(* *)
(**************************************************************************)
+include "nat_ordered_set.ma".
include "models/q_bars.ma".
+lemma sum_bars_increasing:
+ ∀l,x.sum_bases l x < sum_bases l (S x).
+intro; elim l;
+[1: elim x;
+ [1: simplify; rewrite > q_plus_sym; rewrite > q_plus_OQ;
+ apply q_pos_lt_OQ;
+ |2: simplify in H ⊢ %;
+ apply q_lt_plus; rewrite > q_elim_minus;
+ rewrite < q_plus_assoc; rewrite < q_elim_minus;
+ rewrite > q_plus_minus; rewrite > q_plus_OQ;
+ assumption;]
+|2: elim x;
+ [1: simplify; rewrite > q_plus_sym; rewrite > q_plus_OQ;
+ apply q_pos_lt_OQ;
+ |2: simplify; change in ⊢ (? ? (? % ?)) with (sum_bases l1 (S n)) ;
+ apply q_lt_plus; rewrite > q_elim_minus;
+ rewrite < q_plus_assoc; rewrite < q_elim_minus;
+ rewrite > q_plus_minus; rewrite > q_plus_OQ; apply H]]
+qed.
+
+lemma q_lt_canc_plus_r:
+ ∀x,y,z:Q.x + z < y + z → x < y.
+intros; rewrite < (q_plus_OQ y); rewrite < (q_plus_minus z);
+rewrite > q_elim_minus; rewrite > q_plus_assoc;
+apply q_lt_plus; rewrite > q_elim_opp; assumption;
+qed.
+
+lemma q_lt_inj_plus_r:
+ ∀x,y,z:Q.x < y → x + z < y + z.
+intros; apply (q_lt_canc_plus_r ?? (Qopp z));
+do 2 (rewrite < q_plus_assoc;rewrite < q_elim_minus);
+rewrite > q_plus_minus;
+do 2 rewrite > q_plus_OQ; assumption;
+qed.
+
+lemma sum_bases_lt_canc:
+ ∀l,x,y.sum_bases l (S x) < sum_bases l (S y) → sum_bases l x < sum_bases l y.
+intro; elim l; [apply (q_lt_canc_plus_r ?? (Qpos one));apply H]
+generalize in match H1;apply (nat_elim2 (?:? → ? → CProp) ??? x y);
+intros 2;
+[3: intros 2; simplify; apply q_lt_inj_plus_r; apply H;
+ apply (q_lt_canc_plus_r ?? (Qpos (\fst a))); apply H3;
+|2: cases (?:False); simplify in H2;
+ apply (q_lt_le_incompat (sum_bases l1 (S n)) OQ);[2: apply sum_bases_ge_OQ;]
+ apply (q_lt_canc_plus_r ?? (Qpos (\fst a))); apply H2;
+|1: cases n in H2; intro;
+ [1: cases (?:False); apply (q_lt_corefl ? H2);
+ |2: simplify; apply q_lt_plus_trans; [apply sum_bases_ge_OQ]
+ apply q_pos_lt_OQ;]]
+qed.
+
+axiom q_minus_distrib:
+ ∀x,y,z:Q.x - (y + z) = x - y - z.
+
+axiom q_le_OQ_Qpos: ∀x.OQ ≤ Qpos x.
+
lemma initial_shift_same_values:
∀l1:q_f.∀init.init < start l1 →
same_values l1
[1: rewrite > H2; do 2 rewrite > q_elim_minus;
apply q_lt_plus; rewrite > q_elim_minus;
rewrite < q_plus_assoc; rewrite < q_elim_minus;
- rewrite > q_plus_minus;
- rewrite > q_plus_OQ; assumption;
+ rewrite > q_plus_minus;rewrite > q_plus_OQ; assumption;
|2: rewrite < q_d_noabs; [2: apply q_lt_to_le; assumption]
- rewrite > q_d_sym; apply (q_le_S ???? H5);
- apply sum_bases_ge_OQ;]]
- |3:
-
-
-STOP
+ rewrite > q_d_sym; apply (q_le_S ???? H5);apply sum_bases_ge_OQ;]]
+ |3: intro; cases H8; clear H8; rewrite > H11; rewrite > H7; clear H11 H7;
+ simplify in ⊢ (? ? ? (? ? ? (? ? % ? ?)));
+ cut (\fst w1 = S (\fst w2)) as Key; [rewrite > Key; reflexivity;]
+ simplify in H5 H6;
+ cases (\fst w1) in H5 H6; intros;
+ [1: cases (?:False); clear H5 H9 H10; simplify in H6;
+ apply (q_lt_antisym input (start l1)); [2: assumption]
+ rewrite > q_d_sym in H6;
+ rewrite > q_d_noabs in H6; [2: apply q_lt_to_le; assumption]
+ rewrite > q_plus_sym in H6;
+ rewrite > q_plus_OQ in H6; rewrite > H2 in H6;
+ lapply (q_lt_plus ??? H6) as X; clear H6 H2 H3 H1 H H4 w1 w2 w;
+ rewrite > q_elim_minus in X; rewrite < q_plus_assoc in X;
+ rewrite > (q_plus_sym (Qopp init)) in X;
+ rewrite < q_elim_minus in X; rewrite > q_plus_minus in X;
+ rewrite > q_plus_OQ in X; assumption;
+ |2: simplify in H5; apply eq_f;
+ cut (sum_bases (bars l1) (\fst w2) < sum_bases (bars l1) (S n)+Qpos w);[2:
+ apply (q_le_lt_trans ??? H9);
+ apply (q_lt_trans ??? ? H6);
+ rewrite > q_d_sym; rewrite > q_d_noabs; [2:apply q_lt_to_le;assumption]
+ rewrite > q_d_sym; rewrite > q_d_noabs; [2:apply q_lt_to_le;assumption]
+ do 2 rewrite > q_elim_minus; rewrite > (q_plus_sym ? (Qopp init));
+ apply q_lt_plus; rewrite > q_plus_sym;
+ rewrite > q_elim_minus; rewrite < q_plus_assoc;
+ rewrite < q_elim_minus; rewrite > q_plus_minus;
+ rewrite > q_plus_OQ; apply q_lt_opp_opp; assumption]
+ clear H9 H6;
+ cut (ⅆ[input,init] - Qpos w = ⅆ[input,start l1]);[2:
+ rewrite > q_d_sym; rewrite > q_d_noabs; [2:apply q_lt_to_le;assumption]
+ rewrite > q_d_sym; rewrite > q_d_noabs; [2:apply q_lt_to_le;assumption]
+ rewrite > H2; rewrite > (q_elim_minus (start ?));
+ rewrite > q_minus_distrib; rewrite > q_elim_opp;
+ do 2 rewrite > q_elim_minus;
+ do 2 rewrite < q_plus_assoc;
+ rewrite > (q_plus_sym ? init);
+ rewrite > (q_plus_assoc ? init);
+ rewrite > (q_plus_sym ? init);
+ rewrite < (q_elim_minus init); rewrite > q_plus_minus;
+ rewrite > (q_plus_sym OQ); rewrite > q_plus_OQ;
+ rewrite < q_elim_minus; reflexivity;]
+ cut (sum_bases (bars l1) n < sum_bases (bars l1) (S (\fst w2)));[2:
+ apply (q_le_lt_trans ???? H10); rewrite < Hcut1;
+ rewrite > q_elim_minus; apply q_le_minus_r; rewrite > q_elim_opp;
+ assumption;] clear Hcut1 H5 H10;
+ generalize in match Hcut;generalize in match Hcut2;clear Hcut Hcut2;
+ apply (nat_elim2 ???? n (\fst w2));
+ [3: intros (x y); apply eq_f; apply H5; clear H5;
+ [1: clear H7; apply sum_bases_lt_canc; assumption;
+ |2: clear H6; ]
+ |2: intros; cases (?:False); clear H6;
+ cases n1 in H5; intro;
+ [1: apply (q_lt_corefl ? H5);
+ |2: cases (bars l1) in H5; intro;
+ [1: simplify in H5;
+ apply (q_lt_le_incompat ?? (q_lt_canc_plus_r ??? H5));
+ apply q_le_plus_trans; [apply sum_bases_ge_OQ]
+ apply q_le_OQ_Qpos;
+ |2: simplify in H5:(??%);
+ lapply (q_lt_canc_plus_r (sum_bases l (S n2)) ?? H5) as X;
+ apply (q_lt_le_incompat ?? X); apply sum_bases_ge_OQ]]
+ |1: intro; cases n1 [intros; reflexivity] intros; cases (?:False);
+ elim n2 in H5 H6;
+
+
+ elim (bars l1) 0;
+ [1: intro; elim n1; [reflexivity] cases (?:False);
+
+
+ intros; clear H5;
+ elim n1 in H6; [reflexivity] cases (?:False);
+ [1: apply (q_lt_corefl ? H5);
+ |2: cases (bars l1) in H5; intro;
+ [1: simplify in H5;
+ apply (q_lt_le_incompat ?? (q_lt_canc_plus_r ??? H5));
+ apply q_le_plus_trans; [apply sum_bases_ge_OQ]
+ apply q_le_OQ_Qpos;
+ |2: simplify in H5:(??%);
+ lapply (q_lt_canc_plus_r (sum_bases l (S n2)) ?? H5) as X;
+ apply (q_lt_le_incompat ?? X); apply sum_bases_ge_OQ]]
+qed.
+
+
alias symbol "pi2" = "pair pi2".
alias symbol "pi1" = "pair pi1".