nth_base (bars f) j < i →
(∀n.j < n → n < \len (bars f) → i ≤ nth_base (bars f) n) → value_spec f i q j.
+
+inductive break_spec (T : Type) (n : nat) (l : list T) : list T → CProp ≝
+| break_to: ∀l1,x,l2. \len l1 = n → l = l1 @ [x] @ l2 → break_spec T n l l.
+
+lemma list_break: ∀T,n,l. n < \len l → break_spec T n l l.
+intros 2; elim n;
+[1: elim l in H; [cases (not_le_Sn_O ? H)]
+ apply (break_to ?? ? [] a l1); reflexivity;
+|2: cases (H l); [2: apply lt_S_to_lt; assumption;] cases l2 in H3; intros;
+ [1: rewrite < H2 in H1; rewrite > H3 in H1; rewrite > append_nil in H1;
+ rewrite > len_append in H1; rewrite > plus_n_SO in H1;
+ cases (not_le_Sn_n ? H1);
+ |2: apply (break_to ?? ? (l1@[x]) t l3);
+ [2: simplify; rewrite > associative_append; assumption;
+ |1: rewrite < H2; rewrite > len_append; rewrite > plus_n_SO; reflexivity]]]
+qed.
definition value : ∀f:q_f.∀i:ratio.∃p:ℚ.∃j.value_spec f (Qpos i) p j.
-intros; letin P ≝ (λx:bar.match q_cmp (Qpos i) (\fst x) with
- [ q_leq _ ⇒ true
- | q_gt _ ⇒ false]);
+intros;
+letin P ≝
+ (λx:bar.match q_cmp (Qpos i) (\fst x) with[ q_leq _ ⇒ true| q_gt _ ⇒ false]);
exists [apply (nth_height (bars f) (pred (find ? P (bars f) ▭)));]
exists [apply (pred (find ? P (bars f) ▭))] apply value_of;
[1: reflexivity
unfold P in K; cases (q_cmp (Qpos i) (\fst (\nth (x::l) ▭ (\len l)))) in K;
simplify; intros; [destruct H2] assumption;]
|3: intro; cases (cases_find bar P (bars f) ▭); intros;
- [1:
-
-generalize in match (bars_begin_OQ f); generalize in match (bars_sorted f);
-generalize in match (bars_end_OQ f);
-cases (len_gt_non_empty ?? (len_bases_gt_O f)); simplify;
-intros;
-[1:
-
-
-alias symbol "pi2" = "pair pi2".
-alias symbol "pi1" = "pair pi1".
-alias symbol "lt" (instance 7) = "Q less than".
-alias symbol "leq" = "Q less or equal than".
-letin value_spec_aux ≝ (
- λf,i,q. And4
- (\fst q < len f)
- (\snd q = nth_height f (\fst q))
- (nth_base f (\fst q) < i)
- (∀n.(\fst q) < n → n < len f → i ≤ nth_base f n));
-alias symbol "lt" (instance 5) = "Q less than".
-letin value ≝ (
- let rec value (acc: nat × ℚ) (l : list bar) on l : nat × ℚ ≝
- match l with
- [ nil ⇒ acc
- | cons x tl ⇒
- match q_cmp (\fst x) (Qpos i) with
- [ q_leq _ ⇒ value 〈S (\fst acc), \snd x〉 tl
- | q_gt _ ⇒ acc]]
- in value :
- ∀acc,l.∃p:nat × ℚ.
- ∀story. story @ l = bars f → S (\fst acc) = len story →
- value_spec_aux story (Qpos i) acc →
- value_spec_aux (story @ l) (Qpos i) p);
-[4: clearbody value; unfold value_spec;
- generalize in match (bars_begin_OQ f);
- generalize in match (bars_sorted f);
- cases (bars_not_nil f) in value; intros (value S); generalize in match (sorted_tail_bigger ?? S);
- clear S; cases (value 〈O,\snd x〉 l) (p Hp); intros;
- exists[apply (\snd p)];exists [apply (\fst p)] simplify;
- cases (Hp [x] (refl_eq ??) (refl_eq ??) ?) (Hg HV);
- [unfold; split; [apply le_n|reflexivity|rewrite > H; apply q_pos_OQ;]
- intros; cases n in H2 H3; [intro X; cases (not_le_Sn_O ? X)]
- intros; cases (not_le_Sn_O ? (le_S_S_to_le (S n1) O H3))]
- split;[rewrite > HV; reflexivity] split; [assumption;]
- intros; cases n in H4 H5; intros [cases (not_le_Sn_O ? H4)]
- apply (H3 (S n1)); assumption;
-|1: unfold value_spec_aux; clear value value_spec_aux H2; intros;
- cases H4; clear H4; split;
- [1: apply (trans_lt ??? H5); rewrite > len_concat; simplify; apply lt_n_plus_n_Sm;
- |2: unfold nth_height; rewrite > nth_concat_lt_len;[2:assumption]assumption;
- |3: unfold nth_base; rewrite > nth_concat_lt_len;[2:assumption]
- apply (q_le_lt_trans ???? H7); apply q_le_n;
- |4: intros; (*clear H6 H5 H4 H l;*) lapply (bars_sorted f) as HS;
- apply (all_bigger_can_concat_bigger story l1 (S (\fst p)));[6:apply q_lt_to_le]try assumption;
- [1: rewrite < H2 in HS; cases (sorted_pivot ??? HS); assumption
- |2: rewrite < H2 in HS; cases (sorted_pivot ??? HS);
- intros; apply q_lt_to_le; apply H11; assumption;
- |3: intros; apply H8; assumption;]]
-|3: intro; rewrite > append_nil; intros; assumption;
-|2: intros; cases (value 〈S (\fst p),\snd b〉 l1); unfold; simplify;
- cases (H6 (story@[b]) ???);
- [1: rewrite > associative_append; apply H3;
- |2: simplify; rewrite > H4; rewrite > len_concat; rewrite > sym_plus; reflexivity;
- |4: rewrite < (associative_append ? story [b] l1); split; assumption;
- |3: cases H5; clear H5; split; simplify in match (\snd ?); simplify in match (\fst ?);
- [1: rewrite > len_concat; simplify; rewrite < plus_n_SO; apply le_S_S; assumption;
- |2:
- |3:
- |4: ]]]
-
-
-
-
-
-
-
-
-
-
-[5: clearbody value;
- cases (q_cmp i (start f));
- [2: exists [apply 〈O,OQ〉] simplify; constructor 1; split; try assumption;
- try reflexivity; apply q_lt_to_le; assumption;
- |1: cases (bars f); [exists [apply 〈O,OQ〉] simplify; constructor 3; split;try assumption;reflexivity;]
- cases (value ⅆ[i,start f] (b::l)) (p Hp);
- cases (Hp (q_dist_ge_OQ ? ?)); clear Hp value; [cases H1; destruct H2]
- cases H1; clear H1; lapply (sum_bases_O (b::l) (\fst p)) as H1;
- [2: apply (q_le_trans ??? H2); rewrite > H; apply q_eq_to_le;
- rewrite > q_d_x_x; reflexivity;
- |1: exists [apply p] simplify; constructor 4; rewrite > H1; split;
- try split; try rewrite > q_d_x_x; try autobatch depth=2;
- [1: rewrite > H; rewrite > q_plus_sym; apply q_lt_plus;
- rewrite > q_plus_minus; apply q_lt_plus_trans; [apply sum_bases_ge_OQ]
- apply q_pos_lt_OQ;
- |2: rewrite > H; rewrite > q_d_x_x; apply q_eq_to_le; reflexivity;
- |3: rewrite > H; rewrite > q_d_x_x; apply q_lt_plus_trans;
- try apply sum_bases_ge_OQ; apply q_pos_lt_OQ;]]
- |3: cases (q_cmp i (start f+sum_bases (bars f) (len (bars f))));
- [1: exists [apply 〈O,OQ〉] simplify; constructor 2; split; try assumption;
- try reflexivity; rewrite > H1; apply q_eq_to_le; reflexivity;
- |3: exists [apply 〈O,OQ〉] simplify; constructor 2; split; try assumption;
- try reflexivity; apply q_lt_to_le; assumption;
- |2: generalize in match (refl_eq ? (bars f): bars f = bars f);
- generalize in match (bars f) in ⊢ (??? % → %); intro X; cases X; clear X;
- intros;
- [1: exists [apply 〈O,OQ〉] simplify; constructor 3; split; reflexivity;
- |2: cases (value ⅆ[i,start f] (b::l)) (p Hp);
- cases (Hp (q_dist_ge_OQ ? ?)); clear Hp value; [cases H3;destruct H4]
- cases H3; clear H3;
- exists [apply p]; constructor 4; split; try split; try assumption;
- [1: intro X; destruct X;
- |2: apply q_lt_to_le; assumption;
- |3: rewrite < H2; assumption;
- |4: cases (cmp_nat (\fst p) (len (bars f)));
- [1:apply lt_to_le;rewrite <H2; assumption|rewrite > H3;rewrite < H2;apply le_n]
- cases (?:False); cases (\fst p) in H3 H4 H6; clear H5;
- [1: intros; apply (not_le_Sn_O ? H5);
- |2: rewrite > q_d_sym; rewrite > q_d_noabs; [2: apply q_lt_to_le; assumption]
- intros; lapply (q_lt_inj_plus_r ?? (Qopp (start f)) H1); clear H1;
- generalize in match Hletin;
- rewrite > (q_plus_sym (start f)); rewrite < q_plus_assoc;
- do 2 rewrite < q_elim_minus; rewrite > q_plus_minus;
- rewrite > q_plus_OQ; intro K; apply (q_lt_corefl (i-start f));
- apply (q_lt_le_trans ???? H3); rewrite < H2;
- apply (q_lt_trans ??? K); apply sum_bases_increasing;
- assumption;]]]]]
-|1,3: intros; right; split;
- [1,4: clear H2; cases (value (q-Qpos (\fst b)) l1);
- cases (H2 (q_le_to_diff_ge_OQ ?? (? H1)));
- [1: intro; apply q_lt_to_le;assumption;
- |3: simplify; cases H4; apply q_le_minus; assumption;
- |2,5: simplify; cases H4; rewrite > H5; rewrite > H6;
- apply q_le_minus; apply sum_bases_empty_nat_of_q_le_q;
- |4: intro X; rewrite > X; apply q_eq_to_le; reflexivity;
- |*: simplify; apply q_le_minus; cases H4; assumption;]
- |2,5: cases (value (q-Qpos (\fst b)) l1);
- cases (H4 (q_le_to_diff_ge_OQ ?? (? H1)));
- [1,4: intros; [apply q_lt_to_le|apply q_eq_to_le;symmetry] assumption;
- |3,6: cases H5; simplify; change with (q < sum_bases l1 (S (\fst w)) + Qpos (\fst b));
- apply q_lt_plus; assumption;
- |2,5: simplify; cases H5; rewrite > H6; simplify; rewrite > H7;
- apply q_lt_plus; apply sum_bases_empty_nat_of_q_le_q_one;]
- |*: cases (value (q-Qpos (\fst b)) l1); simplify;
- cases (H4 (q_le_to_diff_ge_OQ ?? (? H1)));
- [1,4: intros; [apply q_lt_to_le|apply q_eq_to_le;symmetry] assumption;
- |3,6: cases H5; assumption;
- |*: cases H5; rewrite > H6; rewrite > H8;
- elim (\fst w); [1,3:reflexivity;] simplify; assumption;]]
-|2: clear value H2; simplify; intros; right; split; [assumption|3:reflexivity]
- rewrite > q_plus_sym; rewrite > q_plus_OQ; assumption;
-|4: intros; left; split; reflexivity;]
-qed.
+ [1: generalize in match (bars_sorted f);
+ cases (list_break ??? H) in H1; rewrite > H6;
+ rewrite < H1; simplify; rewrite > nth_len; unfold P;
+ cases (q_cmp (Qpos i) (\fst x)); simplify;
+ intros (X Hs); [2: destruct X] clear X;
+ cases (sorted_pivot q2_lt ??? ▭ Hs);
+ cut (\len l1 ≤ n) as Hn; [2:
+ rewrite > H1; cases i1 in H4; simplify; intro X; [2: assumption]
+ apply lt_to_le; assumption;]
+ unfold nth_base; rewrite > (nth_append_ge_len ????? Hn);
+ cut (n - \len l1 < \len (x::l2)) as K; [2:
+ simplify; rewrite > H1; rewrite > (?:\len l2 = \len (bars f) - \len (l1 @ [x]));[2:
+ rewrite > H6; repeat rewrite > len_append; simplify;
+ repeat rewrite < plus_n_Sm; rewrite < plus_n_O; simplify;
+ rewrite > sym_plus; rewrite < minus_plus_m_m; reflexivity;]
+ rewrite > len_append; rewrite > H1; simplify; rewrite < plus_n_SO;
+ apply le_S_S; clear H1 H6 H7 Hs H8 H9 Hn x l2 l1 H4 H3 H2 H P i;
+ elim (\len (bars f)) in i1 n H5; [cases (not_le_Sn_O ? H);]
+ simplify; cases n2; [ repeat rewrite < minus_n_O; apply le_S_S_to_le; assumption]
+ cases n1 in H1; [intros; rewrite > eq_minus_n_m_O; apply le_O_n]
+ intros; simplify; apply H; apply le_S_S_to_le; assumption;]
+ cases (n - \len l1) in K; simplify; intros; [ assumption]
+ lapply (H9 ? (le_S_S_to_le ?? H10)) as W; apply (q_le_trans ??? H7);
+ apply q_lt_to_le; apply W;
+ |2: cases (not_le_Sn_n i1); rewrite > H in ⊢ (??%);
+ apply (trans_le ??? ? H4); cases i1 in H3; intros; apply le_S_S;
+ [ apply le_O_n; | assumption]]]
+qed.
lemma value_OQ_l:
∀l,i.i < start l → \snd (\fst (value l i)) = OQ.