include' "../../../legacy/coq.ma".
-(* FG: This is because "and" is a reserved keyword of the parser *)
-alias id "land" = "cic:/Coq/Init/Logic/and.ind#xpointer(1/1)".
-
-(* FG/CSC: These aliases should disappear: we would like to write something
- * like: "disambiguate in cic:/Coq/*"
- *)
-alias symbol "plus" = "Coq's natural plus".
+alias symbol "eq" = "Coq's leibnitz's equality".
alias symbol "leq" = "Coq's natural 'less or equal to'".
alias symbol "neq" = "Coq's not equal to (leibnitz)".
-alias symbol "eq" = "Coq's leibnitz's equality".
+alias symbol "plus" = "Coq's natural plus".
alias id "bool" = "cic:/Coq/Init/Datatypes/bool.ind#xpointer(1/1)".
alias id "conj" = "cic:/Coq/Init/Logic/and.ind#xpointer(1/1/1)".
alias id "eq_ind_r" = "cic:/Coq/Init/Logic/eq_ind_r.con".
alias id "ex2" = "cic:/Coq/Init/Logic/ex2.ind#xpointer(1/1)".
alias id "ex2_ind" = "cic:/Coq/Init/Logic/ex2_ind.con".
-alias id "ex" = "cic:/Coq/Init/Logic/ex.ind#xpointer(1/1)".
alias id "ex_intro2" = "cic:/Coq/Init/Logic/ex2.ind#xpointer(1/1/1)".
alias id "false" = "cic:/Coq/Init/Datatypes/bool.ind#xpointer(1/1/2)".
alias id "False" = "cic:/Coq/Init/Logic/False.ind#xpointer(1/1)".
alias id "False_ind" = "cic:/Coq/Init/Logic/False_ind.con".
alias id "I" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1/1)".
-alias id "le_antisym" = "cic:/Coq/Arith/Le/le_antisym.con".
+alias id "land" = "cic:/Coq/Init/Logic/and.ind#xpointer(1/1)".
alias id "le" = "cic:/Coq/Init/Peano/le.ind#xpointer(1/1)".
alias id "le_lt_n_Sm" = "cic:/Coq/Arith/Lt/le_lt_n_Sm.con".
alias id "le_lt_or_eq" = "cic:/Coq/Arith/Lt/le_lt_or_eq.con".
alias id "S" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/2)".
alias id "true" = "cic:/Coq/Init/Datatypes/bool.ind#xpointer(1/1/1)".
alias id "True" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1)".
-alias id "plus_lt_compat_r" = "cic:/Coq/Arith/Plus/plus_lt_compat_r.con".
-alias id "plus_n_O" = "cic:/Coq/Init/Peano/plus_n_O.con".
-alias id "plus_le_lt_compat" = "cic:/Coq/Arith/Plus/plus_le_lt_compat.con".
-alias id "lt_wf_ind" = "cic:/Coq/Arith/Wf_nat/lt_wf_ind.con".
-alias id "minus_Sn_m" = "cic:/Coq/Arith/Minus/minus_Sn_m.con".
-alias id "and_ind" = "cic:/Coq/Init/Logic/and_ind.con".
-alias id "le_lt_trans" = "cic:/Coq/Arith/Lt/le_lt_trans.con".
-alias id "lt_le_trans" = "cic:/Coq/Arith/Lt/lt_le_trans.con".
-alias id "le_lt_trans" = "cic:/Coq/Arith/Lt/le_lt_trans.con".
-alias id "plus_n_O" = "cic:/Coq/Init/Peano/plus_n_O.con".
-alias id "f_equal3" = "cic:/Coq/Init/Logic/f_equal3.con".
-alias id "S_pred" = "cic:/Coq/Arith/Lt/S_pred.con".
-alias id "lt_le_trans" = "cic:/Coq/Arith/Lt/lt_le_trans.con".
-alias id "plus_lt_compat_r" = "cic:/Coq/Arith/Plus/plus_lt_compat_r.con".
-alias id "le_plus_trans" = "cic:/Coq/Arith/Plus/le_plus_trans.con".
-alias id "f_equal2" = "cic:/Coq/Init/Logic/f_equal2.con".
-alias id "le_plus_trans" = "cic:/Coq/Arith/Plus/le_plus_trans.con".
-alias id "f_equal2" = "cic:/Coq/Init/Logic/f_equal2.con".
-alias id "plus_n_O" = "cic:/Coq/Init/Peano/plus_n_O.con".
-alias id "plus_n_O" = "cic:/Coq/Init/Peano/plus_n_O.con".
-alias id "lt_trans" = "cic:/Coq/Arith/Lt/lt_trans.con".
-alias id "minus_Sn_m" = "cic:/Coq/Arith/Minus/minus_Sn_m.con".
-alias id "ex_intro" = "cic:/Coq/Init/Logic/ex.ind#xpointer(1/1/1)".
-alias id "lt_trans" = "cic:/Coq/Arith/Lt/lt_trans.con".
-alias id "lt_n_Sn" = "cic:/Coq/Arith/Lt/lt_n_Sn.con".
-alias id "lt_le_trans" = "cic:/Coq/Arith/Lt/lt_le_trans.con".
-alias id "lt_wf_ind" = "cic:/Coq/Arith/Wf_nat/lt_wf_ind.con".
-alias id "bool_ind" = "cic:/Coq/Init/Datatypes/bool_ind.con".
-alias id "ex_ind" = "cic:/Coq/Init/Logic/ex_ind.con".
-alias id "plus_Snm_nSm" = "cic:/Coq/Arith/Plus/plus_Snm_nSm.con".
-alias id "plus_lt_le_compat" = "cic:/Coq/Arith/Plus/plus_lt_le_compat.con".
-alias id "plus_lt_compat" = "cic:/Coq/Arith/Plus/plus_lt_compat.con".
-alias id "lt_S_n" = "cic:/Coq/Arith/Lt/lt_S_n.con".
-alias id "minus_n_n" = "cic:/Coq/Arith/Minus/minus_n_n.con".
theorem f_equal: \forall A,B:Type. \forall f:A \to B.
\forall x,y:A. x = y \to f x = f y.
unfold not. intros. apply H. symmetry. assumption.
qed.
-theorem trans_eq : \forall A:Type. \forall x,y,z:A. x=y \to y=z \to x=z.
- intros. transitivity y; assumption.
-qed.
-
theorem plus_reg_l: \forall n,m,p. n + m = n + p \to m = p.
intros. apply plus_reg_l; auto.
qed.
theorem plus_le_reg_l: \forall p,n,m. p + n <= p + m \to n <= m.
intros. apply plus_le_reg_l; auto.
qed.
-
-default "equality"
- cic:/Coq/Init/Logic/eq.ind
- cic:/matita/LAMBDA-TYPES/Base-1/preamble/sym_eq.con
- cic:/matita/LAMBDA-TYPES/Base-1/preamble/trans_eq.con
- cic:/Coq/Init/Logic/eq_ind.con
- cic:/Coq/Init/Logic/eq_ind_r.con
- cic:/Coq/Init/Logic/eq_rec.con
- cic:/Coq/Init/Logic/eq_rec_r.con
- cic:/Coq/Init/Logic/eq_rect.con
- cic:/Coq/Init/Logic/eq_rect_r.con
- cic:/matita/LAMBDA-TYPES/Base-1/preamble/f_equal.con
- cic:/matita/legacy/coq/f_equal1.con.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/LambdaDelta-1/definitions".
+
+include "tlt/defs.ma".
+
+include "iso/defs.ma".
+
+include "clen/defs.ma".
+
+include "flt/defs.ma".
+
+include "cnt/defs.ma".
+
+include "cimp/defs.ma".
+
+include "subst1/defs.ma".
+
+include "csubst1/defs.ma".
+
+include "fsubst0/defs.ma".
+
+include "next_plus/defs.ma".
+
+include "tau1/defs.ma".
+
+include "llt/defs.ma".
+
+include "aprem/defs.ma".
+
+include "gz/defs.ma".
+
+include "wcpr0/defs.ma".
+
+include "csuba/defs.ma".
+
+include "nf2/defs.ma".
+
+include "csubc/defs.ma".
+
+include "pc1/defs.ma".
+
+include "ex1/defs.ma".
+
+include "csubt/defs.ma".
+
set "baseuri" "cic:/matita/LAMBDA-TYPES/LambdaDelta-1/preamble".
include "../Base-1/theory.ma".
+
+alias id "and_ind" = "cic:/Coq/Init/Logic/and_ind.con".
+alias id "bool_ind" = "cic:/Coq/Init/Datatypes/bool_ind.con".
+alias id "ex" = "cic:/Coq/Init/Logic/ex.ind#xpointer(1/1)".
+alias id "ex_ind" = "cic:/Coq/Init/Logic/ex_ind.con".
+alias id "ex_intro" = "cic:/Coq/Init/Logic/ex.ind#xpointer(1/1/1)".
+alias id "f_equal2" = "cic:/Coq/Init/Logic/f_equal2.con".
+alias id "f_equal3" = "cic:/Coq/Init/Logic/f_equal3.con".
+alias id "le_antisym" = "cic:/Coq/Arith/Le/le_antisym.con".
+alias id "le_lt_trans" = "cic:/Coq/Arith/Lt/le_lt_trans.con".
+alias id "le_plus_trans" = "cic:/Coq/Arith/Plus/le_plus_trans.con".
+alias id "lt_le_trans" = "cic:/Coq/Arith/Lt/lt_le_trans.con".
+alias id "lt_n_Sn" = "cic:/Coq/Arith/Lt/lt_n_Sn.con".
+alias id "lt_S_n" = "cic:/Coq/Arith/Lt/lt_S_n.con".
+alias id "lt_trans" = "cic:/Coq/Arith/Lt/lt_trans.con".
+alias id "lt_wf_ind" = "cic:/Coq/Arith/Wf_nat/lt_wf_ind.con".
+alias id "minus_n_n" = "cic:/Coq/Arith/Minus/minus_n_n.con".
+alias id "minus_Sn_m" = "cic:/Coq/Arith/Minus/minus_Sn_m.con".
+alias id "plus_le_lt_compat" = "cic:/Coq/Arith/Plus/plus_le_lt_compat.con".
+alias id "plus_lt_compat" = "cic:/Coq/Arith/Plus/plus_lt_compat.con".
+alias id "plus_lt_compat_r" = "cic:/Coq/Arith/Plus/plus_lt_compat_r.con".
+alias id "plus_lt_le_compat" = "cic:/Coq/Arith/Plus/plus_lt_le_compat.con".
+alias id "plus_n_O" = "cic:/Coq/Init/Peano/plus_n_O.con".
+alias id "plus_Snm_nSm" = "cic:/Coq/Arith/Plus/plus_Snm_nSm.con".
+alias id "S_pred" = "cic:/Coq/Arith/Lt/S_pred.con".
+
+theorem trans_eq : \forall A:Type. \forall x,y,z:A. x=y \to y=z \to x=z.
+ intros. transitivity y; assumption.
+qed.