chapter9/same_kernel.def(8)"\ 6same_kernel\ 5/a\ 6 @(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … H) #H1 #b #memb cases (\ 5a href="cic:/matita/basics/bool/orb_true_l.def(2)"\ 6orb_true_l\ 5/a\ 6 … memb)
[#H2 >(\P H2) // |#H2 @H1 //]
- |#Hfalse >moves_cons >not_occur_to_pit // >Hfalse /2/
+ |#Hfalse >\ 5a href="cic:/matita/tutorial/chapter9/moves_cons.def(8)"\ 6moves_cons\ 5/a\ 6 >\ 5a href="cic:/matita/tutorial/chapter9/not_occur_to_pit.def(8)"\ 6not_occur_to_pit\ 5/a\ 6 // >Hfalse /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/bool/eqnot_to_noteq.def(4)"\ 6eqnot_to_noteq\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
]
]
qed.
\ No newline at end of file