grafiteAstPp.cmi: grafiteAst.cmx
grafiteMarshal.cmi: grafiteAst.cmx
+grafiteAst.cmo:
+grafiteAst.cmx:
grafiteAstPp.cmo: grafiteAst.cmx grafiteAstPp.cmi
grafiteAstPp.cmx: grafiteAst.cmx grafiteAstPp.cmi
grafiteMarshal.cmo: grafiteAstPp.cmi grafiteAst.cmx grafiteMarshal.cmi
| NReduce of loc * [ `Normalize of bool | `Whd of bool ] * npattern
| NRewrite of loc * direction * CicNotationPt.term * npattern
| NAuto of loc * CicNotationPt.term auto_params
+ | NDot of loc
+ | NSemicolon of loc
+ | NBranch of loc
+ | NShift of loc
+ | NPos of loc * int list
+ | NWildcard of loc
+ | NMerge of loc
+ | NSkip of loc
+ | NFocus of loc * int list
+ | NUnfocus of loc
type ('term, 'lazy_term, 'reduction, 'ident) tactic =
(* Higher order tactics (i.e. tacticals) *)
(** To be increased each time the command type below changes, used for "safe"
* marshalling *)
-let magic = 22
+let magic = 23
type ('term,'obj) command =
| Index of loc * 'term option (* key *) * UriManager.uri (* value *)
type ('term, 'lazy_term, 'reduction, 'obj, 'ident) code =
| Command of loc * ('term, 'obj) command
| Macro of loc * ('term,'lazy_term) macro
- | NTactic of loc * ntactic * punctuation_tactical
+ | NTactic of loc * ntactic list
| Tactic of loc * ('term, 'lazy_term, 'reduction, 'ident) tactic option
* punctuation_tactical
| NonPunctuationTactical of loc * non_punctuation_tactical
* punctuation_tactical
- | NNonPunctuationTactical of loc * non_punctuation_tactical
- * punctuation_tactical
type ('term, 'lazy_term, 'reduction, 'obj, 'ident) comment =
| Note of loc * string
(String.concat "," (List.map CicNotationPp.pp_term l))) else "") ^
String.concat " " (List.map (fun a,b -> a ^ "=" ^ b) flgs)
| NReduce _ | NGeneralize _ | NLetIn _ | NAssert _ -> assert false
+ | NDot _ -> "##."
+ | NSemicolon _ -> "##;"
+ | NBranch _ -> "##["
+ | NShift _ -> "##|"
+ | NPos (_, l) -> "##" ^String.concat "," (List.map string_of_int l)^ ":"
+ | NWildcard _ -> "##*:"
+ | NMerge _ -> "##]"
+ | NFocus (_,l) ->
+ Printf.sprintf "##focus %s"
+ (String.concat " " (List.map string_of_int l))
+ | NUnfocus _ -> "##unfocus"
+ | NSkip _ -> "##skip"
;;
let rec pp_tactic ~map_unicode_to_tex ~term_pp ~lazy_term_pp =
^ pp_punctuation_tactical punct
| Tactic (_, None, punct) ->
pp_punctuation_tactical punct
- | NTactic (_,tac, punct) ->
- pp_ntactic ~map_unicode_to_tex tac
- ^ pp_punctuation_tactical punct
+ | NTactic (_,tacl) ->
+ String.concat " " (List.map (pp_ntactic ~map_unicode_to_tex) tacl)
| NonPunctuationTactical (_, tac, punct) ->
pp_non_punctuation_tactical tac
^ pp_punctuation_tactical punct
- | NNonPunctuationTactical (_, tac, punct) ->
- pp_non_punctuation_tactical tac
- ^ pp_punctuation_tactical punct
| Command (_, cmd) -> pp_command ~term_pp ~obj_pp cmd ^ "."
let pp_comment ~map_unicode_to_tex ~term_pp ~lazy_term_pp ~obj_pp =
G.Obj (loc, N.Theorem(flavour, name, ty,
Some (N.LetRec (ind_kind, defs, body))))
+let npunct_of_punct = function
+ | G.Branch loc -> G.NBranch loc
+ | G.Shift loc -> G.NShift loc
+ | G.Pos (loc, i) -> G.NPos (loc, i)
+ | G.Wildcard loc -> G.NWildcard loc
+ | G.Merge loc -> G.NMerge loc
+ | G.Semicolon loc -> G.NSemicolon loc
+ | G.Dot loc -> G.NDot loc
+;;
+let nnon_punct_of_punct = function
+ | G.Skip loc -> G.NSkip loc
+ | G.Unfocus loc -> G.NUnfocus loc
+ | G.Focus (loc,l) -> G.NFocus (loc,l)
+;;
+let npunct_of_punct = function
+ | G.Branch loc -> G.NBranch loc
+ | G.Shift loc -> G.NShift loc
+ | G.Pos (loc, i) -> G.NPos (loc, i)
+ | G.Wildcard loc -> G.NWildcard loc
+ | G.Merge loc -> G.NMerge loc
+ | G.Semicolon loc -> G.NSemicolon loc
+ | G.Dot loc -> G.NDot loc
+;;
+
type by_continuation =
BYC_done
| BYC_weproved of N.term * string option * N.term option
| tac = tactic -> tac
]
];
+ npunctuation_tactical:
+ [
+ [ SYMBOL "[" -> G.NBranch loc
+ | SYMBOL "|" -> G.NShift loc
+ | i = LIST1 int SEP SYMBOL ","; SYMBOL ":" -> G.NPos (loc, i)
+ | SYMBOL "*"; SYMBOL ":" -> G.NWildcard loc
+ | SYMBOL "]" -> G.NMerge loc
+ | SYMBOL ";" -> G.NSemicolon loc
+ | SYMBOL "." -> G.NDot loc
+ ]
+ ];
punctuation_tactical:
[
[ SYMBOL "[" -> G.Branch loc
| tac = atomic_tactical LEVEL "loops"; punct = punctuation_tactical ->
G.Tactic (loc, Some tac, punct)
| punct = punctuation_tactical -> G.Tactic (loc, None, punct)
+ | tac = ntactic; SYMBOL "#" ; SYMBOL "#" ; punct = punctuation_tactical ->
+ G.NTactic (loc, [tac; npunct_of_punct punct])
| tac = ntactic; punct = punctuation_tactical ->
- G.NTactic (loc, tac, punct)
- | SYMBOL "#" ; SYMBOL "#" ; punct = punctuation_tactical ->
- G.NTactic (loc, G.NId loc, punct)
+ G.NTactic (loc, [tac; npunct_of_punct punct])
+ | SYMBOL "#" ; SYMBOL "#" ; punct = npunctuation_tactical ->
+ G.NTactic (loc, [punct])
| tac = non_punctuation_tactical; punct = punctuation_tactical ->
G.NonPunctuationTactical (loc, tac, punct)
- | SYMBOL "#" ; SYMBOL "#" ; tac = non_punctuation_tactical; punct = punctuation_tactical ->
- G.NNonPunctuationTactical (loc, tac, punct)
+ | SYMBOL "#" ; SYMBOL "#" ; tac = non_punctuation_tactical;
+ SYMBOL "#" ; SYMBOL "#" ; punct = punctuation_tactical ->
+ G.NTactic (loc, [nnon_punct_of_punct tac; npunct_of_punct punct])
+ | SYMBOL "#" ; SYMBOL "#" ; tac = non_punctuation_tactical;
+ punct = punctuation_tactical ->
+ G.NTactic (loc, [nnon_punct_of_punct tac; npunct_of_punct punct])
| mac = macro; SYMBOL "." -> G.Macro (loc, mac)
]
];
let ng_generate_tactics fv ueq_case context arities =
[ GA.Executable(floc,GA.NTactic(floc,
- (GA.NIntro (floc,"Univ")),GA.Dot(floc))) ]
+ [GA.NIntro (floc,"Univ") ; GA.NDot(floc)])) ]
@
(HExtlib.list_mapi
(fun (name,_) _->
GA.Executable(floc,GA.NTactic(floc,
- (GA.NIntro (floc,name)),GA.Dot(floc))))
+ [GA.NIntro (floc,name);GA.NDot(floc)])))
arities)
@
(HExtlib.list_mapi
(fun _ i->
GA.Executable(floc,GA.NTactic(floc,
- (GA.NIntro (floc,"H"^string_of_int i)),GA.Dot(floc))))
+ [GA.NIntro (floc,"H"^string_of_int i);GA.NDot(floc)])))
context)
@
(if fv <> [] then
(List.map
(fun _ ->
[GA.Executable(floc,GA.NTactic(floc,
- (GA.NApply (floc,mk_ident "ex_intro")),GA.Branch floc));
- GA.Executable(floc,GA.NTactic(floc, GA.NId floc ,
- (GA.Pos (floc,[2]))))])
+ [GA.NApply (floc,
+ PT.Appl [mk_ident "ex_intro";PT.Implicit;PT.Implicit;
+ PT.Implicit;PT.Implicit]);GA.NBranch floc]));
+ GA.Executable(floc,GA.NTactic(floc,
+ [GA.NPos (floc,[2])]))])
fv))
else [])@
- [GA.Executable(floc,GA.NTactic(floc, (
+ [GA.Executable(floc,GA.NTactic(floc, [
if (*ueq_case*) true then
GA.NAuto (floc,(
HExtlib.list_mapi
"size",string_of_int 20;
"timeout",string_of_int 10;
]))
- ),
- GA.Semicolon(floc)));
+ ;
+ GA.NSemicolon(floc)]));
(*
GA.Executable(floc,GA.NTactic(floc, Some (GA.Try(floc,
GA.Assumption floc)), GA.Dot(floc)))
(List.flatten
(List.map
(fun _ ->
- [GA.Executable(floc,GA.NTactic(floc, GA.NId floc, GA.Shift floc));
- GA.Executable(floc,GA.NNonPunctuationTactical(floc, GA.Skip floc,
- (GA.Merge floc)))])
+ [GA.Executable(floc,GA.NTactic(floc, [GA.NShift floc;
+ GA.NSkip floc; GA.NMerge floc]))])
fv))
else [])@
[GA.Executable(floc,GA.Command(floc, GA.NQed(floc)))]
* which will show up using the following command line:
* ./tptp2grafite -tptppath ~tassi/TPTP-v3.1.1 GRP170-1 *)
let width = max_int in
- let term_pp content_term =
+ let term_pp prec content_term =
let pres_term = TermContentPres.pp_ast content_term in
let lookup_uri = fun _ -> None in
- let markup = CicNotationPres.render ~lookup_uri pres_term in
+ let markup = CicNotationPres.render ~lookup_uri ~prec pres_term in
let s = BoxPp.render_to_string List.hd width markup ~map_unicode_to_tex:false in
Pcre.substitute
~rex:(Pcre.regexp ~flags:[`UTF8] "∀[Ha-z][a-z0-9_]*") ~subst:(fun x -> "\n" ^ x)
s
in
- CicNotationPp.set_pp_term term_pp;
+ CicNotationPp.set_pp_term (term_pp 90);
let lazy_term_pp = fun x -> assert false in
let obj_pp = CicNotationPp.pp_obj CicNotationPp.pp_term in
Pcre.replace ~pat:"theorem" ~templ:"ntheorem"
(GrafiteAstPp.pp_statement
- ~map_unicode_to_tex:false ~term_pp ~lazy_term_pp ~obj_pp t)
+ ~map_unicode_to_tex:false ~term_pp:(term_pp 19) ~lazy_term_pp ~obj_pp t)
in
let buri = Pcre.replace ~pat:"\\.p$" ("cic:/matita/TPTP/" ^ filename) in
let extra_statements_start = [
(* ----Denial of associativity: *)
ntheorem prove_associativity_of_multiply:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (difference X (difference X Y)).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (difference (difference X Y) Z) (difference (difference X Z) (difference Y Z)).
∀H2:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference X Y)) (difference Y (difference Y X)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference Y X)) X.eq Univ (multiply (multiply a b) c) (multiply a (multiply b c))
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference Y X)) X.eq Univ (multiply (multiply a b) c) (multiply a (multiply b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#difference.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#difference ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of simplified third axiom: *)
ntheorem prove_set_difference_3_simplified:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀difference:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (difference (difference X Y) Z) (difference (difference X Z) (difference Y Z)).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference X Y)) (difference Y (difference Y X)).
-∀H2:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference Y X)) X.eq Univ (difference (difference a c) b) (difference (difference a b) c)
+∀H2:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference Y X)) X.eq Univ (difference (difference a c) b) (difference (difference a b) c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#difference.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#difference ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of original third axiom: *)
ntheorem prove_set_difference_3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀difference:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (difference (difference X Y) Z) (difference (difference X Z) Y).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference X Y)) (difference Y (difference Y X)).
-∀H2:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference Y X)) X.eq Univ (difference (difference a b) c) (difference (difference a c) (difference b c))
+∀H2:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference Y X)) X.eq Univ (difference (difference a b) c) (difference (difference a c) (difference b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#difference.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#difference ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_inverse_is_self_cancelling:
- ∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (multiply (inverse Y) Y X) X.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (multiply X X Y) X.
∀H3:∀X:Univ.∀Y:Univ.eq Univ (multiply Y X X) X.
-∀H4:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (inverse (inverse a)) a
+∀H4:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (inverse (inverse a)) a)
.
-#Univ.
-#V.
-#W.
-#X.
-#Y.
-#Z.
-#a.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#V ##.
+#W ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* [++equal(multiply(X,Y,inverse(Y)),X)]). *)
ntheorem prove_equation:
- ∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (multiply (inverse Y) Y X) X.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (multiply X X Y) X.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (multiply Y X X) X.
-∀H3:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (multiply a (inverse a) b) b
+∀H3:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (multiply a (inverse a) b) b)
.
-#Univ.
-#V.
-#W.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#V ##.
+#W ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* [++equal(multiply(X,Y,inverse(Y)),X)]). *)
ntheorem prove_equation:
- ∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (multiply (inverse Y) Y X) X.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (multiply X X Y) X.
∀H3:∀X:Univ.∀Y:Univ.eq Univ (multiply Y X X) X.
-∀H4:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (multiply a (inverse a) b) b
+∀H4:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (multiply a (inverse a) b) b)
.
-#Univ.
-#V.
-#W.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#V ##.
+#W ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_a_times_a_is_a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a a) a
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a a) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_a_times_a_is_a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a a) a
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a a) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_a_plus_a_is_a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a a) a
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a a) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_a_plus_a_is_a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a a) a
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a a) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_a_plus_1_is_a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a multiplicative_identity) multiplicative_identity
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a multiplicative_identity) multiplicative_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_a_plus_1_is_a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a multiplicative_identity) multiplicative_identity
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a multiplicative_identity) multiplicative_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_right_identity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a additive_identity) additive_identity
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a additive_identity) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_right_identity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a additive_identity) additive_identity
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a additive_identity) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_associativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a (multiply b c)) (multiply (multiply a b) c)
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a (multiply b c)) (multiply (multiply a b) c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#c.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#c ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_associativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a (multiply b c)) (multiply (multiply a b) c)
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a (multiply b c)) (multiply (multiply a b) c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#c.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#c ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* [++equal(multiply(X,X),X)]). *)
ntheorem prove_associativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a (add b c)) (add (add a b) c)
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a (add b c)) (add (add a b) c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#c.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#c ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_associativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a (add b c)) (add (add a b) c)
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a (add b c)) (add (add a b) c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#c.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#c ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_operation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a (add a b)) a
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a (add a b)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_operation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a (add a b)) a
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a (add a b)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_a_plus_ab_is_a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a (multiply a b)) a
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a (multiply a b)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_a_plus_ab_is_a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a (multiply a b)) a
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a (multiply a b)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_inverse_of_1_is_0:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀inverse:∀_:Univ.Univ.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse additive_identity) multiplicative_identity
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse additive_identity) multiplicative_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_inverse_of_1_is_0:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀inverse:∀_:Univ.Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse additive_identity) multiplicative_identity
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse additive_identity) multiplicative_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_inverse_is_an_involution:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀inverse:∀_:Univ.Univ.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse (inverse x)) x
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse (inverse x)) x)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#x.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#x ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_inverse_is_an_involution:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀inverse:∀_:Univ.Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse (inverse x)) x
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse (inverse x)) x)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#x.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#x ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_b_is_a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H16:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H17:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ b c
+∀H17:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ b c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#c.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#c ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_a_inverse_is_b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H7:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H8:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H9:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ b (inverse a)
+∀H9:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ b (inverse a))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_c_inverse_is_d:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H14:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H15:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse c) d
+∀H15:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse c) d)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#c.
-#d.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#c ##.
+#d ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_c_inverse_is_d:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse (add a b)) (multiply (inverse a) (inverse b))
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse (add a b)) (multiply (inverse a) (inverse b)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_c_inverse_is_d:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H14:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H15:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse c) d
+∀H15:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse c) d)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#c.
-#d.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#c ##.
+#d ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_c_inverse_is_d:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse (multiply a b)) (add (inverse a) (inverse b))
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse (multiply a b)) (add (inverse a) (inverse b)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#b.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#b ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_sum:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H13:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H14:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add x z) x
+∀H14:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add x z) x)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_sum:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
∀H13:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H14:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply x z) x
+∀H14:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply x z) x)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_inverse_of_1_is_0:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀inverse:∀_:Univ.Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
-∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse multiplicative_identity) additive_identity
+∀H7:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (inverse multiplicative_identity) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#inverse.
-#multiplicative_identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#inverse ##.
+#multiplicative_identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ternary_multiply_1_independant:
- ∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
∀x:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y (inverse Y)) X.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (multiply (inverse Y) Y X) X.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (multiply X X Y) X.
-∀H3:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (multiply y x x) x
+∀H3:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (multiply y x x) x)
.
-#Univ.
-#V.
-#W.
-#X.
-#Y.
-#Z.
-#inverse.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#V ##.
+#W ##.
+#X ##.
+#Y ##.
+#Z ##.
+#inverse ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_commutativity_of_multiply:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (add (multiply X Y) Y) Y.
∀H3:∀X:Univ.eq Univ (add X (inverse X)) n1.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply Y X) (multiply Z X)).
-∀H5:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (multiply b a) (multiply a b)
+∀H5:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (multiply b a) (multiply a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#inverse.
-#multiply.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-nauto by H0,H1,H2,H3,H4,H5;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+nauto by H0,H1,H2,H3,H4,H5 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_associativity_of_multiply:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (add (multiply X Y) Y) Y.
∀H3:∀X:Univ.eq Univ (add X (inverse X)) n1.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply Y X) (multiply Z X)).
-∀H5:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (multiply (multiply a b) c) (multiply a (multiply b c))
+∀H5:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (multiply (multiply a b) c) (multiply a (multiply b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#inverse.
-#multiply.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-nauto by H0,H1,H2,H3,H4,H5;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#inverse ##.
+#multiply ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+nauto by H0,H1,H2,H3,H4,H5 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_add_multiply_property:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (pixley X Y Z) (add (multiply X (inverse Y)) (add (multiply X Z) (multiply (inverse Y) Z))).
∀H4:∀X:Univ.eq Univ (add X (inverse X)) n1.
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply Y X) (multiply Z X)).
-∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (add a (multiply b c)) (multiply (add a b) (add a c))
+∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (add a (multiply b c)) (multiply (add a b) (add a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#inverse.
-#multiply.
-#n1.
-#pixley.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-nauto by H0,H1,H2,H3,H4,H5,H6;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#inverse ##.
+#multiply ##.
+#n1 ##.
+#pixley ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_add_multiply:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (pixley X Y Z) (add (multiply X (inverse Y)) (add (multiply X Z) (multiply (inverse Y) Z))).
∀H4:∀X:Univ.eq Univ (add X (inverse X)) n1.
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply Y X) (multiply Z X)).
-∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (add (multiply a b) b) b
+∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (add (multiply a b) b) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#inverse.
-#multiply.
-#n1.
-#pixley.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-nauto by H0,H1,H2,H3,H4,H5,H6;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#n1 ##.
+#pixley ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_equal_identity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (pixley X Y Z) (add (multiply X (inverse Y)) (add (multiply X Z) (multiply (inverse Y) Z))).
∀H4:∀X:Univ.eq Univ (add X (inverse X)) n1.
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply Y X) (multiply Z X)).
-∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (multiply b (inverse b)) (multiply a (inverse a))
+∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (multiply b (inverse b)) (multiply a (inverse a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#inverse.
-#multiply.
-#n1.
-#pixley.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-nauto by H0,H1,H2,H3,H4,H5,H6;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#n1 ##.
+#pixley ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of the conclusion: *)
ntheorem prove_multiply_add:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H6:∀X:Univ.eq Univ (multiply X (inverse X)) n0.
∀H7:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add Y X) (add Z X)).
∀H8:∀X:Univ.eq Univ (add X (inverse X)) n1.
-∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply Y X) (multiply Z X)).eq Univ (multiply (add a b) b) b
+∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply Y X) (multiply Z X)).eq Univ (multiply (add a b) b) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#inverse.
-#multiply.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of a property of Boolean Algebra: *)
ntheorem prove_idempotence:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (add (multiply X (inverse Y)) (add (multiply X Y) (multiply (inverse Y) Y))) X.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (add (multiply X (inverse X)) (add (multiply X Y) (multiply (inverse X) Y))) Y.
∀H3:∀X:Univ.eq Univ (add X (inverse X)) one.
-∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply Y X) (multiply Z X)).eq Univ (add a a) a
+∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply Y X) (multiply Z X)).eq Univ (add a a) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#inverse.
-#multiply.
-#one.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#inverse ##.
+#multiply ##.
+#one ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_multiply_add_property:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y (add X Z))) X.
∀H7:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) (add X (inverse Y))) X.
∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add (multiply X Y) (multiply Y Z)) Y) Y.
-∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.eq Univ (multiply a (add b c)) (add (multiply b a) (multiply c a))
+∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.eq Univ (multiply a (add b c)) (add (multiply b a) (multiply c a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_equal_inverse:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y (add X Z))) X.
∀H7:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) (add X (inverse Y))) X.
∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add (multiply X Y) (multiply Y Z)) Y) Y.
-∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.eq Univ (add b (inverse b)) (add a (inverse a))
+∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.eq Univ (add b (inverse b)) (add a (inverse a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of a property of Boolean Algebra. *)
ntheorem prove_inverse_involution:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (multiply (add (multiply X Y) X) (add X Y)) X.
∀H3:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) (add X (inverse Y))) X.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add (multiply X Y) (multiply Y Z)) Y) Y.
-∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.eq Univ (inverse (inverse a)) a
+∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.eq Univ (inverse (inverse a)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-nauto by H0,H1,H2,H3,H4,H5;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+nauto by H0,H1,H2,H3,H4,H5 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_multiply_add_property:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H7:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X (inverse X)) Y) Y.
∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add (multiply X Y) (multiply Y Z)) Y) Y.
∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.
-∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) (add (multiply Y Z) (multiply Z X))) (multiply (add X Y) (multiply (add Y Z) (add Z X))).eq Univ (multiply a (add b c)) (add (multiply b a) (multiply c a))
+∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) (add (multiply Y Z) (multiply Z X))) (multiply (add X Y) (multiply (add Y Z) (add Z X))).eq Univ (multiply a (add b c)) (add (multiply b a) (multiply c a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#inverse.
-#multiply.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#inverse ##.
+#multiply ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----A propery of Boolean Algebra fails to hold. *)
ntheorem prove_inverse_involution:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y (add X Z))) X.
∀H9:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X (inverse X)) Y) Y.
∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add (multiply X Y) (multiply Y Z)) Y) Y.
-∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.eq Univ (inverse (inverse a)) a
+∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.eq Univ (inverse (inverse a)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----A simple propery of Boolean Algebra fails to hold. *)
ntheorem prove_inverse_involution:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀H3:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X (inverse X)) Y) Y.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add (multiply X Y) (multiply Y Z)) Y) Y.
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.
-∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) (add (multiply Y Z) (multiply Z X))) (multiply (add X Y) (multiply (add Y Z) (add Z X))).eq Univ (inverse (inverse a)) a
+∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) (add (multiply Y Z) (multiply Z X))) (multiply (add X Y) (multiply (add Y Z) (add Z X))).eq Univ (inverse (inverse a)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-nauto by H0,H1,H2,H3,H4,H5,H6;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of single axiom: *)
ntheorem prove_single_axiom:
- ∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (multiply (inverse Y) Y X) X.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (multiply X X Y) X.
∀H3:∀X:Univ.∀Y:Univ.eq Univ (multiply Y X X) X.
-∀H4:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c)) b
+∀H4:∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c)) b)
.
-#Univ.
-#V.
-#W.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#e.
-#f.
-#g.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#V ##.
+#W ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#e ##.
+#f ##.
+#g ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_tba_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀e:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply (multiply d e a) b (multiply d e c)) (multiply d e (multiply a b c))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply (multiply d e a) b (multiply d e c)) (multiply d e (multiply a b c)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#c.
-#d.
-#e.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#e ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_tba_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply b a a) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply b a a) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_tba_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply a b (inverse b)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply a b (inverse b)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_tba_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply a a b) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply a a b) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_tba_axioms_5:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply (inverse b) b a) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply (inverse b) b a) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem huntinton_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (add (inverse (add (inverse (add A B)) C)) (inverse (add A (inverse (add (inverse C) (inverse (add C D)))))))) C.eq Univ (add b a) (add a b)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (add (inverse (add (inverse (add A B)) C)) (inverse (add A (inverse (add (inverse C) (inverse (add C D)))))))) C.eq Univ (add b a) (add a b))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#add.
-#b.
-#inverse.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#add ##.
+#b ##.
+#inverse ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem huntinton_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀c:Univ.
∀inverse:∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (add (inverse (add (inverse (add A B)) C)) (inverse (add A (inverse (add (inverse C) (inverse (add C D)))))))) C.eq Univ (add (add a b) c) (add a (add b c))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (add (inverse (add (inverse (add A B)) C)) (inverse (add A (inverse (add (inverse C) (inverse (add C D)))))))) C.eq Univ (add (add a b) c) (add a (add b c)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#add.
-#b.
-#c.
-#inverse.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#inverse ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem huntinton_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (add (inverse (add (inverse (add A B)) C)) (inverse (add A (inverse (add (inverse C) (inverse (add C D)))))))) C.eq Univ (add (inverse (add (inverse a) b)) (inverse (add (inverse a) (inverse b)))) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (add (inverse (add (inverse (add A B)) C)) (inverse (add A (inverse (add (inverse C) (inverse (add C D)))))))) C.eq Univ (add (inverse (add (inverse a) b)) (inverse (add (inverse a) (inverse b)))) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#add.
-#b.
-#inverse.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#add ##.
+#b ##.
+#inverse ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand (nand B A) A)) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand (nand B A) A)) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand (nand B A) A)) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand (nand B A) A)) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand (nand B A) A)) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand (nand B A) A)) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand (nand B A) A)) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand (nand B A) A)) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B A))) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B A))) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B A))) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B A))) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand A B))) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand A B))) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand A B))) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand A B))) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand A B))) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand A B))) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand A B))) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand A B))) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B C))) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B C))) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B C))) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B C))) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B C))) (nand C (nand A B))) C.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B C))) (nand C (nand A B))) C.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B C))) (nand C (nand A B))) C.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B C))) (nand C (nand A B))) C.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B B))) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B B))) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B B))) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand A (nand A (nand B B))) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand A B)) A) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand A B)) A) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand A B)) A) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand A B)) A) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B B)) A) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B B)) A) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B B)) A) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B B)) A) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B C)) A) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B C)) A) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B C)) A) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B C)) A) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B C)) A) (nand C (nand A B))) C.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B C)) A) (nand C (nand A B))) C.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B C)) A) (nand C (nand A B))) C.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand B C)) A) (nand C (nand A B))) C.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand A B)) A) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand A B)) A) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand A B)) A) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand A (nand A B)) A) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) A) A) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) A) A) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) A) A) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) A) A) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) A) A) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) A) A) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) A) A) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) A) A) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) C) C) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) C) C) (nand B (nand A C))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) C) C) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) C) C) (nand B (nand A C))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) C) C) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) C) C) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_meredith_2_basis_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀nand:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) C) C) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (nand (nand (nand (nand A B) C) C) (nand B (nand C A))) B.eq Univ (nand a (nand b (nand a c))) (nand (nand (nand c b) b) a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#c.
-#nand.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#c ##.
+#nand ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀combinator:Univ.
∀k:Univ.
∀s:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#combinator.
-#k.
-#s.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#combinator ##.
+#k ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀H1:∀X:Univ.eq Univ (apply i X) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
∀H3:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.
-∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#i.
-#k.
-#s.
-#x.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2,H3,H4;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#i ##.
+#k ##.
+#s ##.
+#x ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2,H3,H4 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀c:Univ.
∀H0:∀X:Univ.eq Univ (apply i X) X.
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply c X) Y) Z) (apply (apply X Z) Y).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply fixed_pt Y)
+∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply fixed_pt Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#c.
-#fixed_pt.
-#i.
-#s.
-#H0.
-#H1.
-#H2.
-#H3.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2,H3;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#c ##.
+#fixed_pt ##.
+#i ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2,H3 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_weak_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀c:Univ.
∀H1:∀X:Univ.eq Univ (apply i X) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply c X) Y) Z) (apply (apply X Z) Y).
∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (weak_fixed_point fixed_pt) (apply fixed_pt (weak_fixed_point fixed_pt))
+∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (weak_fixed_point fixed_pt) (apply fixed_pt (weak_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#c.
-#fixed_pt.
-#i.
-#s.
-#weak_fixed_point.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#c ##.
+#fixed_pt ##.
+#i ##.
+#s ##.
+#weak_fixed_point ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_weak_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀c:Univ.
∀H1:∀X:Univ.eq Univ (apply i X) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply c X) Y) Z) (apply (apply X Z) Y).
∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (weak_fixed_point fixed_pt) (apply fixed_pt (weak_fixed_point fixed_pt))
+∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (weak_fixed_point fixed_pt) (apply fixed_pt (weak_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#c.
-#fixed_pt.
-#i.
-#s.
-#weak_fixed_point.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#c ##.
+#fixed_pt ##.
+#i ##.
+#s ##.
+#weak_fixed_point ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀w:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#w.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#w ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀Strong_fixed_point:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀Strong_fixed_point:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀fixed_point:∀_:Univ.Prop.
∀w:Univ.
∀H0:∀Strong_fixed_point:Univ.∀_:eq Univ (apply Strong_fixed_point fixed_pt) (apply fixed_pt (apply Strong_fixed_point fixed_pt)).fixed_point Strong_fixed_point.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).fixed_point (apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).fixed_point (apply (apply b (apply w w)) (apply (apply b w) (apply (apply b b) b))))
.
-#Univ.
-#Strong_fixed_point.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#fixed_point.
-#fixed_pt.
-#w.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#Strong_fixed_point ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#fixed_point ##.
+#fixed_pt ##.
+#w ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_u_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀f:∀_:Univ.Univ.
∀g:∀_:Univ.Univ.
∀k:Univ.
∀s:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Z:Univ.eq Univ (apply (apply Z (f Z)) (g Z)) (apply (g Z) (apply (apply (f Z) (f Z)) (g Z)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Z:Univ.eq Univ (apply (apply Z (f Z)) (g Z)) (apply (g Z) (apply (apply (f Z) (f Z)) (g Z))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#f.
-#g.
-#k.
-#s.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#f ##.
+#g ##.
+#k ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the U equivalent *)
ntheorem prove_u_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀k:Univ.
∀s:Univ.
∀x:Univ.
∀y:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (apply (apply (apply (apply s (apply k (apply s (apply (apply s k) k)))) (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))) x) y) (apply y (apply (apply x x) y))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (apply (apply (apply (apply s (apply k (apply s (apply (apply s k) k)))) (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))) x) y) (apply y (apply (apply x x) y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#k.
-#s.
-#x.
-#y.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#k ##.
+#s ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_model:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀combinator:Univ.
∀s:Univ.
∀w:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#combinator.
-#s.
-#w.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#combinator ##.
+#s ##.
+#w ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀f:∀_:Univ.Univ.
∀k:Univ.
∀s:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#f.
-#k.
-#s.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#f ##.
+#k ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀fixed_pt:Univ.
∀k:Univ.
∀strong_fixed_point:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply k (apply (apply s s) (apply s k)))) (apply (apply s (apply k s)) k))).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#fixed_pt.
-#k.
-#s.
-#strong_fixed_point.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#fixed_pt ##.
+#k ##.
+#s ##.
+#strong_fixed_point ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀fixed_pt:Univ.
∀k:Univ.
∀strong_fixed_point:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply s (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k)))) (apply (apply s (apply (apply s (apply k s)) k)) (apply k (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))))).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#fixed_pt.
-#k.
-#s.
-#strong_fixed_point.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#fixed_pt ##.
+#k ##.
+#s ##.
+#strong_fixed_point ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀fixed_pt:Univ.
∀k:Univ.
∀strong_fixed_point:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply s (apply k (apply (apply (apply s s) (apply (apply s k) k)) (apply (apply s s) (apply s k))))) (apply (apply s (apply k s)) k)).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#fixed_pt.
-#k.
-#s.
-#strong_fixed_point.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#fixed_pt ##.
+#k ##.
+#s ##.
+#strong_fixed_point ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀combinator:Univ.
∀l:Univ.
-∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#apply.
-#combinator.
-#l.
-#H0.
-napply ex_intro[
-nid2:
-nauto by H0;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#apply ##.
+#combinator ##.
+#l ##.
+#H0 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀m:Univ.
∀H0:∀X:Univ.eq Univ (apply m X) (apply X X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#m.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#m ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀l2:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l2 X) Y) (apply Y (apply X X)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#l2.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#l2 ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀s2:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s2 X) Y) Z) (apply (apply X Z) (apply Y Y)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#s2.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#s2 ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀combinator:Univ.
∀o:Univ.
∀q1:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q1 X) Y) Z) (apply X (apply Z Y)).
-∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply o X) Y) (apply Y (apply X Y)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply o X) Y) (apply Y (apply X Y)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#combinator.
-#o.
-#q1.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#combinator ##.
+#o ##.
+#q1 ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀combinator:Univ.
∀u:Univ.
-∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply u X) Y) (apply Y (apply (apply X X) Y)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply u X) Y) (apply Y (apply (apply X X) Y)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#apply.
-#combinator.
-#u.
-#H0.
-napply ex_intro[
-nid2:
-nauto by H0;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#apply ##.
+#combinator ##.
+#u ##.
+#H0 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀combinator:Univ.
∀l:Univ.
∀s:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#combinator.
-#l.
-#s.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#combinator ##.
+#l ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀combinator:Univ.
∀l:Univ.
∀o:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply o X) Y) (apply Y (apply X Y)).
-∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#apply.
-#combinator.
-#l.
-#o.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#apply ##.
+#combinator ##.
+#l ##.
+#o ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀combinator:Univ.
∀m:Univ.
∀q:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q X) Y) Z) (apply Y (apply X Z)).
-∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#combinator.
-#m.
-#q.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#combinator ##.
+#m ##.
+#q ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀m:Univ.
∀H0:∀X:Univ.eq Univ (apply m X) (apply X X).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#l.
-#m.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#l ##.
+#m ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀t:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#m.
-#t.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#m ##.
+#t ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀combinator:Univ.
∀l:Univ.
∀w:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q X) Y) Z) (apply Y (apply X Z)).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
-∀H2:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H2:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#combinator.
-#l.
-#q.
-#w.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#combinator ##.
+#l ##.
+#q ##.
+#w ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀t:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#s.
-#t.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#s ##.
+#t ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀c:Univ.
∀s:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply c X) Y) Z) (apply (apply X Z) Y).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#c.
-#combinator.
-#s.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#c ##.
+#combinator ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀v:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply v X) Y) Z) (apply (apply Z X) Y).
∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#m.
-#v.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#m ##.
+#v ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀o:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply o X) Y) (apply Y (apply X Y)).
∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#m.
-#o.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#m ##.
+#o ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀n:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n X) Y) Z) (apply (apply (apply X Z) Y) Z).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#n.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#n ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀c:Univ.
∀m:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply c X) Y) Z) (apply (apply X Z) Y).
∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#c.
-#combinator.
-#m.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#c ##.
+#combinator ##.
+#m ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀w:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#w.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#w ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀w1:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w1 X) Y) (apply (apply Y X) X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#w1.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#w1 ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀h:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply h X) Y) Z) (apply (apply (apply X Y) Z) Y).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#h.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#h ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀f:∀_:Univ.Univ.
∀u:Univ.
-∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply u X) Y) (apply Y (apply (apply X X) Y)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply u X) Y) (apply Y (apply (apply X X) Y)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#apply.
-#f.
-#u.
-#H0.
-napply ex_intro[
-nid2:
-nauto by H0;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#apply ##.
+#f ##.
+#u ##.
+#H0 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀f:∀_:Univ.Univ.
∀l:Univ.
∀s:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#f.
-#l.
-#s.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#f ##.
+#l ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀f:∀_:Univ.Univ.
∀l:Univ.
∀o:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply o X) Y) (apply Y (apply X Y)).
-∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#apply.
-#f.
-#l.
-#o.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#apply ##.
+#f ##.
+#l ##.
+#o ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀f:∀_:Univ.Univ.
∀m:Univ.
∀q:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q X) Y) Z) (apply Y (apply X Z)).
-∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#f.
-#m.
-#q.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#f ##.
+#m ##.
+#q ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀m:Univ.
∀H0:∀X:Univ.eq Univ (apply m X) (apply X X).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#l.
-#m.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#l ##.
+#m ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀t:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#m.
-#t.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#m ##.
+#t ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀f:∀_:Univ.Univ.
∀l:Univ.
∀w:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q X) Y) Z) (apply Y (apply X Z)).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
-∀H2:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H2:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#f.
-#l.
-#q.
-#w.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#f ##.
+#l ##.
+#q ##.
+#w ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀t:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#s.
-#t.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#s ##.
+#t ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀c:Univ.
∀s:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply c X) Y) Z) (apply (apply X Z) Y).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#c.
-#f.
-#s.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#c ##.
+#f ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀v:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply v X) Y) Z) (apply (apply Z X) Y).
∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#m.
-#v.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#m ##.
+#v ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀o:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply o X) Y) (apply Y (apply X Y)).
∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#m.
-#o.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#m ##.
+#o ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀c:Univ.
∀m:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply c X) Y) Z) (apply (apply X Z) Y).
∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#c.
-#f.
-#m.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#c ##.
+#f ##.
+#m ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀w1:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w1 X) Y) (apply (apply Y X) X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#w1.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#w1 ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀fixed_pt:Univ.
∀w1:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply b (apply (apply b (apply (apply b (apply w1 w1)) (apply b w1))) b)) b).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w1 X) Y) (apply (apply Y X) X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#fixed_pt.
-#strong_fixed_point.
-#w1.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#fixed_pt ##.
+#strong_fixed_point ##.
+#w1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀fixed_pt:Univ.
∀w1:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply b (apply (apply b (apply w1 w1)) (apply b w1))) (apply (apply b b) b)).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w1 X) Y) (apply (apply Y X) X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#fixed_pt.
-#strong_fixed_point.
-#w1.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#fixed_pt ##.
+#strong_fixed_point ##.
+#w1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀fixed_pt:Univ.
∀w1:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply b (apply (apply b (apply w1 w1)) (apply (apply b (apply b w1)) b))) b).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w1 X) Y) (apply (apply Y X) X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#fixed_pt.
-#strong_fixed_point.
-#w1.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#fixed_pt ##.
+#strong_fixed_point ##.
+#w1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀fixed_pt:Univ.
∀w1:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply b (apply w1 w1)) (apply (apply b (apply b w1)) (apply (apply b b) b))).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w1 X) Y) (apply (apply Y X) X).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#fixed_pt.
-#strong_fixed_point.
-#w1.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#fixed_pt ##.
+#strong_fixed_point ##.
+#w1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀h:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply h X) Y) Z) (apply (apply (apply X Y) Z) Y).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#h.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#h ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀fixed_pt:Univ.
∀strong_fixed_point:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply b (apply (apply b (apply (apply h (apply (apply b (apply (apply b h) (apply b b))) (apply h (apply (apply b h) (apply b b))))) h)) b)) b).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply h X) Y) Z) (apply (apply (apply X Y) Z) Y).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#fixed_pt.
-#h.
-#strong_fixed_point.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#fixed_pt ##.
+#h ##.
+#strong_fixed_point ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀n:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n X) Y) Z) (apply (apply (apply X Z) Y) Z).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#n.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#n ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀fixed_pt:Univ.
∀strong_fixed_point:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply (apply b b) n)) n))) n)) b)) b).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n X) Y) Z) (apply (apply (apply X Z) Y) Z).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#fixed_pt.
-#n.
-#strong_fixed_point.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#fixed_pt ##.
+#n ##.
+#strong_fixed_point ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀fixed_pt:Univ.
∀strong_fixed_point:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply n (apply b b))) n))) n)) b)) b).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n X) Y) Z) (apply (apply (apply X Z) Y) Z).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#fixed_pt.
-#n.
-#strong_fixed_point.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#fixed_pt ##.
+#n ##.
+#strong_fixed_point ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀fixed_pt:Univ.
∀strong_fixed_point:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply b (apply (apply b (apply (apply n (apply n (apply (apply b (apply b b)) (apply n (apply (apply b b) n))))) n)) b)) b).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n X) Y) Z) (apply (apply (apply X Z) Y) Z).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#fixed_pt.
-#n.
-#strong_fixed_point.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#fixed_pt ##.
+#n ##.
+#strong_fixed_point ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀fixed_pt:Univ.
∀strong_fixed_point:Univ.
∀H0:eq Univ strong_fixed_point (apply (apply b (apply (apply b (apply (apply n (apply n (apply (apply b (apply b b)) (apply n (apply n (apply b b)))))) n)) b)) b).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n X) Y) Z) (apply (apply (apply X Z) Y) Z).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#fixed_pt.
-#n.
-#strong_fixed_point.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#fixed_pt ##.
+#n ##.
+#strong_fixed_point ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀s:Univ.
∀H0:∀X:Univ.eq Univ (apply m X) (apply X X).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#m.
-#s.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#m ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀s:Univ.
∀H0:∀X:Univ.eq Univ (apply m X) (apply X X).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#m.
-#s.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#m ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_model:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀f:∀_:Univ.Univ.
∀l:Univ.
∀q:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q X) Y) Z) (apply Y (apply X Z)).
-∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#f.
-#l.
-#q.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#f ##.
+#l ##.
+#q ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀w:Univ.
∀H0:∀X:Univ.eq Univ (apply m X) (apply X X).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#m.
-#w.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#m ##.
+#w ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀w:Univ.
∀H0:∀X:Univ.eq Univ (apply m X) (apply X X).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#m.
-#w.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#m ##.
+#w ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ---- -[response(A,y) = y]. *)
ntheorem prove_all_fond_of_another:
- ∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.
∀a:Univ.
∀compose:∀_:Univ.∀_:Univ.Univ.
∀mocking_bird:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
∀H0:∀W:Univ.∀X:Univ.∀Y:Univ.eq Univ (response (compose X Y) W) (response X (response Y W)).
-∀H1:∀Y:Univ.eq Univ (response mocking_bird Y) (response Y Y).∃Y:Univ.eq Univ (response a Y) Y
+∀H1:∀Y:Univ.eq Univ (response mocking_bird Y) (response Y Y).∃Y:Univ.eq Univ (response a Y) Y)
.
-#Univ.
-#W.
-#X.
-#Y.
-#a.
-#compose.
-#mocking_bird.
-#response.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#W ##.
+#X ##.
+#Y ##.
+#a ##.
+#compose ##.
+#mocking_bird ##.
+#response ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ---- FAx -[response(x,x) = x]. *)
ntheorem prove_the_bird_exists:
- ∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.
∀compose:∀_:Univ.∀_:Univ.Univ.
∀mocking_bird:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
∀H0:∀W:Univ.∀X:Univ.∀Y:Univ.eq Univ (response (compose X Y) W) (response X (response Y W)).
-∀H1:∀Y:Univ.eq Univ (response mocking_bird Y) (response Y Y).∃X:Univ.eq Univ (response X X) X
+∀H1:∀Y:Univ.eq Univ (response mocking_bird Y) (response Y Y).∃X:Univ.eq Univ (response X X) X)
.
-#Univ.
-#W.
-#X.
-#Y.
-#compose.
-#mocking_bird.
-#response.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#W ##.
+#X ##.
+#Y ##.
+#compose ##.
+#mocking_bird ##.
+#response ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ---- -(response(A,v) = response(odd_bird,v)). *)
ntheorem prove_a_is_agreeable:
- ∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.
∀a:Univ.
∀c:Univ.
∀common_bird:∀_:Univ.Univ.
∀odd_bird:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.eq Univ (response c (common_bird X)) (response X (common_bird X)).
-∀H1:∀W:Univ.∀X:Univ.∀Y:Univ.eq Univ (response (compose X Y) W) (response X (response Y W)).∃V:Univ.eq Univ (response a V) (response odd_bird V)
+∀H1:∀W:Univ.∀X:Univ.∀Y:Univ.eq Univ (response (compose X Y) W) (response X (response Y W)).∃V:Univ.eq Univ (response a V) (response odd_bird V))
.
-#Univ.
-#V.
-#W.
-#X.
-#Y.
-#a.
-#c.
-#common_bird.
-#compose.
-#odd_bird.
-#response.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#V ##.
+#W ##.
+#X ##.
+#Y ##.
+#a ##.
+#c ##.
+#common_bird ##.
+#compose ##.
+#odd_bird ##.
+#response ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* ----C composes A with B. WHY is this here? *)
(* ---- -[(u)f(u) = A(B((C)f(u)))]. *)
ntheorem prove_bird_exists:
- ∀Univ:Type.∀U:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀U:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀compose:∀_:Univ.∀_:Univ.Univ.
∀f:∀_:Univ.Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀W:Univ.∀X:Univ.∀Y:Univ.eq Univ (response (compose X Y) W) (response X (response Y W)).∃U:Univ.eq Univ (response U (f U)) (response a (response b (response c (f U))))
+∀H0:∀W:Univ.∀X:Univ.∀Y:Univ.eq Univ (response (compose X Y) W) (response X (response Y W)).∃U:Univ.eq Univ (response U (f U)) (response a (response b (response c (f U)))))
.
-#Univ.
-#U.
-#W.
-#X.
-#Y.
-#a.
-#b.
-#c.
-#compose.
-#f.
-#response.
-#H0.
-napply ex_intro[
-nid2:
-nauto by H0;
-nid|
-skip]
+#Univ ##.
+#U ##.
+#W ##.
+#X ##.
+#Y ##.
+#a ##.
+#b ##.
+#c ##.
+#compose ##.
+#f ##.
+#response ##.
+#H0 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ---- (AB = C) and (AC = B) and -(wv = v). *)
ntheorem prove_there_exists_a_happy_bird:
- ∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
∀H0:eq Univ (response a c) b.
∀H1:eq Univ (response a b) c.
-∀H2:∀W:Univ.∀X:Univ.∀Y:Univ.eq Univ (response (compose X Y) W) (response X (response Y W)).∃V:Univ.∃W:Univ.eq Univ (response W V) V
+∀H2:∀W:Univ.∀X:Univ.∀Y:Univ.eq Univ (response (compose X Y) W) (response X (response Y W)).∃V:Univ.∃W:Univ.eq Univ (response W V) V)
.
-#Univ.
-#V.
-#W.
-#X.
-#Y.
-#a.
-#b.
-#c.
-#compose.
-#response.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
-nid|
-skip]
+#Univ ##.
+#V ##.
+#W ##.
+#X ##.
+#Y ##.
+#a ##.
+#b ##.
+#c ##.
+#compose ##.
+#response ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀c:Univ.
∀H0:∀X:Univ.eq Univ (apply i X) X.
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply c X) Y) Z) (apply (apply X Z) Y).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#c.
-#f.
-#i.
-#s.
-#H0.
-#H1.
-#H2.
-#H3.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2,H3;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#c ##.
+#f ##.
+#i ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2,H3 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ---- Hypothesis: There exists a bird x that is fond of itself. *)
ntheorem prove_the_bird_exists:
- ∀Univ:Type.∀X:Univ.∀X1:Univ.∀X2:Univ.
+ (∀Univ:Type.∀X:Univ.∀X1:Univ.∀X2:Univ.
∀lark:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀X1:Univ.∀X2:Univ.eq Univ (response (response lark X1) X2) (response X1 (response X2 X2)).∃X:Univ.eq Univ (response X X) X
+∀H0:∀X1:Univ.∀X2:Univ.eq Univ (response (response lark X1) X2) (response X1 (response X2 X2)).∃X:Univ.eq Univ (response X X) X)
.
-#Univ.
-#X.
-#X1.
-#X2.
-#lark.
-#response.
-#H0.
-napply ex_intro[
-nid2:
-nauto by H0;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#X1 ##.
+#X2 ##.
+#lark ##.
+#response ##.
+#H0 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ---- Hypothesis: This bird is egocentric *)
ntheorem prove_the_bird_exists:
- ∀Univ:Type.∀X1:Univ.∀X2:Univ.
+ (∀Univ:Type.∀X1:Univ.∀X2:Univ.
∀lark:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀X1:Univ.∀X2:Univ.eq Univ (response (response lark X1) X2) (response X1 (response X2 X2)).eq Univ (response (response (response lark (response (response lark (response lark lark)) (response lark (response lark lark)))) (response lark (response lark lark))) (response (response lark (response (response lark (response lark lark)) (response lark (response lark lark)))) (response lark (response lark lark)))) (response (response lark (response (response lark (response lark lark)) (response lark (response lark lark)))) (response lark (response lark lark)))
+∀H0:∀X1:Univ.∀X2:Univ.eq Univ (response (response lark X1) X2) (response X1 (response X2 X2)).eq Univ (response (response (response lark (response (response lark (response lark lark)) (response lark (response lark lark)))) (response lark (response lark lark))) (response (response lark (response (response lark (response lark lark)) (response lark (response lark lark)))) (response lark (response lark lark)))) (response (response lark (response (response lark (response lark lark)) (response lark (response lark lark)))) (response lark (response lark lark))))
.
-#Univ.
-#X1.
-#X2.
-#lark.
-#response.
-#H0.
-nauto by H0;
+#Univ ##.
+#X1 ##.
+#X2 ##.
+#lark ##.
+#response ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ---- Hypothesis: This bird is egocentric *)
ntheorem prove_the_bird_exists:
- ∀Univ:Type.∀X1:Univ.∀X2:Univ.
+ (∀Univ:Type.∀X1:Univ.∀X2:Univ.
∀lark:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀X1:Univ.∀X2:Univ.eq Univ (response (response lark X1) X2) (response X1 (response X2 X2)).eq Univ (response (response (response (response lark lark) (response lark (response lark lark))) (response lark (response lark lark))) (response (response (response lark lark) (response lark (response lark lark))) (response lark (response lark lark)))) (response (response (response lark lark) (response lark (response lark lark))) (response lark (response lark lark)))
+∀H0:∀X1:Univ.∀X2:Univ.eq Univ (response (response lark X1) X2) (response X1 (response X2 X2)).eq Univ (response (response (response (response lark lark) (response lark (response lark lark))) (response lark (response lark lark))) (response (response (response lark lark) (response lark (response lark lark))) (response lark (response lark lark)))) (response (response (response lark lark) (response lark (response lark lark))) (response lark (response lark lark))))
.
-#Univ.
-#X1.
-#X2.
-#lark.
-#response.
-#H0.
-nauto by H0;
+#Univ ##.
+#X1 ##.
+#X2 ##.
+#lark ##.
+#response ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_q_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀h:∀_:Univ.Univ.
∀t:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply X (f X)) (g X)) (h X)) (apply (g X) (apply (f X) (h X)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply X (f X)) (g X)) (h X)) (apply (g X) (apply (f X) (h X))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#g.
-#h.
-#t.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#g ##.
+#h ##.
+#t ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the q equivalent *)
ntheorem prove_q_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t b)) (apply (apply b b) t)) x) y) z) (apply y (apply x z))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t b)) (apply (apply b b) t)) x) y) z) (apply y (apply x z)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the q equivalent *)
ntheorem prove_q_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t b)) b)) t) x) y) z) (apply y (apply x z))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t b)) b)) t) x) y) z) (apply y (apply x z)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_q1_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀h:∀_:Univ.Univ.
∀t:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply X (f X)) (g X)) (h X)) (apply (f X) (apply (h X) (g X)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply X (f X)) (g X)) (h X)) (apply (f X) (apply (h X) (g X))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#g.
-#h.
-#t.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#g ##.
+#h ##.
+#t ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the Q1 equivalent *)
ntheorem prove_q1_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t t)) (apply (apply b b) b)) x) y) z) (apply x (apply z y))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t t)) (apply (apply b b) b)) x) y) z) (apply x (apply z y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the Q1 equivalent *)
ntheorem prove_q1_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t t)) b)) b) x) y) z) (apply x (apply z y))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t t)) b)) b) x) y) z) (apply x (apply z y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_c_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀h:∀_:Univ.Univ.
∀t:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply X (f X)) (g X)) (h X)) (apply (apply (f X) (h X)) (g X))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply X (f X)) (g X)) (h X)) (apply (apply (f X) (h X)) (g X)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#g.
-#h.
-#t.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#g ##.
+#h ##.
+#t ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the C equivalent *)
ntheorem prove_c_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)) x) y) z) (apply (apply x z) y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) t)) x) y) z) (apply (apply x z) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the C equivalent *)
ntheorem prove_c_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t (apply (apply b b) t))) b)) t) x) y) z) (apply (apply x z) y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t (apply (apply b b) t))) b)) t) x) y) z) (apply (apply x z) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_f_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀h:∀_:Univ.Univ.
∀t:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply X (f X)) (g X)) (h X)) (apply (apply (h X) (g X)) (f X))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply X (f X)) (g X)) (h X)) (apply (apply (h X) (g X)) (f X)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#g.
-#h.
-#t.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#g ##.
+#h ##.
+#t ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the F equivalent *)
ntheorem prove_f_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))) x) y) z) (apply (apply z y) x)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t t)) (apply (apply b b) (apply (apply b b) t))) x) y) z) (apply (apply z y) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the F equivalent *)
ntheorem prove_f_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t t)) b)) (apply (apply b b) t)) x) y) z) (apply (apply z y) x)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t t)) b)) (apply (apply b b) t)) x) y) z) (apply (apply z y) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the F equivalent *)
ntheorem prove_f_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t t)) (apply (apply b (apply (apply b b) b)) t)) x) y) z) (apply (apply z y) x)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t t)) (apply (apply b (apply (apply b b) b)) t)) x) y) z) (apply (apply z y) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the F equivalent *)
ntheorem prove_f_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t t)) (apply (apply b b) b))) t) x) y) z) (apply (apply z y) x)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t t)) (apply (apply b b) b))) t) x) y) z) (apply (apply z y) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the F equivalent *)
ntheorem prove_f_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply (apply b (apply t t)) b)) b)) t) x) y) z) (apply (apply z y) x)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply (apply b (apply t t)) b)) b)) t) x) y) z) (apply (apply z y) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_v_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀h:∀_:Univ.Univ.
∀t:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply X (f X)) (g X)) (h X)) (apply (apply (h X) (f X)) (g X))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply X (f X)) (g X)) (h X)) (apply (apply (h X) (f X)) (g X)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#g.
-#h.
-#t.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#g ##.
+#h ##.
+#t ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the V equivalent *)
ntheorem prove_v_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))) x) y) z) (apply (apply z x) y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b b) t))) x) y) z) (apply (apply z x) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the V equivalent *)
ntheorem prove_v_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t (apply (apply b b) t))) b)) (apply (apply b b) t)) x) y) z) (apply (apply z x) y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t (apply (apply b b) t))) b)) (apply (apply b b) t)) x) y) z) (apply (apply z x) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the V equivalent *)
ntheorem prove_v_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b (apply (apply b b) b)) t)) x) y) z) (apply (apply z x) y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b (apply (apply b b) b)) t)) x) y) z) (apply (apply z x) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the V equivalent *)
ntheorem prove_v_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) b))) t) x) y) z) (apply (apply z x) y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) b))) t) x) y) z) (apply (apply z x) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the V equivalent *)
ntheorem prove_v_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply (apply b (apply t (apply (apply b b) t))) b)) b)) t) x) y) z) (apply (apply z x) y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply (apply b (apply t (apply (apply b b) t))) b)) b)) t) x) y) z) (apply (apply z x) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the V equivalent *)
ntheorem prove_v_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b t) t))) x) y) z) (apply (apply z x) y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b b) (apply (apply b t) t))) x) y) z) (apply (apply z x) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the V equivalent *)
ntheorem prove_v_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t (apply (apply b b) t))) b)) (apply (apply b t) t)) x) y) z) (apply (apply z x) y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply (apply b (apply t (apply (apply b b) t))) b)) (apply (apply b t) t)) x) y) z) (apply (apply z x) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the V equivalent *)
ntheorem prove_v_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀t:Univ.
∀y:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b (apply (apply b b) t)) t)) x) y) z) (apply (apply z x) y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply b (apply t (apply (apply b b) t))) (apply (apply b (apply (apply b b) t)) t)) x) y) z) (apply (apply z x) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#t.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#t ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_g_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀i:∀_:Univ.Univ.
∀t:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply t X) Y) (apply Y X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply (apply X (f X)) (g X)) (h X)) (i X)) (apply (apply (f X) (i X)) (apply (g X) (h X)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply (apply X (f X)) (g X)) (h X)) (i X)) (apply (apply (f X) (i X)) (apply (g X) (h X))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#g.
-#h.
-#i.
-#t.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#g ##.
+#h ##.
+#i ##.
+#t ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀w:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q X) Y) Z) (apply Y (apply X Z)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply (apply X (f X)) (g X)) (g X)) (h X)) (apply (apply (f X) (g X)) (apply (apply (f X) (g X)) (h X)))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃X:Univ.eq Univ (apply (apply (apply (apply X (f X)) (g X)) (g X)) (h X)) (apply (apply (f X) (g X)) (apply (apply (f X) (g X)) (h X))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#g.
-#h.
-#q.
-#w.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#g ##.
+#h ##.
+#q ##.
+#w ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the P equivalent *)
ntheorem prove_p_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀q:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q X) Y) Z) (apply Y (apply X Z)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply (apply q q) (apply w (apply q (apply q q)))) x) y) y) z) (apply (apply x y) (apply (apply x y) z))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply (apply q q) (apply w (apply q (apply q q)))) x) y) y) z) (apply (apply x y) (apply (apply x y) z)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#q.
-#w.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#q ##.
+#w ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is the P equivalent *)
ntheorem prove_p_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀q:Univ.
∀z:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply w X) Y) (apply (apply X Y) Y).
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q X) Y) Z) (apply Y (apply X Z)).
-∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply (apply b (apply w (apply q (apply q q)))) q) x) y) y) z) (apply (apply x y) (apply (apply x y) z))
+∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply (apply (apply (apply (apply (apply b (apply w (apply q (apply q q)))) q) x) y) y) z) (apply (apply x y) (apply (apply x y) z)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#q.
-#w.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#q ##.
+#w ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀s:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#s.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀s:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#s.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀l:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#l.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#l ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀combinator:Univ.
∀n1:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n1 X) Y) Z) (apply (apply (apply X Y) Y) Z).∃Y:Univ.eq Univ Y (apply combinator Y)
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n1 X) Y) Z) (apply (apply (apply X Y) Y) Z).∃Y:Univ.eq Univ Y (apply combinator Y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#combinator.
-#n1.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#combinator ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀f:∀_:Univ.Univ.
∀n:Univ.
∀q:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q X) Y) Z) (apply Y (apply X Z)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n X) Y) Z) (apply (apply (apply X Z) Y) Z).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n X) Y) Z) (apply (apply (apply X Z) Y) Z).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#f.
-#n.
-#q.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#f ##.
+#n ##.
+#q ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_strong_fixed_point:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀n1:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n1 X) Y) Z) (apply (apply (apply X Y) Y) Z).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n1 X) Y) Z) (apply (apply (apply X Y) Y) Z).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#n1.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Subsitution axioms *)
ntheorem prove_diagonal_combinator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀abstraction:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:∀_:Univ.Univ.
∀c:∀_:Univ.Univ.
∀k:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply abstraction X) Y) Z) (apply (apply X (apply k Z)) (apply Y Z)).
-∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.∃Y:Univ.eq Univ (apply (apply Y (b Y)) (c Y)) (apply (b Y) (b Y))
+∀H1:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.∃Y:Univ.eq Univ (apply (apply Y (b Y)) (c Y)) (apply (b Y) (b Y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#abstraction.
-#apply.
-#b.
-#c.
-#k.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#abstraction ##.
+#apply ##.
+#b ##.
+#c ##.
+#k ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_birds_are_compatible_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀compose:∀_:Univ.∀_:Univ.Univ.
∀mocking_bird:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (response (compose A B) C) (response A (response B C)).
-∀H1:∀A:Univ.eq Univ (response mocking_bird A) (response A A).∃A:Univ.∃B:Univ.eq Univ (response a A) B
+∀H1:∀A:Univ.eq Univ (response mocking_bird A) (response A A).∃A:Univ.∃B:Univ.eq Univ (response a A) B)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#compose.
-#mocking_bird.
-#response.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
-nid|
-skip]
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#compose ##.
+#mocking_bird ##.
+#response ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_birds_are_compatible_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀b:Univ.
∀compose:∀_:Univ.∀_:Univ.Univ.
∀mocking_bird:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (response (compose A B) C) (response A (response B C)).
-∀H1:∀A:Univ.eq Univ (response mocking_bird A) (response A A).∃A:Univ.∃B:Univ.eq Univ (response b B) A
+∀H1:∀A:Univ.eq Univ (response mocking_bird A) (response A A).∃A:Univ.∃B:Univ.eq Univ (response b B) A)
.
-#Univ.
-#A.
-#B.
-#C.
-#b.
-#compose.
-#mocking_bird.
-#response.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
-nid|
-skip]
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#b ##.
+#compose ##.
+#mocking_bird ##.
+#response ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_happiness_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.
∀a:Univ.
∀b:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
-∀H0:eq Univ (response a b) b.∃A:Univ.∃B:Univ.eq Univ (response a A) B
+∀H0:eq Univ (response a b) b.∃A:Univ.∃B:Univ.eq Univ (response a A) B)
.
-#Univ.
-#A.
-#B.
-#a.
-#b.
-#response.
-#H0.
-napply ex_intro[
-nid2:
-napply ex_intro[
-nid2:
-nauto by H0;
-nid|
-skip]
-nid|
-skip]
+#Univ ##.
+#A ##.
+#B ##.
+#a ##.
+#b ##.
+#response ##.
+#H0 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0 ##;
+##| ##skip ##]
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_happiness_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.
∀a:Univ.
∀b:Univ.
∀response:∀_:Univ.∀_:Univ.Univ.
-∀H0:eq Univ (response a b) b.∃A:Univ.∃B:Univ.eq Univ (response a B) A
+∀H0:eq Univ (response a b) b.∃A:Univ.∃B:Univ.eq Univ (response a B) A)
.
-#Univ.
-#A.
-#B.
-#a.
-#b.
-#response.
-#H0.
-napply ex_intro[
-nid2:
-napply ex_intro[
-nid2:
-nauto by H0;
-nid|
-skip]
-nid|
-skip]
+#Univ ##.
+#A ##.
+#B ##.
+#a ##.
+#b ##.
+#response ##.
+#H0 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0 ##;
+##| ##skip ##]
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem strong_fixpoint:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀apply:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀m:Univ.
∀H0:∀X:Univ.eq Univ (apply m X) (apply X X).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y)))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#apply.
-#b.
-#f.
-#m.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#apply ##.
+#b ##.
+#f ##.
+#m ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Redundant two axioms *)
ntheorem prove_b_times_a_is_c:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H3:∀X:Univ.eq Univ (multiply X identity) X.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H5:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H6:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply b a) c
+∀H6:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply b a) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-nauto by H0,H1,H2,H3,H4,H5,H6;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----There exists an identity element 'e' defined below. *)
ntheorem prove_b_times_a_is_c:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H0:eq Univ (multiply a b) c.
∀H1:∀X:Univ.eq Univ (multiply X X) identity.
∀H2:∀X:Univ.eq Univ (multiply identity X) X.
-∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ (multiply b a) c
+∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ (multiply b a) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#identity.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This hypothesis is omitted in the ANL source version *)
ntheorem prove_k_times_inverse_b_is_e:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H7:∀X:Univ.eq Univ (multiply X identity) X.
∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H9:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H10:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply k (inverse b)) identity
+∀H10:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply k (inverse b)) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#h.
-#identity.
-#inverse.
-#j.
-#k.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#h ##.
+#identity ##.
+#inverse ##.
+#j ##.
+#k ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Definition of the commutator *)
ntheorem prove_commutator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀commutator:∀_:Univ.∀_:Univ.Univ.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (commutator X Y) (multiply X (multiply Y (multiply (inverse X) (inverse Y)))).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H3:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (commutator (commutator a b) b) identity
+∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (commutator (commutator a b) b) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#commutator.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#commutator ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Definition of the commutator *)
ntheorem prove_commutator:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀commutator:∀_:Univ.∀_:Univ.Univ.
∀H3:∀X:Univ.eq Univ (multiply X identity) X.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H5:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H6:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (commutator (commutator a b) b) identity
+∀H6:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (commutator (commutator a b) b) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#commutator.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-nauto by H0,H1,H2,H3,H4,H5,H6;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#commutator ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----There exists an identity element 'e' defined below. *)
ntheorem prove_b_times_c_is_e:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀b:Univ.
∀c:Univ.
∀identity:Univ.
∀H0:eq Univ (multiply c b) identity.
∀H1:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
∀H2:∀X:Univ.eq Univ (multiply identity X) X.
-∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ (multiply b c) identity
+∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ (multiply b c) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#b.
-#c.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#b ##.
+#c ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----There exists an identity element *)
ntheorem prove_left_cancellation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀b:Univ.
∀c:Univ.
∀d:Univ.
∀H0:eq Univ (multiply b c) (multiply d c).
∀H1:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
∀H2:∀X:Univ.eq Univ (multiply identity X) X.
-∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ b d
+∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ b d)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#b.
-#c.
-#d.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#b ##.
+#c ##.
+#d ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Redundant two axioms *)
ntheorem prove_inverse_of_product_is_product_of_inverses:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀identity:Univ.
∀H1:∀X:Univ.eq Univ (multiply X identity) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H3:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (inverse (multiply a b)) (multiply (inverse b) (inverse a))
+∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (inverse (multiply a b)) (multiply (inverse b) (inverse a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_associativity:
- ∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (inverse (multiply (multiply (inverse (multiply (inverse Y) (multiply (inverse X) W))) Z) (inverse (multiply Y Z))))) W.eq Univ (multiply a (multiply b c)) (multiply (multiply a b) c)
+∀H0:∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (inverse (multiply (multiply (inverse (multiply (inverse Y) (multiply (inverse X) W))) Z) (inverse (multiply Y Z))))) W.eq Univ (multiply a (multiply b c)) (multiply (multiply a b) c))
.
-#Univ.
-#W.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#W ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Redundant two axioms *)
ntheorem prove_inverse_of_inverse_is_original:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀identity:Univ.
∀inverse:∀_:Univ.Univ.
∀H1:∀X:Univ.eq Univ (multiply X identity) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H3:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (inverse (inverse a)) a
+∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (inverse (inverse a)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Redundant two axioms *)
ntheorem prove_inverse_of_id_is_id:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀identity:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H1:∀X:Univ.eq Univ (multiply X identity) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H3:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (inverse identity) identity
+∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (inverse identity) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_center:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (commutator X Y) (multiply (inverse X) (multiply (inverse Y) (multiply X Y))).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H3:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a (commutator b c)) (multiply (commutator b c) a)
+∀H4:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a (commutator b c)) (multiply (commutator b c) a))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#commutator.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#commutator ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This axiom is a lemma *)
ntheorem prove_product:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀identity:Univ.
∀intersection:∀_:Univ.∀_:Univ.Univ.
∀H16:eq Univ (inverse identity) identity.
∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H18:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (positive_part a) (negative_part a)) a
+∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (positive_part a) (negative_part a)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#identity.
-#intersection.
-#inverse.
-#multiply.
-#negative_part.
-#positive_part.
-#union.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#identity ##.
+#intersection ##.
+#inverse ##.
+#multiply ##.
+#negative_part ##.
+#positive_part ##.
+#union ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_order3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀identity:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (multiply (multiply X (multiply (multiply X Y) Z)) (multiply identity (multiply Z Z)))) Y.eq Univ (multiply a (multiply a a)) identity
+∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (multiply (multiply X (multiply (multiply X Y) Z)) (multiply identity (multiply Z Z)))) Y.eq Univ (multiply a (multiply a a)) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#identity.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#identity ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_order3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀identity:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (multiply (multiply X (multiply (multiply X Y) Z)) (multiply identity (multiply Z Z)))) Y.eq Univ (multiply identity a) a
+∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (multiply (multiply X (multiply (multiply X Y) Z)) (multiply identity (multiply Z Z)))) Y.eq Univ (multiply identity a) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#identity.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#identity ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_order3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀identity:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (multiply (multiply X (multiply (multiply X Y) Z)) (multiply identity (multiply Z Z)))) Y.eq Univ (multiply a identity) a
+∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (multiply (multiply X (multiply (multiply X Y) Z)) (multiply identity (multiply Z Z)))) Y.eq Univ (multiply a identity) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#identity.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#identity ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_order3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀identity:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (multiply (multiply X (multiply (multiply X Y) Z)) (multiply identity (multiply Z Z)))) Y.eq Univ (multiply (multiply a b) c) (multiply a (multiply b c))
+∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (multiply (multiply X (multiply (multiply X Y) Z)) (multiply identity (multiply Z Z)))) Y.eq Univ (multiply (multiply a b) c) (multiply a (multiply b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#identity.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#identity ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_order4:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀identity:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:eq Univ (multiply identity identity) identity.
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply Y (multiply (multiply Y (multiply (multiply Y Y) (multiply X Z))) (multiply Z (multiply Z Z)))) X.eq Univ (multiply a (multiply a (multiply a a))) identity
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply Y (multiply (multiply Y (multiply (multiply Y Y) (multiply X Z))) (multiply Z (multiply Z Z)))) X.eq Univ (multiply a (multiply a (multiply a a))) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#identity.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_order3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀identity:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:eq Univ (multiply identity identity) identity.
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply Y (multiply (multiply Y (multiply (multiply Y Y) (multiply X Z))) (multiply Z (multiply Z Z)))) X.eq Univ (multiply identity a) a
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply Y (multiply (multiply Y (multiply (multiply Y Y) (multiply X Z))) (multiply Z (multiply Z Z)))) X.eq Univ (multiply identity a) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#identity.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_order3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀identity:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:eq Univ (multiply identity identity) identity.
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply Y (multiply (multiply Y (multiply (multiply Y Y) (multiply X Z))) (multiply Z (multiply Z Z)))) X.eq Univ (multiply a identity) a
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply Y (multiply (multiply Y (multiply (multiply Y Y) (multiply X Z))) (multiply Z (multiply Z Z)))) X.eq Univ (multiply a identity) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#identity.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_order3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀identity:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:eq Univ (multiply identity identity) identity.
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply Y (multiply (multiply Y (multiply (multiply Y Y) (multiply X Z))) (multiply Z (multiply Z Z)))) X.eq Univ (multiply (multiply a b) c) (multiply a (multiply b c))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply Y (multiply (multiply Y (multiply (multiply Y Y) (multiply X Z))) (multiply Z (multiply Z Z)))) X.eq Univ (multiply (multiply a b) c) (multiply a (multiply b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#identity.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#identity ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_antisyma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_antisymb:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_glb1a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (greatest_lower_bound a b) c) (greatest_lower_bound a b)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (greatest_lower_bound a b) c) (greatest_lower_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_glb1b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (greatest_lower_bound a b) c) c
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (greatest_lower_bound a b) c) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_glb1c:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (greatest_lower_bound a b) c) (greatest_lower_bound a b)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (greatest_lower_bound a b) c) (greatest_lower_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_glb1d:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (greatest_lower_bound a b) c) c
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (greatest_lower_bound a b) c) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_glb2a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (greatest_lower_bound a b) a) a
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (greatest_lower_bound a b) a) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_glb2b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (greatest_lower_bound a b) a) (greatest_lower_bound a b)
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (greatest_lower_bound a b) a) (greatest_lower_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_glb3a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (greatest_lower_bound a b) b) b
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (greatest_lower_bound a b) b) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_glb3b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (greatest_lower_bound a b) b) (greatest_lower_bound a b)
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (greatest_lower_bound a b) b) (greatest_lower_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_lub1a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (least_upper_bound a b) c) c
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (least_upper_bound a b) c) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_lub1b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a b) c) (least_upper_bound a b)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a b) c) (least_upper_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_lub1c:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a b) c) (least_upper_bound a b)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a b) c) (least_upper_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_lub1d:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (least_upper_bound a b) c) c
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (least_upper_bound a b) c) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_lub2a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a (least_upper_bound a b)) (least_upper_bound a b)
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a (least_upper_bound a b)) (least_upper_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_lub2b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (least_upper_bound a b)) a
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (least_upper_bound a b)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_lub3a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound b (least_upper_bound a b)) (least_upper_bound a b)
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound b (least_upper_bound a b)) (least_upper_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_lub3b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound b (least_upper_bound a b)) b
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound b (least_upper_bound a b)) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_mono1a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a c) (multiply b c)) (multiply b c)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a c) (multiply b c)) (multiply b c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_mono1b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply a c) (multiply b c)) (multiply a c)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply a c) (multiply b c)) (multiply a c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_mono1c:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply a c) (multiply b c)) (multiply a c)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply a c) (multiply b c)) (multiply a c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_mono2a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply c a) (multiply c b)) (multiply c b)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply c a) (multiply c b)) (multiply c b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_mono2b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply c a) (multiply c b)) (multiply c a)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply c a) (multiply c b)) (multiply c a))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_mono2c:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply c a) (multiply c b)) (multiply c b)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply c a) (multiply c b)) (multiply c b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_refla:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a a) a
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a a) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_reflb:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a a) a
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a a) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_transa:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a c) c
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a c) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_ax_transb:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a c) a
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a c) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_distrnu:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a (greatest_lower_bound b c)) (greatest_lower_bound (least_upper_bound a b) (least_upper_bound a c))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a (greatest_lower_bound b c)) (greatest_lower_bound (least_upper_bound a b) (least_upper_bound a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_distrun:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (least_upper_bound b c)) (least_upper_bound (greatest_lower_bound a b) (greatest_lower_bound a c))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (least_upper_bound b c)) (least_upper_bound (greatest_lower_bound a b) (greatest_lower_bound a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_lat1a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a (multiply a a)) (multiply a a)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a (multiply a a)) (multiply a a))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_lat1b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply a a)) a
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply a a)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----[Dah95] says this is redundant. *)
ntheorem prove_lat2a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a (multiply a b)) (multiply a b)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a (multiply a b)) (multiply a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_lat2b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply a b)) a
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply a b)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_lat3a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a (multiply b a)) (multiply b a)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a (multiply b a)) (multiply b a))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_lat3b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply b a)) a
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply b a)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_lat4:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H15:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H16:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H17:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H18:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (positive_part a) (negative_part a))
+∀H18:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (positive_part a) (negative_part a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#negative_part.
-#positive_part.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#negative_part ##.
+#positive_part ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_lat4:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H18:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H19:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H20:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H21:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (positive_part a) (negative_part a))
+∀H21:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (positive_part a) (negative_part a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#negative_part.
-#positive_part.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#negative_part ##.
+#positive_part ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p19:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (least_upper_bound a identity) (greatest_lower_bound a identity))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (least_upper_bound a identity) (greatest_lower_bound a identity)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p19:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (least_upper_bound a identity) (greatest_lower_bound a identity))
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (least_upper_bound a identity) (greatest_lower_bound a identity)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Extra lemma *)
ntheorem prove_lat4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H16:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H18:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (positive_part a) (negative_part a))
+∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a (multiply (positive_part a) (negative_part a)))
.
-#Univ.
-#A.
-#B.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#negative_part.
-#positive_part.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19;
+#Univ ##.
+#A ##.
+#B ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#negative_part ##.
+#positive_part ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p01a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply (inverse c) (multiply a c)) (multiply (inverse c) (multiply b c))) (multiply (inverse c) (multiply b c))
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply (inverse c) (multiply a c)) (multiply (inverse c) (multiply b c))) (multiply (inverse c) (multiply b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p01b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply (inverse c) (multiply a c)) (multiply (inverse c) (multiply b c))) (multiply (inverse c) (multiply a c))
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply (inverse c) (multiply a c)) (multiply (inverse c) (multiply b c))) (multiply (inverse c) (multiply a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p02a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a b) a
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound a b) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p02b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a b) b
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a b) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p03a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a c) (multiply b d)) (multiply b d)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a c) (multiply b d)) (multiply b d))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p03b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply a c) (multiply b d)) (multiply a c)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply a c) (multiply b d)) (multiply a c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p03c:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply a c) (multiply b d)) (multiply a c)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (multiply a c) (multiply b d)) (multiply a c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p03d:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a c) (multiply b d)) (multiply b d)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a c) (multiply b d)) (multiply b d))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p04a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (multiply a b)) (multiply a b)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (multiply a b)) (multiply a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p04c:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (multiply a b)) identity
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (multiply a b)) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p04b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (multiply a b)) identity
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (multiply a b)) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p04d:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (multiply a b)) (multiply a b)
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (multiply a b)) (multiply a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p05a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ identity a
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ identity a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p05b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ identity a
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ identity a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p06a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (multiply (inverse a) (multiply b a))) (multiply (inverse a) (multiply b a))
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (multiply (inverse a) (multiply b a))) (multiply (inverse a) (multiply b a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p06b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (multiply (inverse a) (multiply b a))) identity
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (multiply (inverse a) (multiply b a))) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p06c:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (multiply (inverse a) (multiply b a))) identity
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (multiply (inverse a) (multiply b a))) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p06d:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (multiply (inverse a) (multiply b a))) (multiply (inverse a) (multiply b a))
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (multiply (inverse a) (multiply b a))) (multiply (inverse a) (multiply b a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p07:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply c (multiply (least_upper_bound a b) d)) (least_upper_bound (multiply c (multiply a d)) (multiply c (multiply b d)))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply c (multiply (least_upper_bound a b) d)) (least_upper_bound (multiply c (multiply a d)) (multiply c (multiply b d))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p07:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply c (multiply (least_upper_bound a b) d)) (least_upper_bound (multiply c (multiply a d)) (multiply c (multiply b d)))
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply c (multiply (least_upper_bound a b) d)) (least_upper_bound (multiply c (multiply a d)) (multiply c (multiply b d))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p08a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p08b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))) (greatest_lower_bound a (multiply b c))
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (greatest_lower_bound a (multiply b c)) (multiply (greatest_lower_bound a b) (greatest_lower_bound a c))) (greatest_lower_bound a (multiply b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p09a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H15:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H16:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H17:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H18:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply b c)) (greatest_lower_bound a c)
+∀H18:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply b c)) (greatest_lower_bound a c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p09b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H15:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H16:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H17:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H18:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply b c)) (greatest_lower_bound a c)
+∀H18:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply b c)) (greatest_lower_bound a c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p10:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (inverse (least_upper_bound a b)) (greatest_lower_bound (inverse a) (inverse b))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (inverse (least_upper_bound a b)) (greatest_lower_bound (inverse a) (inverse b)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p18:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (inverse a) identity) (inverse (greatest_lower_bound a identity))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (inverse a) identity) (inverse (greatest_lower_bound a identity)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p18:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (inverse a) identity) (inverse (greatest_lower_bound a identity))
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (inverse a) identity) (inverse (greatest_lower_bound a identity)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p11:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a (multiply (inverse (greatest_lower_bound a b)) b)) (least_upper_bound a b)
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a (multiply (inverse (greatest_lower_bound a b)) b)) (least_upper_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p11:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a (multiply (inverse (greatest_lower_bound a b)) b)) (least_upper_bound a b)
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a (multiply (inverse (greatest_lower_bound a b)) b)) (least_upper_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p12:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b
+∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p12:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H16:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H18:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b
+∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p12x:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H15:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H16:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H17:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H18:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b
+∀H18:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p12x:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H18:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H19:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H20:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H21:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b
+∀H21:∀X:Univ.eq Univ (multiply identity X) X.eq Univ a b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is Dahn's clause *)
ntheorem prove_p17a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (greatest_lower_bound a identity)) identity
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (greatest_lower_bound a identity)) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----This is Dahn's clause *)
ntheorem prove_p17a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (greatest_lower_bound a identity)) identity
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (greatest_lower_bound a identity)) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p17b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (least_upper_bound a identity)) identity
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (least_upper_bound a identity)) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p17b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (least_upper_bound a identity)) identity
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (least_upper_bound a identity)) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p20:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) identity
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p20:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) identity
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_20x:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity)) identity
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity)) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_20x:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity)) identity
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound a identity) (least_upper_bound (inverse a) identity)) identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p21:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) (multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) (multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p21:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) (multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity))
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) (multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p21x:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) (multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) (multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p21x:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H16:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H18:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) (multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity))
+∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (least_upper_bound a identity) (inverse (greatest_lower_bound a identity))) (multiply (inverse (greatest_lower_bound a identity)) (least_upper_bound a identity)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p22a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity))) (multiply (least_upper_bound a identity) (least_upper_bound b identity))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity))) (multiply (least_upper_bound a identity) (least_upper_bound b identity)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p22a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity))) (multiply (least_upper_bound a identity) (least_upper_bound b identity))
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity))) (multiply (least_upper_bound a identity) (least_upper_bound b identity)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p22b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity))) (least_upper_bound (multiply a b) identity)
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity))) (least_upper_bound (multiply a b) identity))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p22b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity))) (least_upper_bound (multiply a b) identity)
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (least_upper_bound (multiply a b) identity) (multiply (least_upper_bound a identity) (least_upper_bound b identity))) (least_upper_bound (multiply a b) identity))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p23:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a b) identity) (multiply a (inverse (greatest_lower_bound a (inverse b))))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a b) identity) (multiply a (inverse (greatest_lower_bound a (inverse b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p23:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a b) identity) (multiply a (inverse (greatest_lower_bound a (inverse b))))
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a b) identity) (multiply a (inverse (greatest_lower_bound a (inverse b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p23x:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a b) identity) (multiply a (least_upper_bound (inverse a) b))
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a b) identity) (multiply a (least_upper_bound (inverse a) b)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p23x:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a b) identity) (multiply a (least_upper_bound (inverse a) b))
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (multiply a b) identity) (multiply a (least_upper_bound (inverse a) b)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p33:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a b) (multiply b a)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p38a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound b (least_upper_bound a b)) (least_upper_bound a b)
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound b (least_upper_bound a b)) (least_upper_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p38a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound b (least_upper_bound a b)) (least_upper_bound a b)
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound b (least_upper_bound a b)) (least_upper_bound a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p38b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound b (least_upper_bound a b)) b
+∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound b (least_upper_bound a b)) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p38b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound b (least_upper_bound a b)) b
+∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound b (least_upper_bound a b)) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p39a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (inverse a) (inverse b)) (inverse b)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (inverse a) (inverse b)) (inverse b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p39c:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (inverse a) (inverse b)) (inverse a)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (inverse a) (inverse b)) (inverse a))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p39b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (inverse a) (inverse b)) (inverse a)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound (inverse a) (inverse b)) (inverse a))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p39d:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (inverse a) (inverse b)) (inverse b)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound (inverse a) (inverse b)) (inverse b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p40a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a b) (multiply b a)
+∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p8_9a:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H16:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H18:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply b c)) (greatest_lower_bound a c)
+∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply b c)) (greatest_lower_bound a c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_p8_9b:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H16:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
∀H18:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
-∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply b c)) (greatest_lower_bound a c)
+∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a (multiply b c)) (greatest_lower_bound a c))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#greatest_lower_bound.
-#identity.
-#inverse.
-#least_upper_bound.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#greatest_lower_bound ##.
+#identity ##.
+#inverse ##.
+#least_upper_bound ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_this:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (multiply X (multiply Y Y)) (multiply Y (multiply Y X)).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a b))))))) (multiply a (multiply a (multiply a (multiply a (multiply b (multiply b (multiply b b)))))))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a b))))))) (multiply a (multiply a (multiply a (multiply a (multiply b (multiply b (multiply b b))))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_this:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (multiply X (multiply Y (multiply Y Y))) (multiply Y (multiply Y (multiply Y X))).
-∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a b))))))))))))))))) (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b b)))))))))))))))))
+∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a b))))))))))))))))) (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply a (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b (multiply b b))))))))))))))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Moufang-2: *)
ntheorem prove_moufang2:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (left_division X (multiply X Y)) Y.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X (left_division X Y)) Y.
∀H7:∀X:Univ.eq Univ (multiply X identity) X.
-∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply (multiply a b) c) b) (multiply a (multiply b (multiply c b)))
+∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply (multiply a b) c) b) (multiply a (multiply b (multiply c b))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#identity.
-#left_division.
-#left_inverse.
-#multiply.
-#right_division.
-#right_inverse.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#identity ##.
+#left_division ##.
+#left_inverse ##.
+#multiply ##.
+#right_division ##.
+#right_inverse ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Moufang-3: *)
ntheorem prove_moufang3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (left_division X (multiply X Y)) Y.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X (left_division X Y)) Y.
∀H7:∀X:Univ.eq Univ (multiply X identity) X.
-∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply (multiply a b) a) c) (multiply a (multiply b (multiply a c)))
+∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply (multiply a b) a) c) (multiply a (multiply b (multiply a c))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#identity.
-#left_division.
-#left_inverse.
-#multiply.
-#right_division.
-#right_inverse.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#identity ##.
+#left_division ##.
+#left_inverse ##.
+#multiply ##.
+#right_division ##.
+#right_inverse ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Moufang-1 *)
ntheorem prove_moufang1:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (left_division X (multiply X Y)) Y.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X (left_division X Y)) Y.
∀H7:∀X:Univ.eq Univ (multiply X identity) X.
-∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply a (multiply b c)) a) (multiply (multiply a b) (multiply c a))
+∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply a (multiply b c)) a) (multiply (multiply a b) (multiply c a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#identity.
-#left_division.
-#left_inverse.
-#multiply.
-#right_division.
-#right_inverse.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#identity ##.
+#left_division ##.
+#left_inverse ##.
+#multiply ##.
+#right_division ##.
+#right_inverse ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Moufang-2: *)
ntheorem prove_moufang2:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply (multiply X Y) X) Z) (multiply X (multiply Y (multiply X Z))).
∀H1:∀X:Univ.eq Univ (multiply (left_inverse X) X) identity.
-∀H2:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply (multiply a b) c) b) (multiply a (multiply b (multiply c b)))
+∀H2:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply (multiply a b) c) b) (multiply a (multiply b (multiply c b))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#identity.
-#left_inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#identity ##.
+#left_inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Moufang-2: *)
ntheorem prove_moufang2:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X (multiply Y Z)) X) (multiply (multiply X Y) (multiply Z X)).
∀H1:∀X:Univ.eq Univ (multiply (left_inverse X) X) identity.
-∀H2:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply (multiply a b) c) b) (multiply a (multiply b (multiply c b)))
+∀H2:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply (multiply a b) c) b) (multiply a (multiply b (multiply c b))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#identity.
-#left_inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#identity ##.
+#left_inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Moufang-4 *)
ntheorem prove_moufang4:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀identity:Univ.
∀left_division:∀_:Univ.∀_:Univ.Univ.
∀left_inverse:∀_:Univ.Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (left_division X (multiply X Y)) Y.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X (left_division X Y)) Y.
∀H7:∀X:Univ.eq Univ (multiply X identity) X.
-∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply x (multiply (multiply y z) x)) (multiply (multiply x y) (multiply z x))
+∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply x (multiply (multiply y z) x)) (multiply (multiply x y) (multiply z x)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#identity.
-#left_division.
-#left_inverse.
-#multiply.
-#right_division.
-#right_inverse.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#identity ##.
+#left_division ##.
+#left_inverse ##.
+#multiply ##.
+#right_division ##.
+#right_inverse ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Moufang-1 *)
ntheorem prove_moufang1:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (left_division X (multiply X Y)) Y.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply X (left_division X Y)) Y.
∀H7:∀X:Univ.eq Univ (multiply X identity) X.
-∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply a (multiply b c)) a) (multiply (multiply a b) (multiply c a))
+∀H8:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (multiply a (multiply b c)) a) (multiply (multiply a b) (multiply c a)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#identity.
-#left_division.
-#left_inverse.
-#multiply.
-#right_division.
-#right_inverse.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#identity ##.
+#left_division ##.
+#left_inverse ##.
+#multiply ##.
+#right_division ##.
+#right_inverse ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem try_prove_this_axiom:
- ∀Univ:Type.∀U:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀Y:Univ.∀Z:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀u:Univ.
∀x:Univ.
∀y:Univ.
∀z:Univ.
-∀H0:∀U:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply U (inverse (multiply Y (multiply (multiply (multiply Z (inverse Z)) (inverse (multiply U Y))) U)))) U.eq Univ (multiply x (inverse (multiply y (multiply (multiply (multiply z (inverse z)) (inverse (multiply u y))) x)))) u
+∀H0:∀U:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply U (inverse (multiply Y (multiply (multiply (multiply Z (inverse Z)) (inverse (multiply U Y))) U)))) U.eq Univ (multiply x (inverse (multiply y (multiply (multiply (multiply z (inverse z)) (inverse (multiply u y))) x)))) u)
.
-#Univ.
-#U.
-#Y.
-#Z.
-#inverse.
-#multiply.
-#u.
-#x.
-#y.
-#z.
-#H0.
-nauto by H0;
+#Univ ##.
+#U ##.
+#Y ##.
+#Z ##.
+#inverse ##.
+#multiply ##.
+#u ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (inverse (multiply B (multiply (inverse B) B)))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (inverse (multiply B (multiply (inverse B) B)))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (inverse (multiply B (multiply (inverse B) B)))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (inverse (multiply B (multiply (inverse B) B)))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (inverse (multiply B (multiply (inverse B) B)))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (inverse (multiply B (multiply (inverse B) B)))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (multiply (inverse B) (multiply (inverse B) B))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (multiply (inverse B) (multiply (inverse B) B))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (multiply (inverse B) (multiply (inverse B) B))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (multiply (inverse B) (multiply (inverse B) B))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (multiply (inverse B) (multiply (inverse B) B))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (inverse (multiply (inverse (multiply A B)) C)) (multiply (inverse B) (multiply (inverse B) B))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (inverse (multiply A (inverse (multiply B C)))) (multiply A (inverse C))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (inverse (multiply A (inverse (multiply B C)))) (multiply A (inverse C))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (inverse (multiply A (inverse (multiply B C)))) (multiply A (inverse C))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (inverse (multiply A (inverse (multiply B C)))) (multiply A (inverse C))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (inverse (multiply A (inverse (multiply B C)))) (multiply A (inverse C))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (inverse (multiply A (inverse (multiply B C)))) (multiply A (inverse C))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (multiply (multiply (inverse B) B) (inverse (multiply (inverse (multiply A (inverse B))) C))) B))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (multiply (multiply (inverse B) B) (inverse (multiply (inverse (multiply A (inverse B))) C))) B))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (multiply (multiply (inverse B) B) (inverse (multiply (inverse (multiply A (inverse B))) C))) B))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (multiply (multiply (inverse B) B) (inverse (multiply (inverse (multiply A (inverse B))) C))) B))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (multiply (multiply (inverse B) B) (inverse (multiply (inverse (multiply A (inverse B))) C))) B))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (inverse (multiply (multiply (multiply (inverse B) B) (inverse (multiply (inverse (multiply A (inverse B))) C))) B))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply A (inverse (multiply (inverse (multiply (inverse (multiply B A)) (multiply B (inverse C)))) (inverse (multiply (inverse A) A)))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply A (inverse (multiply (inverse (multiply (inverse (multiply B A)) (multiply B (inverse C)))) (inverse (multiply (inverse A) A)))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply A (inverse (multiply (inverse (multiply (inverse (multiply B A)) (multiply B (inverse C)))) (inverse (multiply (inverse A) A)))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply A (inverse (multiply (inverse (multiply (inverse (multiply B A)) (multiply B (inverse C)))) (inverse (multiply (inverse A) A)))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply A (inverse (multiply (inverse (multiply (inverse (multiply B A)) (multiply B (inverse C)))) (inverse (multiply (inverse A) A)))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply A (inverse (multiply (inverse (multiply (inverse (multiply B A)) (multiply B (inverse C)))) (inverse (multiply (inverse A) A)))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (inverse (multiply C (inverse (multiply (inverse C) C)))))))) (multiply A C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (inverse (multiply C (inverse (multiply (inverse C) C)))))))) (multiply A C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (inverse (multiply C (inverse (multiply (inverse C) C)))))))) (multiply A C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (inverse (multiply C (inverse (multiply (inverse C) C)))))))) (multiply A C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (inverse (multiply C (inverse (multiply (inverse C) C)))))))) (multiply A C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (inverse (multiply C (inverse (multiply (inverse C) C)))))))) (multiply A C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (multiply (inverse C) (inverse (multiply (inverse C) C))))))) (multiply A C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (multiply (inverse C) (inverse (multiply (inverse C) C))))))) (multiply A C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (multiply (inverse C) (inverse (multiply (inverse C) C))))))) (multiply A C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (multiply (inverse C) (inverse (multiply (inverse C) C))))))) (multiply A C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (multiply (inverse C) (inverse (multiply (inverse C) C))))))) (multiply A C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) (multiply (inverse C) (inverse (multiply (inverse C) C))))))) (multiply A C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) C)))) (multiply A (inverse C)))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) C)))) (multiply A (inverse C)))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) C)))) (multiply A (inverse C)))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) C)))) (multiply A (inverse C)))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) C)))) (multiply A (inverse C)))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply A (inverse (multiply (inverse B) C)))) (multiply A (inverse C)))) (inverse (multiply (inverse C) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply (multiply (inverse (multiply (inverse B) (multiply (inverse A) C))) D) (inverse (multiply B D))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply (multiply (inverse (multiply (inverse B) (multiply (inverse A) C))) D) (inverse (multiply B D))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply (multiply (inverse (multiply (inverse B) (multiply (inverse A) C))) D) (inverse (multiply B D))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply (multiply (inverse (multiply (inverse B) (multiply (inverse A) C))) D) (inverse (multiply B D))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply (multiply (inverse (multiply (inverse B) (multiply (inverse A) C))) D) (inverse (multiply B D))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply (multiply (inverse (multiply (inverse B) (multiply (inverse A) C))) D) (inverse (multiply B D))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply (multiply (multiply C (inverse C)) (inverse (multiply D B))) A)))) D.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply (multiply (multiply C (inverse C)) (inverse (multiply D B))) A)))) D.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply (multiply (multiply C (inverse C)) (inverse (multiply D B))) A)))) D.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply (multiply (multiply C (inverse C)) (inverse (multiply D B))) A)))) D.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply (multiply (multiply C (inverse C)) (inverse (multiply D B))) A)))) D.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply (multiply (multiply C (inverse C)) (inverse (multiply D B))) A)))) D.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply (multiply (multiply (inverse (multiply (multiply A B) C)) A) B) (multiply D (inverse D)))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply (multiply (multiply (inverse (multiply (multiply A B) C)) A) B) (multiply D (inverse D)))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply (multiply (multiply (inverse (multiply (multiply A B) C)) A) B) (multiply D (inverse D)))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply (multiply (multiply (inverse (multiply (multiply A B) C)) A) B) (multiply D (inverse D)))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply (multiply (multiply (inverse (multiply (multiply A B) C)) A) B) (multiply D (inverse D)))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply (multiply (multiply (inverse (multiply (multiply A B) C)) A) B) (multiply D (inverse D)))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply C (multiply (multiply (inverse C) (inverse (multiply D B))) A))))) D.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply C (multiply (multiply (inverse C) (inverse (multiply D B))) A))))) D.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply C (multiply (multiply (inverse C) (inverse (multiply D B))) A))))) D.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply C (multiply (multiply (inverse C) (inverse (multiply D B))) A))))) D.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply C (multiply (multiply (inverse C) (inverse (multiply D B))) A))))) D.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (multiply A (inverse (multiply B (multiply C (multiply (multiply (inverse C) (inverse (multiply D B))) A))))) D.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply (inverse B) C) (inverse (multiply D (multiply A C))))))) D.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply (inverse B) C) (inverse (multiply D (multiply A C))))))) D.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply (inverse B) C) (inverse (multiply D (multiply A C))))))) D.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply (inverse B) C) (inverse (multiply D (multiply A C))))))) D.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply (inverse B) C) (inverse (multiply D (multiply A C))))))) D.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply (inverse B) C) (inverse (multiply D (multiply A C))))))) D.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply C (inverse C)) (inverse (multiply D (multiply A B))))))) D.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply C (inverse C)) (inverse (multiply D (multiply A B))))))) D.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply C (inverse C)) (inverse (multiply D (multiply A B))))))) D.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply C (inverse C)) (inverse (multiply D (multiply A B))))))) D.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply C (inverse C)) (inverse (multiply D (multiply A B))))))) D.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (inverse (multiply A (multiply B (multiply (multiply C (inverse C)) (inverse (multiply D (multiply A B))))))) D.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide B B) B) C) (divide (divide (divide B B) A) C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide B B) B) C) (divide (divide (divide B B) A) C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide B B) B) C) (divide (divide (divide B B) A) C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide B B) B) C) (divide (divide (divide B B) A) C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide B B) B) C) (divide (divide (divide B B) A) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide B B) B) C) (divide (divide (divide B B) A) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A (divide B (divide (divide (divide A A) A) C)))) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide identity A) C)))) C) B.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide identity A) C)))) C) B.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide identity A) C)))) C) B.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide identity A) C)))) C) B.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide identity A) C)))) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A A) (divide A (divide B (divide (divide identity A) C)))) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide identity B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide identity B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide identity B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide identity B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide identity B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide identity B) C) (divide (divide (divide A A) A) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide identity A) C))) B.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide identity A) C))) B.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide identity A) C))) B.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide identity A) C))) B.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide identity A) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide (divide (divide A A) B) C) (divide (divide identity A) C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide A A) (divide B (divide (divide C (divide D B)) (inverse D)))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide A A) (divide B (divide (divide C (divide D B)) (inverse D)))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide A A) (divide B (divide (divide C (divide D B)) (inverse D)))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide A A) (divide B (divide (divide C (divide D B)) (inverse D)))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide A A) (divide B (divide (divide C (divide D B)) (inverse D)))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide A A) (divide B (divide (divide C (divide D B)) (inverse D)))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide A (divide B (divide C D)))) (divide (divide D C) A)) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide A (divide B (divide C D)))) (divide (divide D C) A)) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide A (divide B (divide C D)))) (divide (divide D C) A)) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide A (divide B (divide C D)))) (divide (divide D C) A)) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide A (divide B (divide C D)))) (divide (divide D C) A)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide A (divide B (divide C D)))) (divide (divide D C) A)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide (inverse (divide A B)) (divide (divide C D) A)) (divide D C)) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide (inverse (divide A B)) (divide (divide C D) A)) (divide D C)) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide (inverse (divide A B)) (divide (divide C D) A)) (divide D C)) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide (inverse (divide A B)) (divide (divide C D) A)) (divide D C)) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide (inverse (divide A B)) (divide (divide C D) A)) (divide D C)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (divide (inverse (divide A B)) (divide (divide C D) A)) (divide D C)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A B) C) (divide D C))) (divide B A)) D.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A B) C) (divide D C))) (divide B A)) D.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A B) C) (divide D C))) (divide B A)) D.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A B) C) (divide D C))) (divide B A)) D.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A B) C) (divide D C))) (divide B A)) D.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A B) C) (divide D C))) (divide B A)) D.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A A) B) (divide C (divide B D)))) D) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A A) B) (divide C (divide B D)))) D) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A A) B) (divide C (divide B D)))) D) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A A) B) (divide C (divide B D)))) D) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A A) B) (divide C (divide B D)))) D) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (divide (inverse (divide (divide (divide A A) B) (divide C (divide B D)))) D) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide (double_divide A (double_divide B identity)) (double_divide (double_divide C (double_divide D (double_divide D identity))) (double_divide A identity))) B) C.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide (double_divide A (double_divide B identity)) (double_divide (double_divide C (double_divide D (double_divide D identity))) (double_divide A identity))) B) C.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide (double_divide A (double_divide B identity)) (double_divide (double_divide C (double_divide D (double_divide D identity))) (double_divide A identity))) B) C.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide (double_divide A (double_divide B identity)) (double_divide (double_divide C (double_divide D (double_divide D identity))) (double_divide A identity))) B) C.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide (double_divide A (double_divide B identity)) (double_divide (double_divide C (double_divide D (double_divide D identity))) (double_divide A identity))) B) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide (double_divide A (double_divide B identity)) (double_divide (double_divide C (double_divide D (double_divide D identity))) (double_divide A identity))) B) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide A B) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide A B) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide A B) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide A B) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide A B) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide A B) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (double_divide (double_divide (double_divide identity (double_divide (double_divide A identity) (double_divide B C))) B) identity)) C.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (double_divide (double_divide (double_divide identity (double_divide (double_divide A identity) (double_divide B C))) B) identity)) C.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (double_divide (double_divide (double_divide identity (double_divide (double_divide A identity) (double_divide B C))) B) identity)) C.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (double_divide (double_divide (double_divide identity (double_divide (double_divide A identity) (double_divide B C))) B) identity)) C.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (double_divide (double_divide (double_divide identity (double_divide (double_divide A identity) (double_divide B C))) B) identity)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (double_divide (double_divide (double_divide identity (double_divide (double_divide A identity) (double_divide B C))) B) identity)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide identity (double_divide (double_divide (double_divide A B) identity) (double_divide C B)))) C.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide identity (double_divide (double_divide (double_divide A B) identity) (double_divide C B)))) C.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide identity (double_divide (double_divide (double_divide A B) identity) (double_divide C B)))) C.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide identity (double_divide (double_divide (double_divide A B) identity) (double_divide C B)))) C.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide identity (double_divide (double_divide (double_divide A B) identity) (double_divide C B)))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide identity (double_divide (double_divide (double_divide A B) identity) (double_divide C B)))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide (double_divide (double_divide B C) (double_divide identity identity)) (double_divide A C))) B.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide (double_divide (double_divide B C) (double_divide identity identity)) (double_divide A C))) B.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide (double_divide (double_divide B C) (double_divide identity identity)) (double_divide A C))) B.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide (double_divide (double_divide B C) (double_divide identity identity)) (double_divide A C))) B.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide (double_divide (double_divide B C) (double_divide identity identity)) (double_divide A C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide (double_divide (double_divide B C) (double_divide identity identity)) (double_divide A C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity (double_divide A (double_divide B identity))) (double_divide (double_divide B (double_divide C A)) identity)) C.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity (double_divide A (double_divide B identity))) (double_divide (double_divide B (double_divide C A)) identity)) C.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity (double_divide A (double_divide B identity))) (double_divide (double_divide B (double_divide C A)) identity)) C.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity (double_divide A (double_divide B identity))) (double_divide (double_divide B (double_divide C A)) identity)) C.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity (double_divide A (double_divide B identity))) (double_divide (double_divide B (double_divide C A)) identity)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide identity (double_divide A (double_divide B identity))) (double_divide (double_divide B (double_divide C A)) identity)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (inverse A) (inverse (double_divide (inverse (double_divide A (double_divide B C))) (double_divide D (double_divide B D))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (inverse A) (inverse (double_divide (inverse (double_divide A (double_divide B C))) (double_divide D (double_divide B D))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (inverse A) (inverse (double_divide (inverse (double_divide A (double_divide B C))) (double_divide D (double_divide B D))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (inverse A) (inverse (double_divide (inverse (double_divide A (double_divide B C))) (double_divide D (double_divide B D))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (inverse A) (inverse (double_divide (inverse (double_divide A (double_divide B C))) (double_divide D (double_divide B D))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (inverse A) (inverse (double_divide (inverse (double_divide A (double_divide B C))) (double_divide D (double_divide B D))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a1:Univ.
∀b1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide A (inverse (double_divide B C))) (double_divide (inverse B) (inverse (double_divide D (double_divide A D))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide A (inverse (double_divide B C))) (double_divide (inverse B) (inverse (double_divide D (double_divide A D))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a1.
-#b1.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a1 ##.
+#b1 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a2:Univ.
∀b2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide A (inverse (double_divide B C))) (double_divide (inverse B) (inverse (double_divide D (double_divide A D))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide A (inverse (double_divide B C))) (double_divide (inverse B) (inverse (double_divide D (double_divide A D))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a2.
-#b2.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a2 ##.
+#b2 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide A (inverse (double_divide B C))) (double_divide (inverse B) (inverse (double_divide D (double_divide A D))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (double_divide (double_divide A (inverse (double_divide B C))) (double_divide (inverse B) (inverse (double_divide D (double_divide A D))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply (inverse (multiply A B)) (multiply B A))) (multiply (inverse (multiply C D)) (multiply C (inverse (multiply (multiply E (inverse F)) (inverse D))))))) F) E.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply (inverse (multiply A B)) (multiply B A))) (multiply (inverse (multiply C D)) (multiply C (inverse (multiply (multiply E (inverse F)) (inverse D))))))) F) E.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply (inverse (multiply A B)) (multiply B A))) (multiply (inverse (multiply C D)) (multiply C (inverse (multiply (multiply E (inverse F)) (inverse D))))))) F) E.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply (inverse (multiply A B)) (multiply B A))) (multiply (inverse (multiply C D)) (multiply C (inverse (multiply (multiply E (inverse F)) (inverse D))))))) F) E.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply (inverse (multiply A B)) (multiply B A))) (multiply (inverse (multiply C D)) (multiply C (inverse (multiply (multiply E (inverse F)) (inverse D))))))) F) E.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply (inverse (multiply A B)) (multiply B A))) (multiply (inverse (multiply C D)) (multiply C (inverse (multiply (multiply E (inverse F)) (inverse D))))))) F) E.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
∀a:Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply (inverse (multiply A B)) (multiply B A))) (multiply (inverse (multiply C D)) (multiply C (inverse (multiply (multiply E (inverse F)) (inverse D))))))) F) E.eq Univ (multiply a b) (multiply b a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (multiply (inverse (multiply (inverse (multiply (inverse (multiply A B)) (multiply B A))) (multiply (inverse (multiply C D)) (multiply C (inverse (multiply (multiply E (inverse F)) (inverse D))))))) F) E.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#a.
-#b.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#a ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (multiply A B) C) (inverse (multiply A C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (multiply A B) C) (inverse (multiply A C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (multiply A B) C) (inverse (multiply A C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (multiply A B) C) (inverse (multiply A C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (multiply A B) C) (inverse (multiply A C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (multiply A B) C) (inverse (multiply A C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (multiply A B) C) (inverse (multiply A C))) B.eq Univ (multiply a b) (multiply b a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply (multiply (multiply A B) C) (inverse (multiply A C))) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply B C) (inverse (multiply A C)))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply B C) (inverse (multiply A C)))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply B C) (inverse (multiply A C)))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply B C) (inverse (multiply A C)))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply B C) (inverse (multiply A C)))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply B C) (inverse (multiply A C)))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply B C) (inverse (multiply A C)))) B.eq Univ (multiply a b) (multiply b a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply B C) (inverse (multiply A C)))) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply (inverse (multiply A B)) C) B)) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply (inverse (multiply A B)) C) B)) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply (inverse (multiply A B)) C) B)) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply (inverse (multiply A B)) C) B)) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply (inverse (multiply A B)) C) B)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply (inverse (multiply A B)) C) B)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply (inverse (multiply A B)) C) B)) C.eq Univ (multiply a b) (multiply b a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A (multiply (multiply (inverse (multiply A B)) C) B)) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#inverse.
-#multiply.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide B (divide C (divide A B)))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide B (divide C (divide A B)))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide B (divide C (divide A B)))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide B (divide C (divide A B)))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide B (divide C (divide A B)))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide B (divide C (divide A B)))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide B (divide C (divide A B)))) C.eq Univ (multiply a b) (multiply b a)
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide B (divide C (divide A B)))) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide A B) (divide C B))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide A B) (divide C B))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide A B) (divide C B))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide A B) (divide C B))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide A B) (divide C B))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide A B) (divide C B))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide A B) (divide C B))) C.eq Univ (multiply a b) (multiply b a)
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (divide (divide A B) (divide C B))) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide B C)) (divide A B)) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide B C)) (divide A B)) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide B C)) (divide A B)) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide B C)) (divide A B)) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide B C)) (divide A B)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide B C)) (divide A B)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide B C)) (divide A B)) C.eq Univ (multiply a b) (multiply b a)
+∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide B C)) (divide A B)) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide (divide A B) C)) B) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide (divide A B) C)) B) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide (divide A B) C)) B) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide (divide A B) C)) B) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide (divide A B) C)) B) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide (divide A B) C)) B) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide (divide A B) C)) B) C.eq Univ (multiply a b) (multiply b a)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (divide (divide A B) C)) B) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A B) (divide (divide A C) B)) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A B) (divide (divide A C) B)) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A B) (divide (divide A C) B)) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A B) (divide (divide A C) B)) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A B) (divide (divide A C) B)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A B) (divide (divide A C) B)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.∀B:Univ.eq Univ (inverse A) (divide (divide B B) A).
∀H2:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (multiply A B) (divide A (divide (divide C C) B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A B) (divide (divide A C) B)) C.eq Univ (multiply a b) (multiply b a)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A B) (divide (divide A C) B)) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide (divide (divide A B) C) A)) C) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide (divide (divide A B) C) A)) C) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide (divide (divide A B) C) A)) C) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide (divide (divide A B) C) A)) C) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide (divide (divide A B) C) A)) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide (divide (divide A B) C) A)) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide (divide (divide A B) C) A)) C) B.eq Univ (multiply a b) (multiply b a)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide (divide (divide A B) C) A)) C) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A B)) (divide (divide B C) A)) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A B)) (divide (divide B C) A)) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A B)) (divide (divide B C) A)) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A B)) (divide (divide B C) A)) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A B)) (divide (divide B C) A)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A B)) (divide (divide B C) A)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A B)) (divide (divide B C) A)) C.eq Univ (multiply a b) (multiply b a)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity (divide A B)) (divide (divide B C) A)) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity A) (divide (divide (divide B A) C) B)) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity A) (divide (divide (divide B A) C) B)) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity A) (divide (divide (divide B A) C) B)) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity A) (divide (divide (divide B A) C) B)) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity A) (divide (divide (divide B A) C) B)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity A) (divide (divide (divide B A) C) B)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (divide A A).
∀H1:∀A:Univ.eq Univ (inverse A) (divide identity A).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (divide identity B)).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity A) (divide (divide (divide B A) C) B)) C.eq Univ (multiply a b) (multiply b a)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide identity A) (divide (divide (divide B A) C) B)) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (inverse (divide B (divide A C)))) C) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (inverse (divide B (divide A C)))) C) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (inverse (divide B (divide A C)))) C) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (inverse (divide B (divide A C)))) C) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (inverse (divide B (divide A C)))) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (inverse (divide B (divide A C)))) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (inverse (divide B (divide A C)))) C) B.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide A (inverse (divide B (divide A C)))) C) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (inverse (divide (divide B C) (divide A C)))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (inverse (divide (divide B C) (divide A C)))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (inverse (divide (divide B C) (divide A C)))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (inverse (divide (divide B C) (divide A C)))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (inverse (divide (divide B C) (divide A C)))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (inverse (divide (divide B C) (divide A C)))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (inverse (divide (divide B C) (divide A C)))) B.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide A (inverse (divide (divide B C) (divide A C)))) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A (inverse B)) C) (divide A C)) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A (inverse B)) C) (divide A C)) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A (inverse B)) C) (divide A C)) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A (inverse B)) C) (divide A C)) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A (inverse B)) C) (divide A C)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A (inverse B)) C) (divide A C)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (divide A (inverse B)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A (inverse B)) C) (divide A C)) B.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (divide (divide (divide A (inverse B)) C) (divide A C)) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide identity C))) (double_divide identity identity)) B.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide identity C))) (double_divide identity identity)) B.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide identity C))) (double_divide identity identity)) B.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide identity C))) (double_divide identity identity)) B.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide identity C))) (double_divide identity identity)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide identity C))) (double_divide identity identity)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide identity C))) (double_divide identity identity)) B.eq Univ (multiply a b) (multiply b a)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide identity C))) (double_divide identity identity)) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply a b) (multiply b a)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide A C)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide C A)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide C A)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide C A)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide C A)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide C A)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide C A)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide C A)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply a b) (multiply b a)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide B (double_divide C A)) (double_divide C identity))) (double_divide identity identity)) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide B A) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide B A) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide B A) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide B A) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide B A) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide B A) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide B A) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply a b) (multiply b a)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide B A) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide identity B) (double_divide C (double_divide B A)))) (double_divide identity identity)) C.eq Univ (multiply (inverse a1) a1) identity
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide identity B) (double_divide C (double_divide B A)))) (double_divide identity identity)) C.eq Univ (multiply (inverse a1) a1) identity)
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀identity:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide identity B) (double_divide C (double_divide B A)))) (double_divide identity identity)) C.eq Univ (multiply identity a2) a2
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide identity B) (double_divide C (double_divide B A)))) (double_divide identity identity)) C.eq Univ (multiply identity a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide identity B) (double_divide C (double_divide B A)))) (double_divide identity identity)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide identity B) (double_divide C (double_divide B A)))) (double_divide identity identity)) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.eq Univ identity (double_divide A (inverse A)).
∀H1:∀A:Univ.eq Univ (inverse A) (double_divide A identity).
∀H2:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
-∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide identity B) (double_divide C (double_divide B A)))) (double_divide identity identity)) C.eq Univ (multiply a b) (multiply b a)
+∀H3:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide identity B) (double_divide C (double_divide B A)))) (double_divide identity identity)) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#identity.
-#inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#identity ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (inverse (double_divide (inverse (double_divide (double_divide A B) (inverse C))) B))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (inverse (double_divide (inverse (double_divide (double_divide A B) (inverse C))) B))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (inverse (double_divide (inverse (double_divide (double_divide A B) (inverse C))) B))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (inverse (double_divide (inverse (double_divide (double_divide A B) (inverse C))) B))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (inverse (double_divide (inverse (double_divide (double_divide A B) (inverse C))) B))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (inverse (double_divide (inverse (double_divide (double_divide A B) (inverse C))) B))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (inverse (double_divide (inverse (double_divide (double_divide A B) (inverse C))) B))) C.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide A (inverse (double_divide (inverse (double_divide (double_divide A B) (inverse C))) B))) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse C))))) B) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse C))))) B) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse C))))) B) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse C))))) B) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse C))))) B) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse C))))) B) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse C))))) B) C.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse C))))) B) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide C B)))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide C B)))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide C B)))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide C B)))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide C B)))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide C B)))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide C B)))))) C.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide C B)))))) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide (inverse C) B))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide (inverse C) B))))) C.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide (inverse C) B))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide (inverse C) B))))) C.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide (inverse C) B))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide (inverse C) B))))) C.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide (inverse C) B))))) C.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (double_divide A B) (inverse (double_divide A (inverse (double_divide (inverse C) B))))) C.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide A (inverse (double_divide B (double_divide A C))))) C)) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide A (inverse (double_divide B (double_divide A C))))) C)) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide A (inverse (double_divide B (double_divide A C))))) C)) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide A (inverse (double_divide B (double_divide A C))))) C)) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide A (inverse (double_divide B (double_divide A C))))) C)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide A (inverse (double_divide B (double_divide A C))))) C)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide A (inverse (double_divide B (double_divide A C))))) C)) B.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide A (inverse (double_divide B (double_divide A C))))) C)) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide A (inverse (double_divide (inverse B) (double_divide A C))))) C) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide A (inverse (double_divide (inverse B) (double_divide A C))))) C) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide A (inverse (double_divide (inverse B) (double_divide A C))))) C) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide A (inverse (double_divide (inverse B) (double_divide A C))))) C) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide A (inverse (double_divide (inverse B) (double_divide A C))))) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide A (inverse (double_divide (inverse B) (double_divide A C))))) C) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide A (inverse (double_divide (inverse B) (double_divide A C))))) C) B.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide A (inverse (double_divide (inverse B) (double_divide A C))))) C) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide (inverse (double_divide A B)) C)) (double_divide A C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide (inverse (double_divide A B)) C)) (double_divide A C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide (inverse (double_divide A B)) C)) (double_divide A C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide (inverse (double_divide A B)) C)) (double_divide A C))) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide (inverse (double_divide A B)) C)) (double_divide A C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide (inverse (double_divide A B)) C)) (double_divide A C))) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide (inverse (double_divide A B)) C)) (double_divide A C))) B.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide (inverse (double_divide A B)) C)) (double_divide A C))) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a1:Univ.
∀b1:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (inverse (double_divide A (inverse B))) C)) (double_divide A C)) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (inverse (double_divide A (inverse B))) C)) (double_divide A C)) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1))
.
-#Univ.
-#A.
-#B.
-#C.
-#a1.
-#b1.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a1 ##.
+#b1 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a2:Univ.
∀b2:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (inverse (double_divide A (inverse B))) C)) (double_divide A C)) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (inverse (double_divide A (inverse B))) C)) (double_divide A C)) B.eq Univ (multiply (multiply (inverse b2) b2) a2) a2)
.
-#Univ.
-#A.
-#B.
-#C.
-#a2.
-#b2.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a2 ##.
+#b2 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a3:Univ.
∀b3:Univ.
∀c3:Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (inverse (double_divide A (inverse B))) C)) (double_divide A C)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3))
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (inverse (double_divide A (inverse B))) C)) (double_divide A C)) B.eq Univ (multiply (multiply a3 b3) c3) (multiply a3 (multiply b3 c3)))
.
-#Univ.
-#A.
-#B.
-#C.
-#a3.
-#b3.
-#c3.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a3 ##.
+#b3 ##.
+#c3 ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_these_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀double_divide:∀_:Univ.∀_:Univ.Univ.
∀inverse:∀_:Univ.Univ.
∀multiply:∀_:Univ.∀_:Univ.Univ.
∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
-∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (inverse (double_divide A (inverse B))) C)) (double_divide A C)) B.eq Univ (multiply a b) (multiply b a)
+∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (double_divide (inverse (double_divide (inverse (double_divide A (inverse B))) C)) (double_divide A C)) B.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#double_divide.
-#inverse.
-#multiply.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#double_divide ##.
+#inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of the conclusion: *)
ntheorem prove_associativity_of_meet:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y Z)) (join (meet Z X) (meet Y X)).
-∀H1:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (meet (meet a b) c) (meet a (meet b c))
+∀H1:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (meet (meet a b) c) (meet a (meet b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of the conclusion: *)
ntheorem prove_associativity_of_join:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y Z)) (join (meet Z X) (meet Y X)).
-∀H1:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (join (join a b) c) (join a (join b c))
+∀H1:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (join (join a b) c) (join a (join b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of the conclusion: *)
ntheorem prove_absorbtion_dual:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y Z)) (join (meet Z X) (meet Y X)).
-∀H1:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (join a (meet a b)) a
+∀H1:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (join a (meet a b)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-#H1.
-nauto by H0,H1;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+nauto by H0,H1 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of ordinary distributivity. *)
ntheorem prove_distributivity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b c)) (meet (join a b) (join a c))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b c)) (meet (join a b) (join a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of the conclusion: *)
ntheorem prove_this:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H8:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H9:∀X:Univ.eq Univ (join X X) X.
-∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet (join b c) (join b d))) (meet (meet a (meet (join b c) (join b d))) (join (meet a (join b (meet c d))) (join (meet a c) (meet a d))))
+∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet (join b c) (join b d))) (meet (meet a (meet (join b c) (join b d))) (join (meet a (join b (meet c d))) (join (meet a c) (meet a d)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial that meet1 and meet2 are the same: *)
ntheorem prove_meets_are_same:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀H9:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H10:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H11:∀X:Univ.eq Univ (join X X) X.
-∀H12:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a b) (meet2 a b)
+∀H12:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a b) (meet2 a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#join.
-#meet.
-#meet2.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#meet2 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_commutativity_of_meet:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet (join X Y) (join Y Z)) Y) Y.
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join (meet X Y) (meet Y Z)) Y) Y.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y (join X Z))) X.
-∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join X (meet Y (meet X Z))) X.eq Univ (meet b a) (meet a b)
+∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join X (meet Y (meet X Z))) X.eq Univ (meet b a) (meet a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_associativity_of_meet:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet (join X Y) (join Y Z)) Y) Y.
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join (meet X Y) (meet Y Z)) Y) Y.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y (join X Z))) X.
-∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join X (meet Y (meet X Z))) X.eq Univ (meet (meet a b) c) (meet a (meet b c))
+∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join X (meet Y (meet X Z))) X.eq Univ (meet (meet a b) c) (meet a (meet b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of conclusion: *)
ntheorem prove_absorbtion:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet (join X Y) (join Y Z)) Y) Y.
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join (meet X Y) (meet Y Z)) Y) Y.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y (join X Z))) X.
-∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join X (meet Y (meet X Z))) X.eq Univ (meet a (join a b)) a
+∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join X (meet Y (meet X Z))) X.eq Univ (meet a (join a b)) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of equation E1 *)
ntheorem prove_e1:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H8:∀X:Univ.eq Univ (meet (complement X) X) n0.
-∀H9:∀X:Univ.eq Univ (join (complement X) X) n1.eq Univ (join (complement (join (meet a (complement b)) (complement a))) (join (meet a (complement b)) (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (complement (meet (join a (complement b)) (join a b))))))) n1
+∀H9:∀X:Univ.eq Univ (join (complement X) X) n1.eq Univ (join (complement (join (meet a (complement b)) (complement a))) (join (meet a (complement b)) (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (complement (meet (join a (complement b)) (join a b))))))) n1)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of equation E2 *)
ntheorem prove_e2:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H8:∀X:Univ.eq Univ (meet (complement X) X) n0.
-∀H9:∀X:Univ.eq Univ (join (complement X) X) n1.eq Univ (join a (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (join (meet (complement a) b) (meet (complement a) (complement b)))))) n1
+∀H9:∀X:Univ.eq Univ (join (complement X) X) n1.eq Univ (join a (join (meet (complement a) (meet (join a (complement b)) (join a b))) (meet (complement a) (join (meet (complement a) b) (meet (complement a) (complement b)))))) n1)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of equation E3 *)
ntheorem prove_e3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H8:∀X:Univ.eq Univ (meet (complement X) X) n0.
-∀H9:∀X:Univ.eq Univ (join (complement X) X) n1.eq Univ (join (complement (join (join (meet (complement a) b) (meet (complement a) (complement b))) (meet a (join (complement a) b)))) (join (complement a) b)) n1
+∀H9:∀X:Univ.eq Univ (join (complement X) X) n1.eq Univ (join (complement (join (join (meet (complement a) b) (meet (complement a) (complement b))) (meet a (join (complement a) b)))) (join (complement a) b)) n1)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of the corresponding dual distributivity law: *)
ntheorem prove_distributivity_law_dual:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b c)) (meet (join a b) (join a c))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b c)) (meet (join a b) (join a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of ordinary distributivity: *)
ntheorem prove_distributivity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a b) (meet a c))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a b) (meet a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of distributivity: *)
ntheorem prove_distributivity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a b) (meet a c))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a b) (meet a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of ordinary equational modularity: *)
ntheorem prove_modularity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (join (meet a b) (meet a c))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (join (meet a b) (meet a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of ordinary equational modularity: *)
ntheorem prove_modularity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (join (meet a b) (meet a c))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (join (meet a b) (meet a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial that meet1 and meet2 are the same: *)
ntheorem prove_meets_equal:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀H9:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H10:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H11:∀X:Univ.eq Univ (join X X) X.
-∀H12:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a b) (meet2 a b)
+∀H12:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a b) (meet2 a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#join.
-#meet.
-#meet2.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#meet2 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of meet=meet2. *)
ntheorem prove_meets_equal:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀H10:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H12:∀X:Univ.eq Univ (join X X) X.
-∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a b) (meet2 a b)
+∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a b) (meet2 a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#join.
-#meet.
-#meet2.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#meet2 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of associativity of meet: *)
ntheorem prove_associativity_of_meet:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H3:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H4:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H5:∀X:Univ.eq Univ (join X X) X.
-∀H6:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet (meet a b) c) (meet a (meet b c))
+∀H6:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet (meet a b) c) (meet a (meet b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-nauto by H0,H1,H2,H3,H4,H5,H6;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of associativity of join: *)
ntheorem prove_associativity_of_join:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H3:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H4:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H5:∀X:Univ.eq Univ (join X X) X.
-∀H6:∀X:Univ.eq Univ (meet X X) X.eq Univ (join (join a b) c) (join a (join b c))
+∀H6:∀X:Univ.eq Univ (meet X X) X.eq Univ (join (join a b) c) (join a (join b c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-nauto by H0,H1,H2,H3,H4,H5,H6;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of meet=meet2: *)
ntheorem name:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H7:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H8:∀X:Univ.eq Univ (join X X) X.
-∀H9:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a b) (meet2 a b)
+∀H9:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a b) (meet2 a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#join.
-#meet.
-#meet2.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#meet2 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem dist_join:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀xx:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join xx (meet yy zz)) (meet (join xx yy) (join xx zz))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join xx (meet yy zz)) (meet (join xx yy) (join xx zz)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#join.
-#meet.
-#xx.
-#yy.
-#zz.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#join ##.
+#meet ##.
+#xx ##.
+#yy ##.
+#zz ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem dist_meet:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀xx:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet xx (join yy zz)) (join (meet xx yy) (meet xx zz))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet xx (join yy zz)) (join (meet xx yy) (meet xx zz)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#join.
-#meet.
-#xx.
-#yy.
-#zz.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#join ##.
+#meet ##.
+#xx ##.
+#yy ##.
+#zz ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem idempotence_of_join:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀xx:Univ.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H3:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H4:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
-∀H5:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (join xx xx) xx
+∀H5:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (join xx xx) xx)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#join.
-#meet.
-#xx.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-nauto by H0,H1,H2,H3,H4,H5;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#join ##.
+#meet ##.
+#xx ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+nauto by H0,H1,H2,H3,H4,H5 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem idempotence_of_meet:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀xx:Univ.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
∀H3:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
∀H4:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
-∀H5:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (meet xx xx) xx
+∀H5:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (meet xx xx) xx)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#join.
-#meet.
-#xx.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-nauto by H0,H1,H2,H3,H4,H5;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#join ##.
+#meet ##.
+#xx ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+nauto by H0,H1,H2,H3,H4,H5 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem rhs:
- ∀Univ:Type.∀U:Univ.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀aa:Univ.
∀bb:Univ.
∀cc:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H14:∀X:Univ.eq Univ (join X X) X.
-∀H15:∀X:Univ.eq Univ (meet X X) X.eq Univ (f aa dd) (f cc dd)
+∀H15:∀X:Univ.eq Univ (meet X X) X.eq Univ (f aa dd) (f cc dd))
.
-#Univ.
-#U.
-#V.
-#W.
-#X.
-#Y.
-#Z.
-#aa.
-#bb.
-#cc.
-#dd.
-#f.
-#join.
-#meet.
-#n0.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#U ##.
+#V ##.
+#W ##.
+#X ##.
+#Y ##.
+#Z ##.
+#aa ##.
+#bb ##.
+#cc ##.
+#dd ##.
+#f ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem rhs:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀xx:Univ.
∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H8:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H9:∀X:Univ.eq Univ (join X X) X.
-∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (join xx (meet yy zz)) (meet yy (join xx zz))
+∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (join xx (meet yy zz)) (meet yy (join xx zz)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#join.
-#meet.
-#xx.
-#yy.
-#zz.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#join ##.
+#meet ##.
+#xx ##.
+#yy ##.
+#zz ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem rhs:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀xx:Univ.
∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H8:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H9:∀X:Univ.eq Univ (join X X) X.
-∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (join xx (meet yy zz)) (meet (join xx yy) (join xx zz))
+∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (join xx (meet yy zz)) (meet (join xx yy) (join xx zz)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#join.
-#meet.
-#xx.
-#yy.
-#zz.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#join ##.
+#meet ##.
+#xx ##.
+#yy ##.
+#zz ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem rhs:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀xx:Univ.
∀H8:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H9:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H10:∀X:Univ.eq Univ (join X X) X.
-∀H11:∀X:Univ.eq Univ (meet X X) X.eq Univ yy zz
+∀H11:∀X:Univ.eq Univ (meet X X) X.eq Univ yy zz)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#join.
-#meet.
-#xx.
-#yy.
-#zz.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#join ##.
+#meet ##.
+#xx ##.
+#yy ##.
+#zz ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of modular law: *)
ntheorem prove_modular_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H8:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H9:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H10:∀X:Univ.eq Univ (join X X) X.
-∀H11:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (meet (join a b) (join a c))
+∀H11:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (meet (join a b) (join a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of compatability *)
ntheorem prove_compatability_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀c:Univ.
∀complement:∀_:Univ.Univ.
∀d:Univ.
∀H8:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H9:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H10:∀X:Univ.eq Univ (join X X) X.
-∀H11:∀X:Univ.eq Univ (meet X X) X.eq Univ (complement (join c d)) (meet (complement c) (complement d))
+∀H11:∀X:Univ.eq Univ (meet X X) X.eq Univ (complement (join c d)) (meet (complement c) (complement d)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#c.
-#complement.
-#d.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#c ##.
+#complement ##.
+#d ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of weak orthomodular law (10) *)
ntheorem prove_weak_orthomodular_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H10:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H12:∀X:Univ.eq Univ (join X X) X.
-∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (join (meet (complement a) (join a b)) (join (complement b) (meet a b))) n1
+∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (join (meet (complement a) (join a b)) (join (complement b) (meet a b))) n1)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of orthomodular law (8) *)
ntheorem prove_orthomodular_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H10:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H12:∀X:Univ.eq Univ (join X X) X.
-∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet (complement a) (join a b))) (join a b)
+∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet (complement a) (join a b))) (join a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of distributivity (4) *)
ntheorem prove_distributivity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H10:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H12:∀X:Univ.eq Univ (join X X) X.
-∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a b) (meet a c))
+∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a b) (meet a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of modularity (7) *)
ntheorem prove_modularity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H4:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H6:∀X:Univ.eq Univ (join X X) X.
-∀H7:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (meet (join a b) (join a c))
+∀H7:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (meet (join a b) (join a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of orthomodular law (8) *)
ntheorem prove_orthomodular_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H10:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H12:∀X:Univ.eq Univ (join X X) X.
-∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet (complement a) (join a b))) (join a b)
+∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet (complement a) (join a b))) (join a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of weak orthomodular law (10) *)
ntheorem prove_weak_orthomodular_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H9:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H10:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H11:∀X:Univ.eq Univ (join X X) X.
-∀H12:∀X:Univ.eq Univ (meet X X) X.eq Univ (join (meet (complement a) (join a b)) (join (complement b) (meet a b))) n1
+∀H12:∀X:Univ.eq Univ (meet X X) X.eq Univ (join (meet (complement a) (join a b)) (join (complement b) (meet a b))) n1)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of modular law: *)
ntheorem prove_modular_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H10:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H12:∀X:Univ.eq Univ (join X X) X.
-∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (meet (join a b) (join a c))
+∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (meet (join a b) (join a c)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of compatibility (6) *)
ntheorem prove_compatibility_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H8:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H9:∀X:Univ.eq Univ (join X X) X.
-∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (complement (join a b)) (meet (complement a) (complement b))
+∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (complement (join a b)) (meet (complement a) (complement b)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of compatibility (6) *)
ntheorem prove_compatibility_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H8:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H9:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H10:∀X:Univ.eq Univ (join X X) X.
-∀H11:∀X:Univ.eq Univ (meet X X) X.eq Univ (complement (join a b)) (meet (complement a) (complement b))
+∀H11:∀X:Univ.eq Univ (meet X X) X.eq Univ (complement (join a b)) (meet (complement a) (complement b)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of equation in question *)
ntheorem prove_this:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H10:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H11:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H12:∀X:Univ.eq Univ (join X X) X.
-∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (join (complement a) (meet a b))))) (meet a (join (complement a) (meet a b)))
+∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (join (complement a) (meet a b))))) (meet a (join (complement a) (meet a b))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of equation in question *)
ntheorem prove_this:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H9:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H10:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H11:∀X:Univ.eq Univ (join X X) X.
-∀H12:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (complement a))))))) (join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (join (complement a) (meet (complement b) a))))))))
+∀H12:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (complement a))))))) (join a (meet (complement b) (join (complement a) (meet (complement b) (join a (meet (complement b) (join (complement a) (meet (complement b) a)))))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of E51 *)
ntheorem prove_e51:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H8:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H9:∀X:Univ.eq Univ (join X X) X.
-∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet (join a (complement b)) (join (join (meet a b) (meet (complement a) b)) (meet (complement a) (complement b)))) (join (meet a b) (meet (complement a) (complement b)))
+∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet (join a (complement b)) (join (join (meet a b) (meet (complement a) b)) (meet (complement a) (complement b)))) (join (meet a b) (meet (complement a) (complement b))))
.
-#Univ.
-#A.
-#B.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#A ##.
+#B ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of E62 *)
ntheorem prove_e62:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀complement:∀_:Univ.Univ.
∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H8:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H9:∀X:Univ.eq Univ (join X X) X.
-∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (join (complement a) (meet a b))))) (meet a (join (complement a) (meet a b)))
+∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (join (complement a) (meet a b))))) (meet a (join (complement a) (meet a b))))
.
-#Univ.
-#A.
-#B.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#complement.
-#join.
-#meet.
-#n0.
-#n1.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#A ##.
+#B ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#complement ##.
+#join ##.
+#meet ##.
+#n0 ##.
+#n1 ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Sheffer stroke associativity *)
ntheorem associativity:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f A C)) D) (f A (f (f A (f (f B B) B)) C))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a)))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f A C)) D) (f A (f (f A (f (f B B) B)) C))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a))))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#b.
-#c.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#b ##.
+#c ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Sheffer stroke associativity *)
ntheorem associativity:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f B A) (f (f (f (f B A) A) (f C A)) (f (f A A) D))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a)))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f B A) (f (f (f (f B A) A) (f C A)) (f (f A A) D))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a))))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#b.
-#c.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#b ##.
+#c ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Sheffer stroke associativity *)
ntheorem associativity:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f A C)) D) (f A (f (f C (f (f A A) C)) C))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a)))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f A C)) D) (f A (f (f C (f (f A A) C)) C))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a))))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#b.
-#c.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#b ##.
+#c ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Sheffer stroke modularity *)
ntheorem modularity:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f B (f A B)) B) (f A (f C (f (f A B) (f (f C C) D))))) A.eq Univ (f a (f b (f a (f c c)))) (f a (f c (f a (f b b))))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f B (f A B)) B) (f A (f C (f (f A B) (f (f C C) D))))) A.eq Univ (f a (f b (f a (f c c)))) (f a (f c (f a (f b b)))))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#b.
-#c.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#b ##.
+#c ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Sheffer stroke associativity *)
ntheorem associativity:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f B A) (f (f (f A A) C) (f (f (f (f (f A B) C) C) A) (f A D)))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a)))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f B A) (f (f (f A A) C) (f (f (f (f (f A B) C) C) A) (f A D)))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a))))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#b.
-#c.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#b ##.
+#c ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Sheffer stroke modularity *)
ntheorem modularity:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f B A) (f (f (f A A) C) (f (f (f (f (f A B) C) C) A) (f A D)))) A.eq Univ (f a (f b (f a (f c c)))) (f a (f c (f a (f b b))))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f B A) (f (f (f A A) C) (f (f (f (f (f A B) C) C) A) (f A D)))) A.eq Univ (f a (f b (f a (f c c)))) (f a (f c (f a (f b b)))))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#b.
-#c.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#b ##.
+#c ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Sheffer stroke associativity *)
ntheorem associativity:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f C A)) D) (f A (f (f (f (f (f (f B B) A) C) C) A) B))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a)))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f C A)) D) (f A (f (f (f (f (f (f B B) A) C) C) A) B))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a))))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#b.
-#c.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#b ##.
+#c ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Sheffer stroke modularity *)
ntheorem modularity:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f C A)) D) (f A (f (f (f (f (f (f B B) A) C) C) A) B))) A.eq Univ (f a (f b (f a (f c c)))) (f a (f c (f a (f b b))))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f C A)) D) (f A (f (f (f (f (f (f B B) A) C) C) A) B))) A.eq Univ (f a (f b (f a (f c c)))) (f a (f c (f a (f b b)))))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#b.
-#c.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#b ##.
+#c ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Sheffer stroke associativity *)
ntheorem associativity:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f A C)) D) (f A (f (f (f B (f B (f (f C C) A))) A) C))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a)))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f A C)) D) (f A (f (f (f B (f B (f (f C C) A))) A) C))) A.eq Univ (f a (f (f b c) (f b c))) (f c (f (f b a) (f b a))))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#b.
-#c.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#b ##.
+#c ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Denial of Sheffer stroke modularity *)
ntheorem modularity:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f A C)) D) (f A (f (f (f B (f B (f (f C C) A))) A) C))) A.eq Univ (f a (f b (f a (f c c)))) (f a (f c (f a (f b b))))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.eq Univ (f (f (f (f B A) (f A C)) D) (f A (f (f (f B (f B (f (f C C) A))) A) C))) A.eq Univ (f a (f b (f a (f c c)))) (f a (f c (f a (f b b)))))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#a.
-#b.
-#c.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#a ##.
+#b ##.
+#c ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet a a) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet a a) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet a b) (meet b a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet a b) (meet b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet (meet a b) c) (meet a (meet b c))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet (meet a b) c) (meet a (meet b c)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join a a) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join a a) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_5:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join a b) (join b a)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join a b) (join b a))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_6:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join (join a b) c) (join a (join b c))
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join (join a b) c) (join a (join b c)))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_7:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet a (join a b)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet a (join a b)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_8:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join a (meet a b)) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join a (meet a b)) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#G.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#G ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (meet (meet (join A B) (join C A)) A) A.
∀H2:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet B (join A B))) B.
∀H3:∀A:Univ.∀B:Univ.eq Univ (join (meet A A) (meet B (join A A))) A.
-∀H4:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet A (join A B))) A.eq Univ (meet a a) a
+∀H4:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet A (join A B))) A.eq Univ (meet a a) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (meet (meet (join A B) (join C A)) A) A.
∀H2:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet B (join A B))) B.
∀H3:∀A:Univ.∀B:Univ.eq Univ (join (meet A A) (meet B (join A A))) A.
-∀H4:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet A (join A B))) A.eq Univ (meet b a) (meet a b)
+∀H4:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet A (join A B))) A.eq Univ (meet b a) (meet a b))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (meet (meet (join A B) (join C A)) A) A.
∀H2:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet B (join A B))) B.
∀H3:∀A:Univ.∀B:Univ.eq Univ (join (meet A A) (meet B (join A A))) A.
-∀H4:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet A (join A B))) A.eq Univ (join a a) a
+∀H4:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet A (join A B))) A.eq Univ (join a a) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_normal_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (meet (meet (join A B) (join C A)) A) A.
∀H2:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet B (join A B))) B.
∀H3:∀A:Univ.∀B:Univ.eq Univ (join (meet A A) (meet B (join A A))) A.
-∀H4:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet A (join A B))) A.eq Univ (join b a) (join a b)
+∀H4:∀A:Univ.∀B:Univ.eq Univ (join (meet A B) (meet A (join A B))) A.eq Univ (join b a) (join a b))
.
-#Univ.
-#A.
-#B.
-#C.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wal_axioms_1:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
∀a:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet a a) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet a a) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#a.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#a ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wal_axioms_2:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet b a) (meet a b)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet b a) (meet a b))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wal_axioms_3:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
∀a:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join a a) a
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join a a) a)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#a.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#a ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wal_axioms_4:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
∀a:Univ.
∀b:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join b a) (join a b)
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join b a) (join a b))
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#a.
-#b.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#a ##.
+#b ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wal_axioms_5:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet (meet (join a b) (join c b)) b) b
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet (meet (join a b) (join c b)) b) b)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wal_axioms_6:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀join:∀_:Univ.∀_:Univ.Univ.
∀meet:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join (join (meet a b) (meet c b)) b) b
+∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join (join (meet a b) (meet c b)) b) b)
.
-#Univ.
-#A.
-#B.
-#C.
-#D.
-#E.
-#F.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-nauto by H0;
+#Univ ##.
+#A ##.
+#B ##.
+#C ##.
+#D ##.
+#E ##.
+#F ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join b (meet a (join c (meet a b)))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join b (meet a (join c (meet a b))))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H2:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join (meet a (join b c)) (meet b c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join (meet a (join b c)) (meet b c))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H4:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (join c d)))) (meet a (join b (meet (join a (meet b d)) (join c d))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (join c d)))) (meet a (join b (meet (join a (meet b d)) (join c d)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H10:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join a (meet b c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join a (meet b c))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H4:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (join c d)))) (meet a (join b (meet (join a (meet b d)) (join c d))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (join c d)))) (meet a (join b (meet (join a (meet b d)) (join c d)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join b (meet a (join c (meet a b)))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join b (meet a (join c (meet a b))))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H10:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join a (meet b c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join a (meet b c))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join b (meet a (join c (meet a b)))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join b (meet a (join c (meet a b))))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H17:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join (meet a b) (meet a c))) (meet a (join (meet b (join a (meet b c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join (meet a b) (meet a c))) (meet a (join (meet b (join a (meet b c))) (meet c (join a b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H42:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H40:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet c (join a b))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet c (join a b)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H42:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H40:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet c (join a b))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet c (join a b)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H42:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H40:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet c (join a b))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet c (join a b)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H56:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join (meet a b) (meet a (join b c))) (meet a (join b (meet (join a b) (join c (meet a b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join (meet a b) (meet a (join b c))) (meet a (join b (meet (join a b) (join c (meet a b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H59:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet (join b c) (join b d))) (meet a (join b (meet (join b d) (join c (meet a b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet (join b c) (join b d))) (meet a (join b (meet (join b d) (join c (meet a b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H60:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet (join b c) (join b d))) (meet a (join b (meet (join b c) (join d (meet a b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet (join b c) (join b d))) (meet a (join b (meet (join b c) (join d (meet a b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H69:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H69:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join b (meet a (join c (meet a b)))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join b (meet a (join c (meet a b))))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H58:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (meet a (join b (meet (join a b) (join c (meet a b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (meet a (join b (meet (join a b) (join c (meet a b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H55:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (join a (meet b (join c (meet a (join c b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (join a (meet b (join c (meet a (join c b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H55:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (join a (meet b (join c (meet a (join c b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (join a (meet b (join c (meet a (join c b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H55:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (join a (meet b (join c (meet a (join c b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (join a (meet b (join c (meet a (join c b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H69:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H69:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H69:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join b (meet a (join c (meet a b)))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join b (meet a (join c (meet a b))))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H10:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join a (meet b c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join a (meet b c))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H39:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet a c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet a c))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H42:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c)))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H42:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c)))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6_dual:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (join a (meet (join a (meet b (join a c))) (join c (meet a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join a c))) (join a (meet (join a (meet b (join a c))) (join c (meet a b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H22_dual:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet (join a b) (join a c)) (join a (meet (join b (meet c (join a b))) (join c (meet a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet (join a b) (join a c)) (join a (meet (join b (meet c (join a b))) (join c (meet a b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H39_dual:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join c (meet a d)))) (join a (meet b (join c (meet d (join a c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join c (meet a d)))) (join a (meet b (join c (meet d (join a c))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H39_dual:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join c (meet a d)))) (join a (meet b (join c (meet d (join a c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join c (meet a d)))) (join a (meet b (join c (meet d (join a c))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H40_dual:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join c (meet a d)))) (join a (meet b (join c (meet d (join c (meet a b))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b (join c (meet a d)))) (join a (meet b (join c (meet d (join c (meet a b)))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H10:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join a (meet b c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join a (meet b c))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H2:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join (meet a (join b c)) (meet b c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join (meet a (join b c)) (meet b c))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H15:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join (meet a b) (meet a c))) (meet a (join (meet a b) (join (meet a c) (meet c (join a b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join (meet a b) (meet a c))) (meet a (join (meet a b) (join (meet a c) (meet c (join a b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H2:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join (meet a (join b c)) (meet b c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join (meet a (join b c)) (meet b c))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H28:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (meet c d)))) (meet a (join b (meet c (meet d (join a (meet b d))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (meet c d)))) (meet a (join b (meet c (meet d (join a (meet b d)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H45:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet b (join c (meet a d)))) (meet a (meet b (join c (meet d (join a (meet b c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet b (join c (meet a d)))) (meet a (meet b (join c (meet d (join a (meet b c)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H7:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet a (join (meet a b) (meet c (join a b))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet a (join (meet a b) (meet c (join a b)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H43:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join b d)))) (meet a (join b (meet c (join d (meet a (join b d))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join b d)))) (meet a (join b (meet c (join d (meet a (join b d)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H40:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet c (join a b))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet c (join a b)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H42:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H7:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet a (join (meet a b) (meet c (join a b))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet a (join (meet a b) (meet c (join a b)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H2:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join (meet a (join b c)) (meet b c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join (meet a (join b c)) (meet b c))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H2:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join (meet a (join b c)) (meet b c)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet c (join (meet a (join b c)) (meet b c))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H49:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (join (meet a c) (meet c (join b d)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (join (meet a c) (meet c (join b d))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H7:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet a (join (meet a b) (meet c (join a b))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join b (meet a (join (meet a b) (meet c (join a b)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H51:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (join (meet a c) (meet c d))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (join (meet a c) (meet c d)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H59:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet (join b c) (join b d))) (meet a (join b (meet (join b d) (join c (meet a b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet (join b c) (join b d))) (meet a (join b (meet (join b d) (join c (meet a b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H73:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet b (join c d))) (meet a (meet b (join c (meet a (join d (meet b c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet b (join c d))) (meet a (meet b (join c (meet a (join d (meet b c)))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H32:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (meet c d)))) (meet a (join b (meet c (join (meet a d) (meet b d)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (meet c d)))) (meet a (join b (meet c (join (meet a d) (meet b d))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H77:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join b d)))) (meet a (join b (meet c (join d (meet a (meet b c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join b d)))) (meet a (join b (meet c (join d (meet a (meet b c)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H78:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join b d)))) (meet a (join b (meet c (join d (meet b (join a d))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join b d)))) (meet a (join b (meet c (join d (meet b (join a d)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H77:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join b d)))) (meet a (join b (meet c (join d (meet a (meet b c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join b d)))) (meet a (join b (meet c (join d (meet a (meet b c)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H58:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (meet a (join b (meet (join a b) (join c (meet a b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (meet a (join b (meet (join a b) (join c (meet a b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H58:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (meet a (join b (meet (join a b) (join c (meet a b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (meet a (join b (meet (join a b) (join c (meet a b))))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H58:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (meet a (join b (meet (join a b) (join c (meet a b)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (meet a (join b (meet (join a b) (join c (meet a b))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H32:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (meet c d)))) (meet a (join b (meet c (join (meet a d) (meet b d)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (meet c d)))) (meet a (join b (meet c (join (meet a d) (meet b d))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H40:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet c (join a b))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join d (meet c (join a b)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H32:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (meet c d)))) (meet a (join b (meet c (join (meet a d) (meet b d)))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a (meet c d)))) (meet a (join b (meet c (join (meet a d) (meet b d))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H42:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c))))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet c (join a d)))) (meet a (join b (meet c (join b (join d (meet a c)))))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_H6:
- ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
∀H7:∀X:Univ.eq Univ (join X X) X.
-∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b))))
+∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (meet a (join (meet a (join b (meet a c))) (meet c (join a b)))))
.
-#Univ.
-#U.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#join.
-#meet.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
+#Univ ##.
+#U ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#join ##.
+#meet ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
nqed.
(* ------------------------------------------------------------------------------ *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_mv_4:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (implies (implies a b) (implies b a)) (implies b a)) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (implies (implies a b) (implies b a)) (implies b a)) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#implies.
-#not.
-#truth.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#implies ##.
+#not ##.
+#truth ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Include the definition of implies in terms of xor and and_star *)
ntheorem prove_wajsberg_mv_4:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H9:∀X:Univ.eq Univ (and_star X truth) X.
∀H10:∀X:Univ.eq Univ (xor X X) falsehood.
∀H11:∀X:Univ.eq Univ (xor X falsehood) X.
-∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies (implies (implies a b) (implies b a)) (implies b a)) truth
+∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies (implies (implies a b) (implies b a)) (implies b a)) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#and_star.
-#b.
-#falsehood.
-#implies.
-#not.
-#truth.
-#xor.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#and_star ##.
+#b ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#truth ##.
+#xor ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_mv_24:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (not (not x)) x) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (not (not x)) x) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_mv_25:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (implies x y) (implies (implies z x) (implies z y))) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (implies x y) (implies (implies z x) (implies z y))) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_mv_29:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x (not (not x))) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x (not (not x))) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_mv_33:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (implies (not x) y) (implies (not y) x)) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (implies (not x) y) (implies (not y) x)) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_mv_36:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (implies x y) (implies (not y) (not x))) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (implies x y) (implies (not y) (not x))) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_mv_39:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (not (implies a b)) (not b)) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (not (implies a b)) (not b)) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#implies.
-#not.
-#truth.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#implies ##.
+#not ##.
+#truth ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_mv_50:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (not a) (implies b (not (implies b a)))) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (not a) (implies b (not (implies b a)))) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#implies.
-#not.
-#truth.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#implies ##.
+#not ##.
+#truth ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_lemma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x x) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x x) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_lemma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H4:∀X:Univ.eq Univ (implies truth X) X.eq Univ x y
+∀H4:∀X:Univ.eq Univ (implies truth X) X.eq Univ x y)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_lemma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x truth) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x truth) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_lemma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x (implies y x)) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x (implies y x)) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_lemma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H2:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H4:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x z) truth
+∀H4:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x z) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-nauto by H0,H1,H2,H3,H4;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+nauto by H0,H1,H2,H3,H4 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_lemma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (implies (implies x y) y) (implies (implies y z) (implies x z))) truth
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (implies (implies x y) y) (implies (implies y z) (implies x z))) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_lemma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x (implies y z)) (implies y (implies x z))
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x (implies y z)) (implies y (implies x z)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_lemma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x (not truth)) (not x)
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies x (not truth)) (not x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_lemma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (not (not x)) x
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (not (not x)) x)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_lemma:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀truth:Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (not x) (not y)) (implies y x)
+∀H3:∀X:Univ.eq Univ (implies truth X) X.eq Univ (implies (not x) (not y)) (implies y x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#implies.
-#not.
-#truth.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_alternative_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀myand:∀_:Univ.∀_:Univ.Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (not x) (xor x truth)
+∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (not x) (xor x truth))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#or.
-#truth.
-#x.
-#xor.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#or ##.
+#truth ##.
+#x ##.
+#xor ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_alternative_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀myand:∀_:Univ.∀_:Univ.Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (xor x falsehood) x
+∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (xor x falsehood) x)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#or.
-#truth.
-#x.
-#xor.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#or ##.
+#truth ##.
+#x ##.
+#xor ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_alternative_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀myand:∀_:Univ.∀_:Univ.Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (xor x x) falsehood
+∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (xor x x) falsehood)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#or.
-#truth.
-#x.
-#xor.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#or ##.
+#truth ##.
+#x ##.
+#xor ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_alternative_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀myand:∀_:Univ.∀_:Univ.Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (and_star x truth) x
+∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (and_star x truth) x)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#or.
-#truth.
-#x.
-#xor.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#or ##.
+#truth ##.
+#x ##.
+#xor ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_alternative_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀myand:∀_:Univ.∀_:Univ.Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (and_star x falsehood) falsehood
+∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (and_star x falsehood) falsehood)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#or.
-#truth.
-#x.
-#xor.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#or ##.
+#truth ##.
+#x ##.
+#xor ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_alternative_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀myand:∀_:Univ.∀_:Univ.Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (and_star (xor truth x) x) falsehood
+∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (and_star (xor truth x) x) falsehood)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#or.
-#truth.
-#x.
-#xor.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#or ##.
+#truth ##.
+#x ##.
+#xor ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_alternative_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀myand:∀_:Univ.∀_:Univ.Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (xor x (xor truth y)) (xor (xor x truth) y)
+∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (xor x (xor truth y)) (xor (xor x truth) y))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#or.
-#truth.
-#x.
-#xor.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#or ##.
+#truth ##.
+#x ##.
+#xor ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_alternative_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀myand:∀_:Univ.∀_:Univ.Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀H12:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H13:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (and_star (xor (and_star (xor truth x) y) truth) y) (and_star (xor (and_star (xor truth y) x) truth) x)
+∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (and_star (xor (and_star (xor truth x) y) truth) y) (and_star (xor (and_star (xor truth y) x) truth) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#or.
-#truth.
-#x.
-#xor.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#or ##.
+#truth ##.
+#x ##.
+#xor ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Include the definition of implies in terms of xor and and_star *)
ntheorem prove_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀H9:∀X:Univ.eq Univ (and_star X truth) X.
∀H10:∀X:Univ.eq Univ (xor X X) falsehood.
∀H11:∀X:Univ.eq Univ (xor X falsehood) X.
-∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies truth x) x
+∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies truth x) x)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#truth.
-#x.
-#xor.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#xor ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Include the definition of implies in terms of xor and and_star *)
ntheorem prove_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀H9:∀X:Univ.eq Univ (and_star X truth) X.
∀H10:∀X:Univ.eq Univ (xor X X) falsehood.
∀H11:∀X:Univ.eq Univ (xor X falsehood) X.
-∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies (implies x y) (implies (implies y z) (implies x z))) truth
+∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies (implies x y) (implies (implies y z) (implies x z))) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#truth.
-#x.
-#xor.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#xor ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Include the definition of implies in terms of xor and and_star *)
ntheorem prove_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀H9:∀X:Univ.eq Univ (and_star X truth) X.
∀H10:∀X:Univ.eq Univ (xor X X) falsehood.
∀H11:∀X:Univ.eq Univ (xor X falsehood) X.
-∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies (implies x y) y) (implies (implies y x) x)
+∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies (implies x y) y) (implies (implies y x) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#truth.
-#x.
-#xor.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#xor ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Include the definition of implies in terms of xor and and_star *)
ntheorem prove_wajsberg_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀and_star:∀_:Univ.∀_:Univ.Univ.
∀falsehood:Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀H9:∀X:Univ.eq Univ (and_star X truth) X.
∀H10:∀X:Univ.eq Univ (xor X X) falsehood.
∀H11:∀X:Univ.eq Univ (xor X falsehood) X.
-∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies (implies (not x) (not y)) (implies y x)) truth
+∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies (implies (not x) (not y)) (implies y x)) truth)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and_star.
-#falsehood.
-#implies.
-#not.
-#truth.
-#x.
-#xor.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and_star ##.
+#falsehood ##.
+#implies ##.
+#not ##.
+#truth ##.
+#x ##.
+#xor ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_wajsberg_ntheorem:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀myand:∀_:Univ.∀_:Univ.Univ.
∀implies:∀_:Univ.∀_:Univ.Univ.
∀not:∀_:Univ.Univ.
∀H6:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
∀H7:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
-∀H9:∀X:Univ.eq Univ (implies truth X) X.eq Univ (not (or (myand x (or x x)) (myand x x))) (myand (not x) (or (or (not x) (not x)) (myand (not x) (not x))))
+∀H9:∀X:Univ.eq Univ (implies truth X) X.eq Univ (not (or (myand x (or x x)) (myand x x))) (myand (not x) (or (or (not x) (not x)) (myand (not x) (not x)))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#and.
-#implies.
-#not.
-#or.
-#truth.
-#x.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#and ##.
+#implies ##.
+#not ##.
+#or ##.
+#truth ##.
+#x ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----3*2*U = U*U*U *)
ntheorem prove_equation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
∀n1:Univ.
∀n2:Univ.
∀H0:eq Univ u (f n2 n2).
∀H1:eq Univ n3 (f n2 n1).
∀H2:eq Univ n2 (f n1 n1).
-∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (f X (f Y Z)) (f (f X Y) (f X Z)).eq Univ (f (f n3 n2) u) (f (f u u) u)
+∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (f X (f Y Z)) (f (f X Y) (f X Z)).eq Univ (f (f n3 n2) u) (f (f u u) u))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#f.
-#n1.
-#n2.
-#n3.
-#u.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#f ##.
+#n1 ##.
+#n2 ##.
+#n3 ##.
+#u ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----3*2*U2*(UU*UU) = U1*U3*(uU*UU) *)
ntheorem prove_equation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
∀H7:eq Univ u (f n2 n2).
∀H8:eq Univ n3 (f n2 n1).
∀H9:eq Univ n2 (f n1 n1).
-∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (f X (f Y Z)) (f (f X Y) (f X Z)).eq Univ (f a v) (f b v)
+∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (f X (f Y Z)) (f (f X Y) (f X Z)).eq Univ (f a v) (f b v))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#f.
-#n1.
-#n2.
-#n3.
-#u.
-#u1.
-#u2.
-#u3.
-#uu.
-#v.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#f ##.
+#n1 ##.
+#n2 ##.
+#n3 ##.
+#u ##.
+#u1 ##.
+#u2 ##.
+#u3 ##.
+#uu ##.
+#v ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----t(tsk) = tt(ts)(tk), where k=crit(t) *)
ntheorem prove_equation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
∀k:Univ.
∀s:Univ.
∀H2:eq Univ tt_ts (f tt ts).
∀H3:eq Univ ts (f t s).
∀H4:eq Univ tt (f t t).
-∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (f X (f Y Z)) (f (f X Y) (f X Z)).eq Univ (f t tsk) (f tt_ts tk)
+∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (f X (f Y Z)) (f (f X Y) (f X Z)).eq Univ (f t tsk) (f tt_ts tk))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#f.
-#k.
-#s.
-#t.
-#tk.
-#ts.
-#tsk.
-#tt.
-#tt_ts.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-nauto by H0,H1,H2,H3,H4,H5;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#f ##.
+#k ##.
+#s ##.
+#t ##.
+#tk ##.
+#ts ##.
+#tsk ##.
+#tt ##.
+#tt_ts ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+nauto by H0,H1,H2,H3,H4,H5 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_inverse:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (add X Y) Z) (add (multiply X Z) (multiply Y Z)).
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H13:∀X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add a a) additive_identity
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add a a) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Right identity and inverse are dependent lemmas *)
ntheorem prove_commutativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (add X Y) Z) (add (multiply X Z) (multiply Y Z)).
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H16:∀X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
-∀H17:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c
+∀H17:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#b.
-#c.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#b ##.
+#c ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_commutativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (add X Y) Z) (add (multiply X Z) (multiply Y Z)).
∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H14:∀X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
-∀H15:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c
+∀H15:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#b.
-#c.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#b ##.
+#c ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_commutativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H7:∀X:Univ.eq Univ (add X (additive_inverse X)) additive_identity.
∀H8:∀X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
∀H9:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H10:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c
+∀H10:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#b.
-#c.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#b ##.
+#c ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Associativity of product *)
ntheorem prove_commutativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (add X Y) Z) (add (multiply X Z) (multiply Y Z)).
∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
∀H6:∀X:Univ.eq Univ (add X (additive_inverse X)) additive_identity.
-∀H7:∀X:Univ.eq Univ (add X additive_identity) X.eq Univ (multiply a b) (multiply b a)
+∀H7:∀X:Univ.eq Univ (add X additive_identity) X.eq Univ (multiply a b) (multiply b a))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#b.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#b ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_commutativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H7:∀X:Univ.eq Univ (add X (additive_inverse X)) additive_identity.
∀H8:∀X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
∀H9:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H10:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c
+∀H10:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#b.
-#c.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#b ##.
+#c ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Middle Moufang *)
ntheorem prove_skew_symmetry:
- ∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H22:∀X:Univ.eq Univ (add additive_identity X) X.
∀H23:∀X:Univ.eq Univ (add X additive_identity) X.
∀H24:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H25:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (s a b c d) (additive_inverse (s b a c d))
+∀H25:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (s a b c d) (additive_inverse (s b a c d)))
.
-#Univ.
-#W.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#c.
-#commutator.
-#d.
-#multiply.
-#s.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-#H22.
-#H23.
-#H24.
-#H25.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21,H22,H23,H24,H25;
+#Univ ##.
+#W ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#c ##.
+#commutator ##.
+#d ##.
+#multiply ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+#H22 ##.
+#H23 ##.
+#H24 ##.
+#H25 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21,H22,H23,H24,H25 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Left Moufang *)
ntheorem prove_skew_symmetry:
- ∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H15:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H16:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H17:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H18:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (s a b c d) (additive_inverse (s b a c d))
+∀H18:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (s a b c d) (additive_inverse (s b a c d)))
.
-#Univ.
-#W.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#c.
-#commutator.
-#d.
-#multiply.
-#s.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18;
+#Univ ##.
+#W ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#c ##.
+#commutator ##.
+#d ##.
+#multiply ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Left Moufang *)
ntheorem prove_skew_symmetry:
- ∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H22:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H23:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H24:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H25:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (s a b c d) (additive_inverse (s b a c d))
+∀H25:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (s a b c d) (additive_inverse (s b a c d)))
.
-#Univ.
-#W.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#c.
-#commutator.
-#d.
-#multiply.
-#s.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-#H22.
-#H23.
-#H24.
-#H25.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21,H22,H23,H24,H25;
+#Univ ##.
+#W ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#c ##.
+#commutator ##.
+#d ##.
+#multiply ##.
+#s ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+#H22 ##.
+#H23 ##.
+#H24 ##.
+#H25 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21,H22,H23,H24,H25 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Middle associator identity *)
ntheorem prove_equality:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H17:∀X:Univ.eq Univ (add additive_identity X) X.
∀H18:∀X:Univ.eq Univ (add X additive_identity) X.
∀H19:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H20:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply (multiply (associator a a b) a) (associator a a b)) additive_identity
+∀H20:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply (multiply (associator a a b) a) (associator a a b)) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#commutator.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#commutator ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_equation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (additive_inverse a) (additive_inverse b)) (multiply a b)
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (additive_inverse a) (additive_inverse b)) (multiply a b))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#commutator.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#commutator ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_equation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (additive_inverse a) b) (additive_inverse (multiply a b))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (additive_inverse a) b) (additive_inverse (multiply a b)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#commutator.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#commutator ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_equation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply a (additive_inverse b)) (additive_inverse (multiply a b))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply a (additive_inverse b)) (additive_inverse (multiply a b)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#commutator.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#commutator ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_distributivity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply x (add y (additive_inverse z))) (add (multiply x y) (additive_inverse (multiply x z)))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply x (add y (additive_inverse z))) (add (multiply x y) (additive_inverse (multiply x z))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_distributivity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (add x (additive_inverse y)) z) (add (multiply x z) (additive_inverse (multiply y z)))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (add x (additive_inverse y)) z) (add (multiply x z) (additive_inverse (multiply y z))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_distributivity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (additive_inverse x) (add y z)) (add (additive_inverse (multiply x y)) (additive_inverse (multiply x z)))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (additive_inverse x) (add y z)) (add (additive_inverse (multiply x y)) (additive_inverse (multiply x z))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_distributivity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (add x y) (additive_inverse z)) (add (additive_inverse (multiply x z)) (additive_inverse (multiply y z)))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (add x y) (additive_inverse z)) (add (additive_inverse (multiply x z)) (additive_inverse (multiply y z))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_linearised_form1:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y (add u v)) (add (associator x y u) (associator x y v))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y (add u v)) (add (associator x y u) (associator x y v)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#u.
-#v.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#u ##.
+#v ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_linearised_form1:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y (add u v)) (add (associator x y u) (associator x y v))
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y (add u v)) (add (associator x y u) (associator x y v)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#u.
-#v.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#u ##.
+#v ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_linearised_form2:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (add u v) y) (add (associator x u y) (associator x v y))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (add u v) y) (add (associator x u y) (associator x v y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#u.
-#v.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#u ##.
+#v ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_linearised_form2:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (add u v) y) (add (associator x u y) (associator x v y))
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (add u v) y) (add (associator x u y) (associator x v y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#u.
-#v.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#u ##.
+#v ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_linearised_form3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator (add u v) x y) (add (associator u x y) (associator v x y))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator (add u v) x y) (add (associator u x y) (associator v x y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#u.
-#v.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#u ##.
+#v ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_linearised_form3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator (add u v) x y) (add (associator u x y) (associator v x y))
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator (add u v) x y) (add (associator u x y) (associator v x y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#u.
-#v.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#u ##.
+#v ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_left_alternative:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x x y) additive_identity
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x x y) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_left_alternative:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x x y) additive_identity
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x x y) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_right_alternative:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y y) additive_identity
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y y) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_right_alternative:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y y) additive_identity
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y y) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_equation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator x y z) (associator x z y)) additive_identity
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator x y z) (associator x z y)) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_equation:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator x y z) (associator x z y)) additive_identity
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator x y z) (associator x z y)) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_flexible_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y x) additive_identity
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y x) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_flexible_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y x) additive_identity
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x y x) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Commutator *)
ntheorem prove_flexible_law:
- ∀Univ:Type.∀U:Univ.∀V:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀V:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
∀H14:∀X:Univ.eq Univ (add additive_identity X) X.
∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (add Y Z)) (add (add X Y) Z).
-∀H16:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (associator a b c) (associator a c b)) additive_identity
+∀H16:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (associator a b c) (associator a c b)) additive_identity)
.
-#Univ.
-#U.
-#V.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#c.
-#commutator.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16;
+#Univ ##.
+#U ##.
+#V ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#c ##.
+#commutator ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Commutator *)
ntheorem prove_flexible_law:
- ∀Univ:Type.∀U:Univ.∀V:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀U:Univ.∀V:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H20:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y (additive_inverse Z))) (add (multiply X Y) (additive_inverse (multiply X Z))).
∀H21:∀X:Univ.∀Y:Univ.eq Univ (multiply X (additive_inverse Y)) (additive_inverse (multiply X Y)).
∀H22:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) Y) (additive_inverse (multiply X Y)).
-∀H23:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y).eq Univ (add (associator a b c) (associator a c b)) additive_identity
+∀H23:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y).eq Univ (add (associator a b c) (associator a c b)) additive_identity)
.
-#Univ.
-#U.
-#V.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#c.
-#commutator.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-#H22.
-#H23.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21,H22,H23;
+#Univ ##.
+#U ##.
+#V ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#c ##.
+#commutator ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+#H22 ##.
+#H23 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21,H22,H23 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_teichmuller_identity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d)))) additive_identity
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d)))) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#c.
-#commutator.
-#d.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#c ##.
+#commutator ##.
+#d ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_teichmuller_identity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d)))) additive_identity
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (add (associator (multiply a b) c d) (associator a b (multiply c d))) (additive_inverse (add (add (associator a (multiply b c) d) (multiply a (associator b c d))) (multiply (associator a b c) d)))) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#b.
-#c.
-#commutator.
-#d.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#b ##.
+#c ##.
+#commutator ##.
+#d ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_right_moufang:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply cz (multiply cx (multiply cy cx))) (multiply (multiply (multiply cz cx) cy) cx)
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply cz (multiply cx (multiply cy cx))) (multiply (multiply (multiply cz cx) cy) cx))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#cx.
-#cy.
-#cz.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#cx ##.
+#cy ##.
+#cz ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_right_moufang:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply cz (multiply cx (multiply cy cx))) (multiply (multiply (multiply cz cx) cy) cx)
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply cz (multiply cx (multiply cy cx))) (multiply (multiply (multiply cz cx) cy) cx))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#cx.
-#cy.
-#cz.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#cx ##.
+#cy ##.
+#cz ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_right_moufang:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (multiply x y) z) (multiply (associator x y z) x)
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (multiply x y) z) (multiply (associator x y z) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_right_moufang:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (multiply x y) z) (multiply (associator x y z) x)
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (multiply x y) z) (multiply (associator x y z) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_left_moufang:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (multiply cx (multiply cy cx)) cz) (multiply cx (multiply cy (multiply cx cz)))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (multiply cx (multiply cy cx)) cz) (multiply cx (multiply cy (multiply cx cz))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#cx.
-#cy.
-#cz.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#cx ##.
+#cy ##.
+#cz ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_left_moufang:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (multiply cx (multiply cy cx)) cz) (multiply cx (multiply cy (multiply cx cz)))
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (multiply cx (multiply cy cx)) cz) (multiply cx (multiply cy (multiply cx cz))))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#cx.
-#cy.
-#cz.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#cx ##.
+#cy ##.
+#cz ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_left_moufang:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (multiply y x) z) (multiply x (associator x y z))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (multiply y x) z) (multiply x (associator x y z)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_left_moufang:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (multiply y x) z) (multiply x (associator x y z))
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x (multiply y x) z) (multiply x (associator x y z)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_middle_law:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (multiply cx cy) (multiply cz cx)) (multiply cx (multiply (multiply cy cz) cx))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (multiply cx cy) (multiply cz cx)) (multiply cx (multiply (multiply cy cz) cx)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#cx.
-#cy.
-#cz.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#cx ##.
+#cy ##.
+#cz ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_middle_moufang:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (multiply x y) (multiply z x)) (multiply (multiply x (multiply y z)) x)
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (multiply x y) (multiply z x)) (multiply (multiply x (multiply y z)) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_middle_moufang:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (multiply x y) (multiply z x)) (multiply (multiply x (multiply y z)) x)
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply (multiply x y) (multiply z x)) (multiply (multiply x (multiply y z)) x))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Commutator *)
ntheorem prove_conjecture_1:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H10:∀X:Univ.eq Univ (add X additive_identity) X.
∀H11:∀X:Univ.eq Univ (add additive_identity X) X.
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (add Y Z)) (add (add X Y) Z).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) additive_identity
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Commutator *)
ntheorem prove_conjecture_1:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y (additive_inverse Z))) (add (multiply X Y) (additive_inverse (multiply X Z))).
∀H18:∀X:Univ.∀Y:Univ.eq Univ (multiply X (additive_inverse Y)) (additive_inverse (multiply X Y)).
∀H19:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) Y) (additive_inverse (multiply X Y)).
-∀H20:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y).eq Univ (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) additive_identity
+∀H20:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y).eq Univ (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Commutator *)
ntheorem prove_conjecture_2:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H10:∀X:Univ.eq Univ (add X additive_identity) X.
∀H11:∀X:Univ.eq Univ (add additive_identity X) X.
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (add Y Z)) (add (add X Y) Z).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y))) additive_identity
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y))) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Commutator *)
ntheorem prove_conjecture_2:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y (additive_inverse Z))) (add (multiply X Y) (additive_inverse (multiply X Z))).
∀H18:∀X:Univ.∀Y:Univ.eq Univ (multiply X (additive_inverse Y)) (additive_inverse (multiply X Y)).
∀H19:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) Y) (additive_inverse (multiply X Y)).
-∀H20:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y).eq Univ (multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y))) additive_identity
+∀H20:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y).eq Univ (multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y))) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Commutator *)
ntheorem prove_conjecture_3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H10:∀X:Univ.eq Univ (add X additive_identity) X.
∀H11:∀X:Univ.eq Univ (add additive_identity X) X.
∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (add Y Z)) (add (add X Y) Z).
-∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) additive_identity
+∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Commutator *)
ntheorem prove_conjecture_3:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y (additive_inverse Z))) (add (multiply X Y) (additive_inverse (multiply X Z))).
∀H18:∀X:Univ.∀Y:Univ.eq Univ (multiply X (additive_inverse Y)) (additive_inverse (multiply X Y)).
∀H19:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) Y) (additive_inverse (multiply X Y)).
-∀H20:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y).eq Univ (add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) additive_identity
+∀H20:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y).eq Univ (add (add (add (add (add (multiply (associator x x y) (multiply (associator x x y) (associator x x y))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) (multiply (associator x x y) (multiply (associator x x y) (associator x x y)))) additive_identity)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#x.
-#y.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#x ##.
+#y ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_challenge:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H11:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H12:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H13:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator (multiply x y) z w) (associator x y (commutator z w))) (add (multiply x (associator y z w)) (multiply (associator x z w) y))
+∀H14:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator (multiply x y) z w) (associator x y (commutator z w))) (add (multiply x (associator y z w)) (multiply (associator x z w) y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#w.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#w ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----The next 7 clause are extra lemmas which Stevens found useful *)
ntheorem prove_challenge:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H18:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H19:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H20:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator (multiply x y) z w) (associator x y (commutator z w))) (add (multiply x (associator y z w)) (multiply (associator x z w) y))
+∀H21:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator (multiply x y) z w) (associator x y (commutator z w))) (add (multiply x (associator y z w)) (multiply (associator x z w) y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#w.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#w ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Right Moufang *)
ntheorem prove_challenge:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H12:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H13:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H14:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H15:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator (multiply x y) z w) (associator x y (commutator z w))) (add (multiply x (associator y z w)) (multiply (associator x z w) y))
+∀H15:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator (multiply x y) z w) (associator x y (commutator z w))) (add (multiply x (associator y z w)) (multiply (associator x z w) y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#w.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#w ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ----Right Moufang *)
ntheorem prove_challenge:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀additive_inverse:∀_:Univ.Univ.
∀H19:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
∀H20:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
∀H21:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H22:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator (multiply x y) z w) (associator x y (commutator z w))) (add (multiply x (associator y z w)) (multiply (associator x z w) y))
+∀H22:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (add (associator (multiply x y) z w) (associator x y (commutator z w))) (add (multiply x (associator y z w)) (multiply (associator x z w) y)))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#additive_identity.
-#additive_inverse.
-#associator.
-#commutator.
-#multiply.
-#w.
-#x.
-#y.
-#z.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-#H11.
-#H12.
-#H13.
-#H14.
-#H15.
-#H16.
-#H17.
-#H18.
-#H19.
-#H20.
-#H21.
-#H22.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21,H22;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#associator ##.
+#commutator ##.
+#multiply ##.
+#w ##.
+#x ##.
+#y ##.
+#z ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+#H11 ##.
+#H12 ##.
+#H13 ##.
+#H14 ##.
+#H15 ##.
+#H16 ##.
+#H17 ##.
+#H18 ##.
+#H19 ##.
+#H20 ##.
+#H21 ##.
+#H22 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21,H22 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_commutativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H7:∀X:Univ.eq Univ (add X (additive_inverse X)) additive_identity.
∀H8:∀X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
∀H9:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H10:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c
+∀H10:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#b.
-#c.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#b ##.
+#c ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_commutativity:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀additive_identity:Univ.
∀H7:∀X:Univ.eq Univ (add X (additive_inverse X)) additive_identity.
∀H8:∀X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
∀H9:∀X:Univ.eq Univ (add X additive_identity) X.
-∀H10:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c
+∀H10:∀X:Univ.eq Univ (add additive_identity X) X.eq Univ (multiply b a) c)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#additive_identity.
-#additive_inverse.
-#b.
-#c.
-#multiply.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-#H6.
-#H7.
-#H8.
-#H9.
-#H10.
-nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#additive_identity ##.
+#additive_inverse ##.
+#b ##.
+#c ##.
+#multiply ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+#H6 ##.
+#H7 ##.
+#H8 ##.
+#H9 ##.
+#H10 ##.
+nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀negate:∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H2:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H2:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#negate.
-#H0.
-#H1.
-#H2.
-nauto by H0,H1,H2;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+nauto by H0,H1,H2 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:∀X:Univ.eq Univ (negate (negate X)) X.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:∀X:Univ.eq Univ (add X c) c.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H2:eq Univ (negate d) c.
∀H3:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H5:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H5:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#d.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-#H4.
-#H5.
-nauto by H0,H1,H2,H3,H4,H5;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#d ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+#H4 ##.
+#H5 ##.
+nauto by H0,H1,H2,H3,H4,H5 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (add c c) c.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (add c d) d.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#d.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#d ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_idempotence:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀c:Univ.
∀d:Univ.
∀H0:eq Univ (add c d) d.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃X:Univ.eq Univ (add X X) X
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃X:Univ.eq Univ (add X X) X)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#add.
-#c.
-#d.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2,H3;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#c ##.
+#d ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2,H3 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (negate (add a b)) (negate b).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_idempotence:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (negate (add a b)) (negate b).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃X:Univ.eq Univ (add X X) X
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃X:Univ.eq Univ (add X X) X)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2,H3;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2,H3 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_result:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (negate (add a (negate (add b c)))) (negate (add a (add b (negate c)))).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a b) a
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add a b) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_result:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (negate (add a (negate (add b c)))) (negate (add b (negate (add a c)))).
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ a b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ a b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_result:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (negate (add a (negate b))) c.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (negate (add c (negate (add b a)))) a
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (negate (add c (negate (add b a)))) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_result:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (negate (add a b)) c.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (negate (add c (negate (add (negate b) a)))) a
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (negate (add c (negate (add (negate b) a)))) a)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (negate (add a (negate b))) b.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_idempotence:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (negate (add a (negate b))) b.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃X:Univ.eq Univ (add X X) X
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃X:Univ.eq Univ (add X X) X)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2,H3;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2,H3 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (add c (negate c)) c.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:∀X:Univ.eq Univ (add X X) X.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (negate (add (negate (add a (add a b))) (negate (add a (negate b))))) a.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (add c d) c.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#d.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#d ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_huntingtons_axiom:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀b:Univ.
∀H0:eq Univ (negate (negate c)) c.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b)
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#add.
-#b.
-#c.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-nauto by H0,H1,H2,H3;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#add ##.
+#b ##.
+#c ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+nauto by H0,H1,H2,H3 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------ *)
ntheorem prove_absorption_within_negation:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀c:Univ.
∀d:Univ.
∀H0:eq Univ (add c d) d.
∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃A:Univ.∃B:Univ.eq Univ (negate (add A B)) (negate B)
+∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃A:Univ.∃B:Univ.eq Univ (negate (add A B)) (negate B))
.
-#Univ.
-#A.
-#B.
-#X.
-#Y.
-#Z.
-#add.
-#c.
-#d.
-#negate.
-#H0.
-#H1.
-#H2.
-#H3.
-napply ex_intro[
-nid2:
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2,H3;
-nid|
-skip]
-nid|
-skip]
+#Univ ##.
+#A ##.
+#B ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#c ##.
+#d ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+#H3 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2,H3 ##;
+##| ##skip ##]
+##| ##skip ##]
nqed.
(* ------------------------------------------------------------------------------ *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_absorption_within_negation:
- ∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀negate:∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H2:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃A:Univ.∃B:Univ.eq Univ (negate (add A B)) (negate B)
+∀H2:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃A:Univ.∃B:Univ.eq Univ (negate (add A B)) (negate B))
.
-#Univ.
-#A.
-#B.
-#X.
-#Y.
-#Z.
-#add.
-#negate.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
-nid|
-skip]
+#Univ ##.
+#A ##.
+#B ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_absorbtion:
- ∀Univ:Type.∀C:Univ.∀D:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀C:Univ.∀D:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀add:∀_:Univ.∀_:Univ.Univ.
∀negate:∀_:Univ.Univ.
∀H0:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
-∀H2:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃C:Univ.∃D:Univ.eq Univ (add C D) D
+∀H2:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃C:Univ.∃D:Univ.eq Univ (add C D) D)
.
-#Univ.
-#C.
-#D.
-#X.
-#Y.
-#Z.
-#add.
-#negate.
-#H0.
-#H1.
-#H2.
-napply ex_intro[
-nid2:
-napply ex_intro[
-nid2:
-nauto by H0,H1,H2;
-nid|
-skip]
-nid|
-skip]
+#Univ ##.
+#C ##.
+#D ##.
+#X ##.
+#Y ##.
+#Z ##.
+#add ##.
+#negate ##.
+#H0 ##.
+#H1 ##.
+#H2 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1,H2 ##;
+##| ##skip ##]
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_this:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.
∀a:Univ.
∀b:Univ.
∀f:∀_:Univ.Univ.
∀g:∀_:Univ.Univ.
-∀H0:∀X:Univ.∀Y:Univ.eq Univ (f X) (g Y).eq Univ (f (f a)) (f (g b))
+∀H0:∀X:Univ.∀Y:Univ.eq Univ (f X) (g Y).eq Univ (f (f a)) (f (g b)))
.
-#Univ.
-#X.
-#Y.
-#a.
-#b.
-#f.
-#g.
-#H0.
-nauto by H0;
+#Univ ##.
+#X ##.
+#Y ##.
+#a ##.
+#b ##.
+#f ##.
+#g ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem prove_this:
- ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
+ (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
∀a:Univ.
∀b:Univ.
∀c:Univ.
∀d:Univ.
∀f:∀_:Univ.∀_:Univ.Univ.
-∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (f X (f Y Z)) (f (f X Y) Z).eq Univ (f a (f b (f c d))) (f (f (f a b) c) d)
+∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (f X (f Y Z)) (f (f X Y) Z).eq Univ (f a (f b (f c d))) (f (f (f a b) c) d))
.
-#Univ.
-#X.
-#Y.
-#Z.
-#a.
-#b.
-#c.
-#d.
-#f.
-#H0.
-nauto by H0;
+#Univ ##.
+#X ##.
+#Y ##.
+#Z ##.
+#a ##.
+#b ##.
+#c ##.
+#d ##.
+#f ##.
+#H0 ##.
+nauto by H0 ##;
nqed.
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
ntheorem clause3:
- ∀Univ:Type.∀X:Univ.
+ (∀Univ:Type.∀X:Univ.
∀f:∀_:Univ.Univ.
∀g1:∀_:Univ.Univ.
∀g2:∀_:Univ.Univ.
∀H0:∀X:Univ.eq Univ (f (g2 X)) X.
-∀H1:∀X:Univ.eq Univ (f (g1 X)) X.∃X:Univ.eq Univ (g1 X) (g2 X)
+∀H1:∀X:Univ.eq Univ (f (g1 X)) X.∃X:Univ.eq Univ (g1 X) (g2 X))
.
-#Univ.
-#X.
-#f.
-#g1.
-#g2.
-#H0.
-#H1.
-napply ex_intro[
-nid2:
-nauto by H0,H1;
-nid|
-skip]
+#Univ ##.
+#X ##.
+#f ##.
+#g1 ##.
+#g2 ##.
+#H0 ##.
+#H1 ##.
+napply (ex_intro ? ? ? ?) ##[
+##2:
+nauto by H0,H1 ##;
+##| ##skip ##]
nqed.
(* -------------------------------------------------------------------------- *)