| TacticAst.Reflexivity _ -> Tactics.reflexivity
| TacticAst.Replace (_, pattern, with_what) ->
Tactics.replace ~pattern ~with_what
- | TacticAst.Rewrite (_, dir, t, pattern) ->
- if dir = `Left then
- EqualityTactics.rewrite_tac ~where:pattern ~term:t ()
- else
- EqualityTactics.rewrite_back_tac ~where:pattern ~term:t ()
+ | TacticAst.Rewrite (_, direction, t, pattern) ->
+ EqualityTactics.rewrite_tac ~direction ~pattern t
| TacticAst.Right _ -> Tactics.right
| TacticAst.Ring _ -> Tactics.ring
| TacticAst.Split _ -> Tactics.split
theorem le_gen_S_S_2: \forall m,n. (le (S m) (S n)) \to (le m n).
intros.
lapply le_gen_S_x_2 to H using H0. elim H0. elim H1.
-lapply eq_gen_S_S to H2 using H4. rewrite left H4. assumption.
+lapply eq_gen_S_S to H2 using H4. rewrite > H4. assumption.
qed.
generalize Hcut.
apply (le_ind ? (\lambda x. O=x \to n=x) ? ? ? H).
(* first goal (left open) *)
- intro. rewrite right H1.
+ intro. rewrite < H1.
clear Hcut.
(* second goal (closed) *)
goal 14.
generalize (refl_equal nat O).
apply (le_ind ? (\lambda x. O=x \to n=x) ? ? ? H).
(* first goal (left open) *)
- intro. rewrite right H1.
+ intro. rewrite < H1.
(* second goal (closed) *)
goal 13.
simplify. intros.
\forall a,b:nat.
a = b \to b + a + b + a= (\lambda j.((\lambda w.((\lambda x.x + b + w + j) a)) b)) a.
intros.
-rewrite right H in \vdash (? ? ? ((\lambda j.((\lambda w.%) ?)) ?)).
+rewrite < H in \vdash (? ? ? ((\lambda j.((\lambda w.%) ?)) ?)).
-rewrite right H in \vdash (? ? % ?).
+rewrite < H in \vdash (? ? % ?).
simplify in \vdash (? ? ? ((\lambda x.((\lambda y.%) ?)) ?)).
-rewrite right H in \vdash (? ? ? (% ?)).
+rewrite < H in \vdash (? ? ? (% ?)).
simplify.
reflexivity.
qed.