--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "lambda/rc_sat.ma".
+
+(* THE EVALUATION *************************************************************)
+
+(* The interpretation of a type t as a r.c. denoted by 〚t〛.
+ * For the "conv" rule we need 〚M〛 ≈ 〚N〛 when M and N are convertible, so:
+ * 1) 〚(λB.M N)〛 ≈ 〚N[0≝N]〛 implies that 〚(M N)〛 and 〚λB.M〛 are evaluated by
+ * stacking the application arguments like a reduction machine does
+ * 2) ∀M,N. 〚D M〛 ≈ 〚D N〛, implies that 〚D M〛 must be a constant.
+ *)
+let rec ev E K t on t : RC ≝ match t with (* E: environment, K: stack *)
+ [ Sort _ ⇒ snRC (* from λ→ *)
+ | Rel i ⇒ nth i … E snRC (* from F *)
+ | App M N ⇒ ev E (ev E ([]) N :: K) M (* machine-like push *)
+ | Lambda _ M ⇒ ev (hd … K snRC :: E) (tail … K) M (* machine-like pop *)
+ | Prod N M ⇒ let C ≝ (ev E ([]) N) in
+ depRC C (ev (C :: E) K M) (* from λ→ and F *)
+ | D _ ⇒ snRC (* see note 2 above *)
+ ].
+
+interpretation "interpretation of a type" 'Eval2 t E K = (ev E K t).
+
+(* extensional equality of the interpretations *)
+definition eveq: T → T → Prop ≝ λt1,t2. ∀E,K. 〚t1〛_[E, K] ≅ 〚t2〛_[E, K].
+
+interpretation
+ "extensional equality of the type interpretations"
+ 'napart t1 t2 = (eveq t1 t2).
+
+(* The interpretation of a context of types as a context of r.c.'s *)
+let rec cev E G on G : list RC ≝ match G with
+ [ nil ⇒ E
+ | cons t F ⇒ let D ≝ cev E F in 〚t〛_[D,[]] :: D
+ ].
+
+interpretation "interpretation of a context" 'Eval1 G E = (cev E G).
+
+theorem ev_app: ∀M,N,E,K. 〚App M N〛_[E, K] = 〚M〛_[E, 〚N〛_[E,[]]::K].
+// qed.
+
+theorem ev_lambda: ∀M,N,E,K.
+ 〚Lambda N M〛_[E, K] = 〚M〛_[hd … K snRC :: E, tail … K].
+// qed.
+
+theorem ev_prod: ∀M,N,E,K.
+ 〚Prod N M〛_[E,K] = depRC (〚N〛_[E,[]]) (〚M〛_[〚N〛_[E,[]]::E,K]).
+// qed.
+
+theorem ev_repl: ∀t,E1,E2,K1,K2. E1 ≅ E2 → K1 ≅ K2 → 〚t〛_[E1,K1] ≅ 〚t〛_[E2,K2].
+#t (elim t) /5/
+qed.
+
+theorem ev_rel_lt: ∀K,D,E,i. (S i) ≤ |E| → 〚Rel i〛_[E @ D, K] = 〚Rel i〛_[E,K].
+#K #D #E (elim E) -E [1: #i #Hie (elim (not_le_Sn_O i)) #Hi (elim (Hi Hie)) ]
+#C #F #IHE #i (elim i) -i // #i #_ #Hie @IHE @le_S_S_to_le @Hie
+qed.
+
+theorem ev_rel_ge: ∀K,D,E,i. (S i) ≰ |E| →
+ 〚Rel i〛_[E @ D, K] = 〚Rel (i-|E|)〛_[D,K].
+#K #D #E (elim E) -E [ normalize // ]
+#C #F #IHE #i (elim i) -i [1: -IHE #Hie (elim Hie) -Hie #Hie (elim (Hie ?)) /2/ ]
+normalize #i #_ #Hie @IHE /2/
+qed.
+
+theorem ev_app_repl: ∀M1,M2,N1,N2. M1 ≈ M2 → N1 ≈ N2 →
+ App M1 N1 ≈ App M2 N2.
+#M1 #M2 #N1 #N2 #IHM #IHN #E #K >ev_app (@transitive_rceq) /3/
+qed.
+
+theorem ev_lambda_repl: ∀N1,N2,M1,M2. N1 ≈ N2 → M1 ≈ M2 →
+ Lambda N1 M1 ≈ Lambda N2 M2.
+#N1 #N2 #M1 #M2 #IHN #IHM #E #K >ev_lambda (@transitive_rceq) //
+qed.
+
+theorem ev_prod_repl: ∀N1,N2,M1,M2. N1 ≈ N2 → M1 ≈ M2 →
+ Prod N1 M1 ≈ Prod N2 M2.
+#N1 #N2 #M1 #M2 #IHN #IHM #E #K >ev_prod @dep_repl //
+(@transitive_rceq) [2: @IHM | skip ] /3/
+qed.
+
+(* weakeing and thinning lemma for the type interpretation *)
+(* NOTE: >commutative_plus comes from |a::b| ↦ S |b| rather than |b| + 1 *)
+theorem ev_lift: ∀E,Ep,t,Ek,K.
+ 〚lift t (|Ek|) (|Ep|)〛_[Ek @ Ep @ E, K] ≅ 〚t〛_[Ek @ E, K].
+#E #Ep #t (elim t) -t
+ [ #n >lift_sort /by SAT0_sort/
+ | #i #Ek #K @(leb_elim (S i) (|Ek|)) #Hik
+ [ >(lift_rel_lt … Hik) >(ev_rel_lt … Hik) >(ev_rel_lt … Hik) //
+ | >(lift_rel_ge … Hik) >(ev_rel_ge … Hik) <associative_append
+ >(ev_rel_ge …) (>length_append)
+ [ >arith2 // @not_lt_to_le /2/ | @(arith3 … Hik) ]
+ ]
+ | #M #N #IHM #IHN #Ek #K >lift_app >ev_app (@transitive_rceq) /3/
+ | #N #M #IHN #IHM #Ek #K >lift_lambda >ev_lambda (@transitive_rceq)
+ [2: >commutative_plus @(IHM (? :: ?)) | skip ] //
+ | #N #M #IHN #IHM #Ek #K >lift_prod >ev_prod (@dep_repl) //
+ (@transitive_rceq) [2: >commutative_plus @(IHM (? :: ?)) | skip ] /3/
+ | //
+ ]
+qed.
+
+(*
+theorem tj_ev: ∀G,A,B. G ⊢A:B → ∀H,l. l ∈ 〚G〛_(H) → A[l] ∈ 〚B[l]〛_〚G〛_(H).
+#G #A #B #tjAB (elim tjAB) -G A B tjAB
+ [ #i #j #_ #H #l #_ >substc_sort >substc_sort /2 by SAT0_sort/
+ | #G #B #n #tjB #IH #H #l (elim l) -l (normalize)
+ [ #_ /2 by SAT1_rel/
+ | #C #D #IHl #mem (elim mem) -mem #mem #memc
+ >lift_0 >delift // >lift_0
+
+*)
+(*
+theorem tj_sn: ∀G,A,B. G ⊢A:B → SN A.
+#G #A #B #tjAB lapply (tj_trc … tjAB (nil ?) (nil ?)) -tjAB (normalize) /3/
+qed.
+*)
+
+(*
+theorem tev_rel_S: ∀i,R,H. 〚Rel (S i)〛_(R::H) = 〚Rel i〛_(H).
+// qed.
+*)
+(*
+theorem append_cons: ∀(A:Type[0]). ∀(l1,l2:list A). ∀a.
+ (a :: l1) @ l2 = a :: (l1 @ l2).
+// qed.
+*)
\ No newline at end of file
interpretation
"extensional equality (reducibility candidate)"
- 'napart C1 C2 = (rceq C1 C2).
+ 'Eq C1 C2 = (rceq C1 C2).
definition rceql ≝ λl1,l2. all2 ? rceq l1 l2.
interpretation
"extensional equality (context of reducibility candidates)"
- 'napart C1 C2 = (rceql C1 C2).
+ 'Eq C1 C2 = (rceql C1 C2).
theorem reflexive_rceq: reflexive … rceq.
/2/ qed.
(* HIDDEN BUG:
* Without the type specification, this statement has two interpretations
* but matita does not complain
- *)
-theorem mem_rceq_trans: â\88\80(M:T). â\88\80C1,C2. M â\88\88 C1 â\86\92 C1 â\89\88 C2 → M ∈ C2.
+ *)
+theorem mem_rceq_trans: â\88\80(M:T). â\88\80C1,C2. M â\88\88 C1 â\86\92 C1 â\89\85 C2 → M ∈ C2.
#M #C1 #C2 #H1 #H12 (elim (H12 M)) -H12 /2/
qed.
(* NOTE: hd_repl and tl_repl are proved essentially by the same script *)
-theorem hd_repl: â\88\80C1,C2. C1 â\89\88 C2 â\86\92 â\88\80l1,l2. l1 â\89\88 l2 â\86\92 hd ? l1 C1 â\89\88 hd ? l2 C2.
+theorem hd_repl: â\88\80C1,C2. C1 â\89\85 C2 â\86\92 â\88\80l1,l2. l1 â\89\85 l2 â\86\92 hd ? l1 C1 â\89\85 hd ? l2 C2.
#C1 #C2 #QC #l1 (elim l1) -l1 [ #l2 #Q >Q // ]
#hd1 #tl1 #_ #l2 (elim l2) -l2 [ #Q elim Q ]
#hd2 #tl2 #_ #Q elim Q //
qed.
-theorem tl_repl: â\88\80l1,l2. l1 â\89\88 l2 â\86\92 tail ? l1 â\89\88 tail ? l2.
+theorem tl_repl: â\88\80l1,l2. l1 â\89\85 l2 â\86\92 tail ? l1 â\89\85 tail ? l2.
#l1 (elim l1) -l1 [ #l2 #Q >Q // ]
#hd1 #tl1 #_ #l2 (elim l2) -l2 [ #Q elim Q ]
#hd2 #tl2 #_ #Q elim Q //
qed.
-theorem nth_repl: â\88\80C1,C2. C1 â\89\88 C2 â\86\92 â\88\80i,l1,l2. l1 â\89\88 l2 →
- nth i ? l1 C1 â\89\88 nth i ? l2 C2.
+theorem nth_repl: â\88\80C1,C2. C1 â\89\85 C2 â\86\92 â\88\80i,l1,l2. l1 â\89\85 l2 →
+ nth i ? l1 C1 â\89\85 nth i ? l2 C2.
#C1 #C2 #QC #i (elim i) /3/
qed.
definition depRC: RC → RC → RC ≝ λB,C. mk_RC (dep_mem B C) ….
/2/ qed.
-theorem dep_repl: â\88\80B1,B2,C1,C2. B1 â\89\88 B2 â\86\92 C1 â\89\88 C2 →
- depRC B1 C1 â\89\88 depRC B2 C2.
+theorem dep_repl: â\88\80B1,B2,C1,C2. B1 â\89\85 B2 â\86\92 C1 â\89\85 C2 →
+ depRC B1 C1 â\89\85 depRC B2 C2.
#B1 #B2 #C1 #C2 #QB #QC #M @conj #H1 #N #H2
[ lapply (symmetric_rceq … QB) -QB | lapply (symmetric_rceq … QC) -QC ] /4/
qed.