(TCons t t0)))) (le_n (tslen (TCons t t0))) (tslen x0) H5))) (TCons t t0)
H4))))) H3))))))) ts2)) ts)))).
-theorem iso_gen_sort:
- \forall (u2: T).(\forall (n1: nat).((iso (TSort n1) u2) \to (ex nat (\lambda
-(n2: nat).(eq T u2 (TSort n2))))))
-\def
- \lambda (u2: T).(\lambda (n1: nat).(\lambda (H: (iso (TSort n1) u2)).(let H0
-\def (match H in iso return (\lambda (t: T).(\lambda (t0: T).(\lambda (_:
-(iso t t0)).((eq T t (TSort n1)) \to ((eq T t0 u2) \to (ex nat (\lambda (n2:
-nat).(eq T u2 (TSort n2))))))))) with [(iso_sort n0 n2) \Rightarrow (\lambda
-(H0: (eq T (TSort n0) (TSort n1))).(\lambda (H1: (eq T (TSort n2) u2)).((let
-H2 \def (f_equal T nat (\lambda (e: T).(match e in T return (\lambda (_:
-T).nat) with [(TSort n) \Rightarrow n | (TLRef _) \Rightarrow n0 | (THead _ _
-_) \Rightarrow n0])) (TSort n0) (TSort n1) H0) in (eq_ind nat n1 (\lambda (_:
-nat).((eq T (TSort n2) u2) \to (ex nat (\lambda (n3: nat).(eq T u2 (TSort
-n3)))))) (\lambda (H3: (eq T (TSort n2) u2)).(eq_ind T (TSort n2) (\lambda
-(t: T).(ex nat (\lambda (n3: nat).(eq T t (TSort n3))))) (ex_intro nat
-(\lambda (n3: nat).(eq T (TSort n2) (TSort n3))) n2 (refl_equal T (TSort
-n2))) u2 H3)) n0 (sym_eq nat n0 n1 H2))) H1))) | (iso_lref i1 i2) \Rightarrow
-(\lambda (H0: (eq T (TLRef i1) (TSort n1))).(\lambda (H1: (eq T (TLRef i2)
-u2)).((let H2 \def (eq_ind T (TLRef i1) (\lambda (e: T).(match e in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow True | (THead _ _ _) \Rightarrow False])) I (TSort n1) H0) in
-(False_ind ((eq T (TLRef i2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2
-(TSort n2))))) H2)) H1))) | (iso_head v1 v2 t1 t2 k) \Rightarrow (\lambda
-(H0: (eq T (THead k v1 t1) (TSort n1))).(\lambda (H1: (eq T (THead k v2 t2)
-u2)).((let H2 \def (eq_ind T (THead k v1 t1) (\lambda (e: T).(match e in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n1) H0) in
-(False_ind ((eq T (THead k v2 t2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2
-(TSort n2))))) H2)) H1)))]) in (H0 (refl_equal T (TSort n1)) (refl_equal T
-u2))))).
-
-theorem iso_gen_lref:
- \forall (u2: T).(\forall (n1: nat).((iso (TLRef n1) u2) \to (ex nat (\lambda
-(n2: nat).(eq T u2 (TLRef n2))))))
-\def
- \lambda (u2: T).(\lambda (n1: nat).(\lambda (H: (iso (TLRef n1) u2)).(let H0
-\def (match H in iso return (\lambda (t: T).(\lambda (t0: T).(\lambda (_:
-(iso t t0)).((eq T t (TLRef n1)) \to ((eq T t0 u2) \to (ex nat (\lambda (n2:
-nat).(eq T u2 (TLRef n2))))))))) with [(iso_sort n0 n2) \Rightarrow (\lambda
-(H0: (eq T (TSort n0) (TLRef n1))).(\lambda (H1: (eq T (TSort n2) u2)).((let
-H2 \def (eq_ind T (TSort n0) (\lambda (e: T).(match e in T return (\lambda
-(_: T).Prop) with [(TSort _) \Rightarrow True | (TLRef _) \Rightarrow False |
-(THead _ _ _) \Rightarrow False])) I (TLRef n1) H0) in (False_ind ((eq T
-(TSort n2) u2) \to (ex nat (\lambda (n3: nat).(eq T u2 (TLRef n3))))) H2))
-H1))) | (iso_lref i1 i2) \Rightarrow (\lambda (H0: (eq T (TLRef i1) (TLRef
-n1))).(\lambda (H1: (eq T (TLRef i2) u2)).((let H2 \def (f_equal T nat
-(\lambda (e: T).(match e in T return (\lambda (_: T).nat) with [(TSort _)
-\Rightarrow i1 | (TLRef n) \Rightarrow n | (THead _ _ _) \Rightarrow i1]))
-(TLRef i1) (TLRef n1) H0) in (eq_ind nat n1 (\lambda (_: nat).((eq T (TLRef
-i2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2 (TLRef n2)))))) (\lambda (H3:
-(eq T (TLRef i2) u2)).(eq_ind T (TLRef i2) (\lambda (t: T).(ex nat (\lambda
-(n2: nat).(eq T t (TLRef n2))))) (ex_intro nat (\lambda (n2: nat).(eq T
-(TLRef i2) (TLRef n2))) i2 (refl_equal T (TLRef i2))) u2 H3)) i1 (sym_eq nat
-i1 n1 H2))) H1))) | (iso_head v1 v2 t1 t2 k) \Rightarrow (\lambda (H0: (eq T
-(THead k v1 t1) (TLRef n1))).(\lambda (H1: (eq T (THead k v2 t2) u2)).((let
-H2 \def (eq_ind T (THead k v1 t1) (\lambda (e: T).(match e in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n1) H0) in
-(False_ind ((eq T (THead k v2 t2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2
-(TLRef n2))))) H2)) H1)))]) in (H0 (refl_equal T (TLRef n1)) (refl_equal T
-u2))))).
-
-theorem iso_gen_head:
- \forall (k: K).(\forall (v1: T).(\forall (t1: T).(\forall (u2: T).((iso
-(THead k v1 t1) u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2
-(THead k v2 t2)))))))))
-\def
- \lambda (k: K).(\lambda (v1: T).(\lambda (t1: T).(\lambda (u2: T).(\lambda
-(H: (iso (THead k v1 t1) u2)).(let H0 \def (match H in iso return (\lambda
-(t: T).(\lambda (t0: T).(\lambda (_: (iso t t0)).((eq T t (THead k v1 t1))
-\to ((eq T t0 u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2
-(THead k v2 t2)))))))))) with [(iso_sort n1 n2) \Rightarrow (\lambda (H0: (eq
-T (TSort n1) (THead k v1 t1))).(\lambda (H1: (eq T (TSort n2) u2)).((let H2
-\def (eq_ind T (TSort n1) (\lambda (e: T).(match e in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow True | (TLRef _) \Rightarrow False |
-(THead _ _ _) \Rightarrow False])) I (THead k v1 t1) H0) in (False_ind ((eq T
-(TSort n2) u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2
-(THead k v2 t2)))))) H2)) H1))) | (iso_lref i1 i2) \Rightarrow (\lambda (H0:
-(eq T (TLRef i1) (THead k v1 t1))).(\lambda (H1: (eq T (TLRef i2) u2)).((let
-H2 \def (eq_ind T (TLRef i1) (\lambda (e: T).(match e in T return (\lambda
-(_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow True |
-(THead _ _ _) \Rightarrow False])) I (THead k v1 t1) H0) in (False_ind ((eq T
-(TLRef i2) u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2
-(THead k v2 t2)))))) H2)) H1))) | (iso_head v0 v2 t0 t2 k0) \Rightarrow
-(\lambda (H0: (eq T (THead k0 v0 t0) (THead k v1 t1))).(\lambda (H1: (eq T
-(THead k0 v2 t2) u2)).((let H2 \def (f_equal T T (\lambda (e: T).(match e in
-T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
-\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k0 v0 t0) (THead k v1
-t1) H0) in ((let H3 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow v0 | (TLRef _) \Rightarrow v0
-| (THead _ t _) \Rightarrow t])) (THead k0 v0 t0) (THead k v1 t1) H0) in
-((let H4 \def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_:
-T).K) with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _
-_) \Rightarrow k1])) (THead k0 v0 t0) (THead k v1 t1) H0) in (eq_ind K k
-(\lambda (k1: K).((eq T v0 v1) \to ((eq T t0 t1) \to ((eq T (THead k1 v2 t2)
-u2) \to (ex_2 T T (\lambda (v3: T).(\lambda (t3: T).(eq T u2 (THead k v3
-t3))))))))) (\lambda (H5: (eq T v0 v1)).(eq_ind T v1 (\lambda (_: T).((eq T
-t0 t1) \to ((eq T (THead k v2 t2) u2) \to (ex_2 T T (\lambda (v3: T).(\lambda
-(t3: T).(eq T u2 (THead k v3 t3)))))))) (\lambda (H6: (eq T t0 t1)).(eq_ind T
-t1 (\lambda (_: T).((eq T (THead k v2 t2) u2) \to (ex_2 T T (\lambda (v3:
-T).(\lambda (t3: T).(eq T u2 (THead k v3 t3))))))) (\lambda (H7: (eq T (THead
-k v2 t2) u2)).(eq_ind T (THead k v2 t2) (\lambda (t: T).(ex_2 T T (\lambda
-(v3: T).(\lambda (t3: T).(eq T t (THead k v3 t3)))))) (ex_2_intro T T
-(\lambda (v3: T).(\lambda (t3: T).(eq T (THead k v2 t2) (THead k v3 t3)))) v2
-t2 (refl_equal T (THead k v2 t2))) u2 H7)) t0 (sym_eq T t0 t1 H6))) v0
-(sym_eq T v0 v1 H5))) k0 (sym_eq K k0 k H4))) H3)) H2)) H1)))]) in (H0
-(refl_equal T (THead k v1 t1)) (refl_equal T u2))))))).
-
-theorem iso_refl:
- \forall (t: T).(iso t t)
-\def
- \lambda (t: T).(T_ind (\lambda (t0: T).(iso t0 t0)) (\lambda (n:
-nat).(iso_sort n n)) (\lambda (n: nat).(iso_lref n n)) (\lambda (k:
-K).(\lambda (t0: T).(\lambda (_: (iso t0 t0)).(\lambda (t1: T).(\lambda (_:
-(iso t1 t1)).(iso_head t0 t0 t1 t1 k)))))) t).
-
theorem lifts_tapp:
\forall (h: nat).(\forall (d: nat).(\forall (v: T).(\forall (vs: TList).(eq
TList (lifts h d (TApp vs v)) (TApp (lifts h d vs) (lift h d v))))))
(TCons (lift h d t) (TApp (lifts h d t0) (lift h d v)))) (lifts h d (TApp t0
v)) H)))) vs)))).
-theorem dnf_dec2:
- \forall (t: T).(\forall (d: nat).(or (\forall (w: T).(ex T (\lambda (v:
-T).(subst0 d w t (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T t (lift (S
-O) d v))))))
-\def
- \lambda (t: T).(T_ind (\lambda (t0: T).(\forall (d: nat).(or (\forall (w:
-T).(ex T (\lambda (v: T).(subst0 d w t0 (lift (S O) d v))))) (ex T (\lambda
-(v: T).(eq T t0 (lift (S O) d v))))))) (\lambda (n: nat).(\lambda (d:
-nat).(or_intror (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (TSort n)
-(lift (S O) d v))))) (ex T (\lambda (v: T).(eq T (TSort n) (lift (S O) d
-v)))) (ex_intro T (\lambda (v: T).(eq T (TSort n) (lift (S O) d v))) (TSort
-n) (eq_ind_r T (TSort n) (\lambda (t0: T).(eq T (TSort n) t0)) (refl_equal T
-(TSort n)) (lift (S O) d (TSort n)) (lift_sort n (S O) d)))))) (\lambda (n:
-nat).(\lambda (d: nat).(lt_eq_gt_e n d (or (\forall (w: T).(ex T (\lambda (v:
-T).(subst0 d w (TLRef n) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T
-(TLRef n) (lift (S O) d v))))) (\lambda (H: (lt n d)).(or_intror (\forall (w:
-T).(ex T (\lambda (v: T).(subst0 d w (TLRef n) (lift (S O) d v))))) (ex T
-(\lambda (v: T).(eq T (TLRef n) (lift (S O) d v)))) (ex_intro T (\lambda (v:
-T).(eq T (TLRef n) (lift (S O) d v))) (TLRef n) (eq_ind_r T (TLRef n)
-(\lambda (t0: T).(eq T (TLRef n) t0)) (refl_equal T (TLRef n)) (lift (S O) d
-(TLRef n)) (lift_lref_lt n (S O) d H))))) (\lambda (H: (eq nat n d)).(eq_ind
-nat n (\lambda (n0: nat).(or (\forall (w: T).(ex T (\lambda (v: T).(subst0 n0
-w (TLRef n) (lift (S O) n0 v))))) (ex T (\lambda (v: T).(eq T (TLRef n) (lift
-(S O) n0 v)))))) (or_introl (\forall (w: T).(ex T (\lambda (v: T).(subst0 n w
-(TLRef n) (lift (S O) n v))))) (ex T (\lambda (v: T).(eq T (TLRef n) (lift (S
-O) n v)))) (\lambda (w: T).(ex_intro T (\lambda (v: T).(subst0 n w (TLRef n)
-(lift (S O) n v))) (lift n O w) (eq_ind_r T (lift (plus (S O) n) O w)
-(\lambda (t0: T).(subst0 n w (TLRef n) t0)) (subst0_lref w n) (lift (S O) n
-(lift n O w)) (lift_free w n (S O) O n (le_n (plus O n)) (le_O_n n)))))) d
-H)) (\lambda (H: (lt d n)).(or_intror (\forall (w: T).(ex T (\lambda (v:
-T).(subst0 d w (TLRef n) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T
-(TLRef n) (lift (S O) d v)))) (ex_intro T (\lambda (v: T).(eq T (TLRef n)
-(lift (S O) d v))) (TLRef (pred n)) (eq_ind_r T (TLRef n) (\lambda (t0:
-T).(eq T (TLRef n) t0)) (refl_equal T (TLRef n)) (lift (S O) d (TLRef (pred
-n))) (lift_lref_gt d n H)))))))) (\lambda (k: K).(\lambda (t0: T).(\lambda
-(H: ((\forall (d: nat).(or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w
-t0 (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T t0 (lift (S O) d
-v)))))))).(\lambda (t1: T).(\lambda (H0: ((\forall (d: nat).(or (\forall (w:
-T).(ex T (\lambda (v: T).(subst0 d w t1 (lift (S O) d v))))) (ex T (\lambda
-(v: T).(eq T t1 (lift (S O) d v)))))))).(\lambda (d: nat).(let H_x \def (H d)
-in (let H1 \def H_x in (or_ind (\forall (w: T).(ex T (\lambda (v: T).(subst0
-d w t0 (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T t0 (lift (S O) d
-v)))) (or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead k t0 t1)
-(lift (S O) d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 t1) (lift (S O)
-d v))))) (\lambda (H2: ((\forall (w: T).(ex T (\lambda (v: T).(subst0 d w t0
-(lift (S O) d v))))))).(let H_x0 \def (H0 (s k d)) in (let H3 \def H_x0 in
-(or_ind (\forall (w: T).(ex T (\lambda (v: T).(subst0 (s k d) w t1 (lift (S
-O) (s k d) v))))) (ex T (\lambda (v: T).(eq T t1 (lift (S O) (s k d) v))))
-(or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead k t0 t1) (lift
-(S O) d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 t1) (lift (S O) d
-v))))) (\lambda (H4: ((\forall (w: T).(ex T (\lambda (v: T).(subst0 (s k d) w
-t1 (lift (S O) (s k d) v))))))).(or_introl (\forall (w: T).(ex T (\lambda (v:
-T).(subst0 d w (THead k t0 t1) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq
-T (THead k t0 t1) (lift (S O) d v)))) (\lambda (w: T).(let H_x1 \def (H4 w)
-in (let H5 \def H_x1 in (ex_ind T (\lambda (v: T).(subst0 (s k d) w t1 (lift
-(S O) (s k d) v))) (ex T (\lambda (v: T).(subst0 d w (THead k t0 t1) (lift (S
-O) d v)))) (\lambda (x: T).(\lambda (H6: (subst0 (s k d) w t1 (lift (S O) (s
-k d) x))).(let H_x2 \def (H2 w) in (let H7 \def H_x2 in (ex_ind T (\lambda
-(v: T).(subst0 d w t0 (lift (S O) d v))) (ex T (\lambda (v: T).(subst0 d w
-(THead k t0 t1) (lift (S O) d v)))) (\lambda (x0: T).(\lambda (H8: (subst0 d
-w t0 (lift (S O) d x0))).(ex_intro T (\lambda (v: T).(subst0 d w (THead k t0
-t1) (lift (S O) d v))) (THead k x0 x) (eq_ind_r T (THead k (lift (S O) d x0)
-(lift (S O) (s k d) x)) (\lambda (t2: T).(subst0 d w (THead k t0 t1) t2))
-(subst0_both w t0 (lift (S O) d x0) d H8 k t1 (lift (S O) (s k d) x) H6)
-(lift (S O) d (THead k x0 x)) (lift_head k x0 x (S O) d))))) H7))))) H5))))))
-(\lambda (H4: (ex T (\lambda (v: T).(eq T t1 (lift (S O) (s k d)
-v))))).(ex_ind T (\lambda (v: T).(eq T t1 (lift (S O) (s k d) v))) (or
-(\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead k t0 t1) (lift (S O)
-d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 t1) (lift (S O) d v)))))
-(\lambda (x: T).(\lambda (H5: (eq T t1 (lift (S O) (s k d) x))).(eq_ind_r T
-(lift (S O) (s k d) x) (\lambda (t2: T).(or (\forall (w: T).(ex T (\lambda
-(v: T).(subst0 d w (THead k t0 t2) (lift (S O) d v))))) (ex T (\lambda (v:
-T).(eq T (THead k t0 t2) (lift (S O) d v)))))) (or_introl (\forall (w: T).(ex
-T (\lambda (v: T).(subst0 d w (THead k t0 (lift (S O) (s k d) x)) (lift (S O)
-d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 (lift (S O) (s k d) x))
-(lift (S O) d v)))) (\lambda (w: T).(let H_x1 \def (H2 w) in (let H6 \def
-H_x1 in (ex_ind T (\lambda (v: T).(subst0 d w t0 (lift (S O) d v))) (ex T
-(\lambda (v: T).(subst0 d w (THead k t0 (lift (S O) (s k d) x)) (lift (S O) d
-v)))) (\lambda (x0: T).(\lambda (H7: (subst0 d w t0 (lift (S O) d
-x0))).(ex_intro T (\lambda (v: T).(subst0 d w (THead k t0 (lift (S O) (s k d)
-x)) (lift (S O) d v))) (THead k x0 x) (eq_ind_r T (THead k (lift (S O) d x0)
-(lift (S O) (s k d) x)) (\lambda (t2: T).(subst0 d w (THead k t0 (lift (S O)
-(s k d) x)) t2)) (subst0_fst w (lift (S O) d x0) t0 d H7 (lift (S O) (s k d)
-x) k) (lift (S O) d (THead k x0 x)) (lift_head k x0 x (S O) d))))) H6))))) t1
-H5))) H4)) H3)))) (\lambda (H2: (ex T (\lambda (v: T).(eq T t0 (lift (S O) d
-v))))).(ex_ind T (\lambda (v: T).(eq T t0 (lift (S O) d v))) (or (\forall (w:
-T).(ex T (\lambda (v: T).(subst0 d w (THead k t0 t1) (lift (S O) d v))))) (ex
-T (\lambda (v: T).(eq T (THead k t0 t1) (lift (S O) d v))))) (\lambda (x:
-T).(\lambda (H3: (eq T t0 (lift (S O) d x))).(let H_x0 \def (H0 (s k d)) in
-(let H4 \def H_x0 in (or_ind (\forall (w: T).(ex T (\lambda (v: T).(subst0 (s
-k d) w t1 (lift (S O) (s k d) v))))) (ex T (\lambda (v: T).(eq T t1 (lift (S
-O) (s k d) v)))) (or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead
-k t0 t1) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 t1)
-(lift (S O) d v))))) (\lambda (H5: ((\forall (w: T).(ex T (\lambda (v:
-T).(subst0 (s k d) w t1 (lift (S O) (s k d) v))))))).(eq_ind_r T (lift (S O)
-d x) (\lambda (t2: T).(or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w
-(THead k t2 t1) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T (THead k t2
-t1) (lift (S O) d v)))))) (or_introl (\forall (w: T).(ex T (\lambda (v:
-T).(subst0 d w (THead k (lift (S O) d x) t1) (lift (S O) d v))))) (ex T
-(\lambda (v: T).(eq T (THead k (lift (S O) d x) t1) (lift (S O) d v))))
-(\lambda (w: T).(let H_x1 \def (H5 w) in (let H6 \def H_x1 in (ex_ind T
-(\lambda (v: T).(subst0 (s k d) w t1 (lift (S O) (s k d) v))) (ex T (\lambda
-(v: T).(subst0 d w (THead k (lift (S O) d x) t1) (lift (S O) d v)))) (\lambda
-(x0: T).(\lambda (H7: (subst0 (s k d) w t1 (lift (S O) (s k d)
-x0))).(ex_intro T (\lambda (v: T).(subst0 d w (THead k (lift (S O) d x) t1)
-(lift (S O) d v))) (THead k x x0) (eq_ind_r T (THead k (lift (S O) d x) (lift
-(S O) (s k d) x0)) (\lambda (t2: T).(subst0 d w (THead k (lift (S O) d x) t1)
-t2)) (subst0_snd k w (lift (S O) (s k d) x0) t1 d H7 (lift (S O) d x)) (lift
-(S O) d (THead k x x0)) (lift_head k x x0 (S O) d))))) H6))))) t0 H3))
-(\lambda (H5: (ex T (\lambda (v: T).(eq T t1 (lift (S O) (s k d)
-v))))).(ex_ind T (\lambda (v: T).(eq T t1 (lift (S O) (s k d) v))) (or
-(\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead k t0 t1) (lift (S O)
-d v))))) (ex T (\lambda (v: T).(eq T (THead k t0 t1) (lift (S O) d v)))))
-(\lambda (x0: T).(\lambda (H6: (eq T t1 (lift (S O) (s k d) x0))).(eq_ind_r T
-(lift (S O) (s k d) x0) (\lambda (t2: T).(or (\forall (w: T).(ex T (\lambda
-(v: T).(subst0 d w (THead k t0 t2) (lift (S O) d v))))) (ex T (\lambda (v:
-T).(eq T (THead k t0 t2) (lift (S O) d v)))))) (eq_ind_r T (lift (S O) d x)
-(\lambda (t2: T).(or (\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead
-k t2 (lift (S O) (s k d) x0)) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq
-T (THead k t2 (lift (S O) (s k d) x0)) (lift (S O) d v)))))) (or_intror
-(\forall (w: T).(ex T (\lambda (v: T).(subst0 d w (THead k (lift (S O) d x)
-(lift (S O) (s k d) x0)) (lift (S O) d v))))) (ex T (\lambda (v: T).(eq T
-(THead k (lift (S O) d x) (lift (S O) (s k d) x0)) (lift (S O) d v))))
-(ex_intro T (\lambda (v: T).(eq T (THead k (lift (S O) d x) (lift (S O) (s k
-d) x0)) (lift (S O) d v))) (THead k x x0) (eq_ind_r T (THead k (lift (S O) d
-x) (lift (S O) (s k d) x0)) (\lambda (t2: T).(eq T (THead k (lift (S O) d x)
-(lift (S O) (s k d) x0)) t2)) (refl_equal T (THead k (lift (S O) d x) (lift
-(S O) (s k d) x0))) (lift (S O) d (THead k x x0)) (lift_head k x x0 (S O)
-d)))) t0 H3) t1 H6))) H5)) H4))))) H2)) H1))))))))) t).
-
theorem pr2_change:
\forall (b: B).((not (eq B b Abbr)) \to (\forall (c: C).(\forall (v1:
T).(\forall (t1: T).(\forall (t2: T).((pr2 (CHead c (Bind b) v1) t1 t2) \to
(CHead d (Bind Abbr) u) v1 i0 H7) v2) t3 t4 H3 t H8))))) i H6 H4)))))))))))))
y t1 t2 H1))) H0)))))))).
-theorem pr3_flat:
- \forall (c: C).(\forall (u1: T).(\forall (u2: T).((pr3 c u1 u2) \to (\forall
-(t1: T).(\forall (t2: T).((pr3 c t1 t2) \to (\forall (f: F).(pr3 c (THead
-(Flat f) u1 t1) (THead (Flat f) u2 t2)))))))))
-\def
- \lambda (c: C).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr3 c u1
-u2)).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H0: (pr3 c t1 t2)).(\lambda
-(f: F).(pr3_head_12 c u1 u2 H (Flat f) t1 t2 (pr3_cflat c t1 t2 H0 f
-u2))))))))).
-
theorem pr3_gen_bind:
\forall (b: B).((not (eq B b Abst)) \to (\forall (c: C).(\forall (u1:
T).(\forall (t1: T).(\forall (x: T).((pr3 c (THead (Bind b) u1 t1) x) \to (or