]> matita.cs.unibo.it Git - helm.git/commitdiff
some improvements towards the confluence of lfpr ...
authorFerruccio Guidi <ferruccio.guidi@unibo.it>
Mon, 19 Sep 2016 15:37:58 +0000 (15:37 +0000)
committerFerruccio Guidi <ferruccio.guidi@unibo.it>
Mon, 19 Sep 2016 15:37:58 +0000 (15:37 +0000)
matita/matita/contribs/lambdadelta/basic_2/etc_new/droppreds_3.etc [new file with mode: 0644]
matita/matita/contribs/lambdadelta/basic_2/etc_new/frees_etc.etc [new file with mode: 0644]
matita/matita/contribs/lambdadelta/basic_2/etc_new/lfpr_main.etc [new file with mode: 0644]
matita/matita/contribs/lambdadelta/basic_2/etc_new/lfxs_main.etc [new file with mode: 0644]
matita/matita/contribs/lambdadelta/basic_2/etc_new/ltls.etc [new file with mode: 0644]
matita/matita/contribs/lambdadelta/basic_2/relocation/lexs_lexs.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpr.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpr_lfpr.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpx.ma
matita/matita/contribs/lambdadelta/basic_2/static/lfxs.ma

diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc_new/droppreds_3.etc b/matita/matita/contribs/lambdadelta/basic_2/etc_new/droppreds_3.etc
new file mode 100644 (file)
index 0000000..b21fe51
--- /dev/null
@@ -0,0 +1,19 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+(* NOTATION FOR THE FORMAL SYSTEM λδ ****************************************)
+
+notation "hvbox( ⫱ * [ term 46 L , break term 46 K ] term 46 f )"
+   non associative with precedence 46
+   for @{ 'DropPreds $L $K $f }.
diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc_new/frees_etc.etc b/matita/matita/contribs/lambdadelta/basic_2/etc_new/frees_etc.etc
new file mode 100644 (file)
index 0000000..3fcd30d
--- /dev/null
@@ -0,0 +1,136 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "basic_2/relocation/drops_weight.ma".
+include "basic_2/s_computation/fqup_weight.ma".
+include "basic_2/s_computation/fqus_fqup.ma".
+include "basic_2/static/frees.ma".
+
+corec lemma sle_refl: ∀f. f ⊆ f.
+#f cases (pn_split f) * #g #H
+[ @(sle_push … H H) | @(sle_next … H H) ] -H //
+qed.
+
+lemma sle_inv_tl1: ∀f1,f2. ⫱f1 ⊆ f2 → f1 ⊆ ⫯f2.
+#f1 elim (pn_split f1) * #g #H destruct
+/2 width=5 by sle_next, sle_weak/
+qed-.
+
+axiom sor_tls: ∀f1,f2,f. f1 ⋓ f2 ≡ f →
+               ∀n. ⫱*[n]f1 ⋓ ⫱*[n]f2 ≡ ⫱*[n]f.
+
+axiom sor_sle1: ∀f1,f2,f. f1 ⋓ f2 ≡ f →
+                ∀g. g ⊆ f1 → g ⊆ f.
+
+axiom sor_sle2: ∀f1,f2,f. f1 ⋓ f2 ≡ f →
+                ∀g. g ⊆ f2 → g ⊆ f.
+
+lemma fqus_inv_refl_atom3: ∀I,G,L,X. ⦃G, L, ⓪{I}⦄ ⊐* ⦃G, L, X⦄ → ⓪{I} = X.
+#I #G #L #X #H elim (fqus_inv_fqup … H) -H [2: * // ]
+#H lapply (fqup_fwd_fw … H) -H
+#H elim (lt_le_false … H) -H /2 width=1 by monotonic_le_plus_r/
+qed-.  
+
+axiom drops_T_isuni_inv_refl: ∀n,L. ⬇*[n] L ≡ L → n = 0.
+
+axiom fqus_split_fqu: ∀G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐* ⦃G2, L2, T2⦄ →
+                      (∧∧ G1 = G2 & L1 = L2 & T1 = T2) ∨
+                      ∃∃G,L,T. ⦃G1, L1, T1⦄ ⊐ ⦃G, L, T⦄ & ⦃G, L, T⦄ ⊐* ⦃G2, L2, T2⦄.
+
+axiom fqus_inv_atom1: ∀I,G1,G2,L2,T2. ⦃G1, ⋆, ⓪{I}⦄ ⊐* ⦃G2, L2, T2⦄ →
+                      ∧∧ G1 = G2 & ⋆ = L2 & ⓪{I} = T2.
+
+axiom fqus_inv_sort1: ∀G1,G2,L1,L2,T2,s. ⦃G1, L1, ⋆s⦄ ⊐* ⦃G2, L2, T2⦄ →
+                      ∧∧ G1 = G2 & L1 = L2 & ⋆s = T2.
+
+axiom fqus_inv_zero1: ∀I,G1,G2,L1,L2,V1,T2. ⦃G1, L1.ⓑ{I}V1, #0⦄ ⊐* ⦃G2, L2, T2⦄ →
+                      (∧∧ G1 = G2 & L1.ⓑ{I}V1 = L2 & #0 = T2) ∨ ⦃G1, L1, V1⦄ ⊐* ⦃G2, L2, T2⦄.
+
+axiom fqus_inv_lref1: ∀I,G1,G2,L1,L2,V1,T2,i. ⦃G1, L1.ⓑ{I}V1, #⫯i⦄ ⊐* ⦃G2, L2, T2⦄ →
+                      (∧∧ G1 = G2 & L1.ⓑ{I}V1 = L2 & #(⫯i) = T2) ∨ ⦃G1, L1, #i⦄ ⊐* ⦃G2, L2, T2⦄.
+
+axiom fqus_inv_gref1: ∀G1,G2,L1,L2,T2,l. ⦃G1, L1, §l⦄ ⊐* ⦃G2, L2, T2⦄ →
+                      ∧∧ G1 = G2 & L1 = L2 & §l = T2.
+
+axiom fqus_inv_bind1: ∀p,I,G1,G2,L1,L2,V1,T1,T2. ⦃G1, L1, ⓑ{p,I}V1.T1⦄ ⊐* ⦃G2, L2, T2⦄ →
+                      ∨∨ ∧∧ G1 = G2 & L1 = L2 & ⓑ{p,I}V1.T1 = T2 
+                       | ⦃G1, L1, V1⦄ ⊐* ⦃G2, L2, T2⦄
+                       | ⦃G1, L1.ⓑ{I}V1, T1⦄ ⊐* ⦃G2, L2, T2⦄.
+
+axiom fqus_inv_flat1: ∀I,G1,G2,L1,L2,V1,T1,T2. ⦃G1, L1, ⓕ{I}V1.T1⦄ ⊐* ⦃G2, L2, T2⦄ →
+                      ∨∨ ∧∧ G1 = G2 & L1 = L2 & ⓕ{I}V1.T1 = T2 
+                       | ⦃G1, L1, V1⦄ ⊐* ⦃G2, L2, T2⦄
+                       | ⦃G1, L1, T1⦄ ⊐* ⦃G2, L2, T2⦄.
+
+(* CONTEXT-SENSITIVE FREE VARIABLES *****************************************)
+
+lemma frees_drops_sle: ∀f1,G,L1,T1. L1 ⊢ 𝐅*⦃T1⦄ ≡ f1 →
+                       ∀L2,T2. ⦃G, L1, T1⦄ ⊐* ⦃G, L2, T2⦄ →
+                       ∀I,n. ⬇*[n] L1 ≡ L2.ⓑ{I}T2 →
+                       ∃∃f2. L2 ⊢ 𝐅*⦃T2⦄ ≡ f2 & f2 ⊆ ⫱*[⫯n] f1.
+#f1 #G #L1 #T1 #H elim H -f1 -L1 -T1
+[ #f1 #J #Hf1 #L2 #T2 #H12 #I #n #HL12
+  elim (fqus_inv_atom1 … H12) -H12 #H1 #H2 #H3 destruct
+  lapply (drops_fwd_lw … HL12) -HL12 #HL12
+  elim (lt_le_false … HL12) -HL12 //
+| #f1 #J #L1 #V1 #s #_ #_ #L2 #T2 #H12 #I #n #HL12
+  elim (fqus_inv_sort1 … H12) -H12 #H1 #H2 #H3 destruct
+  lapply (drops_fwd_lw … HL12) -HL12 #HL12
+  elim (lt_le_false … HL12) -HL12 //
+| #f1 #J #L1 #V1 #Hf1 #IH #L2 #T2 #H12
+  elim (fqus_inv_zero1 … H12) -H12 [ * | #H12 #I * ]
+  [ -IH -Hf1 #H1 #H2 #H3 #I #n #HL12 destruct
+    lapply (drops_fwd_lw … HL12) -HL12 #HL12
+    elim (lt_le_false … HL12) -HL12 //
+  | -IH -H12 #HL12 lapply (drops_fwd_isid … HL12 ?) -HL12 //
+     #H destruct /3 width=3 by sle_refl, ex2_intro/
+  | -Hf1 #n #HL12 lapply (drops_inv_drop1 … HL12) -HL12
+    #HL12 elim (IH … H12 … HL12) -IH -H12 -HL12 /3 width=3 by ex2_intro/
+  ]
+| #f1 #J #L1 #V1 #i #Hf1 #IH #L2 #T2 #H12
+  elim (fqus_inv_lref1 … H12) -H12 [ * | #H12 #I * ]
+  [ -IH -Hf1 #H1 #H2 #H3 #I #n #HL12 destruct
+    lapply (drops_fwd_lw … HL12) -HL12 #HL12
+    elim (lt_le_false … HL12) -HL12 //
+  | -IH #HL12 lapply (drops_fwd_isid … HL12 ?) -HL12 //
+    #H destruct <(fqus_inv_refl_atom3 … H12) -H12 /2 width=3 by sle_refl, ex2_intro/
+  | -Hf1 #I #HL12 lapply (drops_inv_drop1 … HL12) -HL12
+    #HL12 elim (IH … H12 … HL12) -IH -H12 -HL12 /3 width=3 by ex2_intro/
+  ]
+| #f1 #J #L1 #V1 #l #_ #_ #L2 #T2 #H12 #I #n #HL12
+  elim (fqus_inv_gref1 … H12) -H12 #H1 #H2 #H3 destruct
+  lapply (drops_fwd_lw … HL12) -HL12 #HL12
+  elim (lt_le_false … HL12) -HL12 //
+| #f1V #f1T #f1 #p #J #L1 #V #T #_ #_ #Hf1 #IHV #IHT #L2 #T2 #H12 #I #n #HL12
+  elim (fqus_inv_bind1 … H12) -H12 [ * |*: #H12 ]
+  [ -IHV -IHT -Hf1 #H1 #H2 #H3 destruct
+    lapply (drops_fwd_lw … HL12) -HL12 #HL12
+    elim (lt_le_false … HL12) -HL12 //
+  | -IHT elim (IHV … H12 … HL12) -IHV -H12 -HL12
+    /4 width=6 by sor_tls, sor_sle1, ex2_intro/
+  | -IHV elim (IHT … H12 I (⫯n)) -IHT -H12 /2 width=1 by drops_drop/ -HL12
+    <tls_xn /4 width=6 by ex2_intro, sor_tls, sor_sle2/
+  ]
+| #f1V #f1T #f1 #J #L1 #V #T #_ #_ #Hf1 #IHV #IHT #L2 #T2 #H12 #I #n #HL12
+  elim (fqus_inv_flat1 … H12) -H12 [ * |*: #H12 ]
+  [ -IHV -IHT -Hf1 #H1 #H2 #H3 destruct
+    lapply (drops_fwd_lw … HL12) -HL12 #HL12
+    elim (lt_le_false … HL12) -HL12 //
+  | -IHT elim (IHV … H12 … HL12) -IHV -H12 -HL12
+    /4 width=6 by sor_tls, sor_sle1, ex2_intro/
+  | -IHV elim (IHT … H12 … HL12) -IHT -H12 -HL12
+    /4 width=6 by ex2_intro, sor_tls, sor_sle2/
+  ]
+]
+qed-.
diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc_new/lfpr_main.etc b/matita/matita/contribs/lambdadelta/basic_2/etc_new/lfpr_main.etc
new file mode 100644 (file)
index 0000000..bfe23e7
--- /dev/null
@@ -0,0 +1,80 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "basic_2/rt_transition/lfpr_lfpr.ma".
+
+(* PARALLEL R-TRANSITION FOR LOCAL ENV.S ON REFERRED ENTRIES ****************)
+
+definition lfxs_confluent_R: relation2 … ≝
+                             λRP1,RP2.
+                             ∀L0,T0,T1. RP1 L0 T0 T1 → ∀T2. RP2 L0 T0 T2 →
+                             ∀L1. L0 ⦻*[RP1, T0] L1 → ∀L2. L0 ⦻*[RP2, T0] L2 →
+                             ∃∃L. L1 ⦻*[RP2, T1] L & L2 ⦻*[RP1, T2] L.
+
+(* Main properties **********************************************************)
+
+fact lfpr_conf_cpr_atom_atom:
+   ∀h,I,G,L0. (
+      ∀L,T. ⦃G, L0, ⓪{I}⦄ ⊐+ ⦃G, L, T⦄ →
+      ∀T1. ⦃G, L⦄ ⊢ T ➡[h] T1 → ∀T2. ⦃G, L⦄ ⊢ T ➡[h] T2 →
+      ∀L1. ⦃G, L⦄ ⊢ ➡[h, T] L1 → ∀L2. ⦃G, L⦄ ⊢ ➡[h, T] L2 →
+      ∃∃K0. ⦃G, L1⦄ ⊢ ➡[h, T1] K0 & ⦃G, L2⦄ ⊢ ➡[h, T2] K0
+   ) →
+   ∀L1. ⦃G, L0⦄ ⊢ ➡[h, ⓪{I}] L1 → ∀L2. ⦃G, L0⦄ ⊢ ➡[h, ⓪{I}] L2 →
+   ∃∃L. ⦃G, L1⦄ ⊢ ➡[h, ⓪{I}] L & ⦃G, L2⦄ ⊢ ➡[h, ⓪{I}] L.
+#h #I #G * [ | #K0 #J #V0 cases I -I [ | * | ] ]
+[ #_ #L1 #HL01 #L2 #HL02
+  lapply (lfpr_inv_atom_sn … HL01) -HL01 #H destruct
+  lapply (lfpr_inv_atom_sn … HL02) -HL02 #H destruct
+  /2 width=3 by ex2_intro/
+| #s #IH #L1 #HL01 #L2 #HL02
+  elim (lfxs_inv_sort_pair_sn … HL01) -HL01 #K1 #V1 #HK01 #H destruct
+  elim (lfxs_inv_sort_pair_sn … HL02) -HL02 #K2 #V2 #HK02 #H destruct
+  elim (IH …  HK01 … HK02) -IH -HK01 -HK02
+  /3 width=5 by lfpr_sort, fqu_fqup, fqu_drop, ex2_intro/
+| #IH #L1 #HL01 #L2 #HL02
+  elim (lfpr_inv_zero_pair_sn … HL01) -HL01 #K1 #V1 #HK01 #HV01 #H destruct
+  elim (lfpr_inv_zero_pair_sn … HL02) -HL02 #K2 #V2 #HK02 #HV02 #H destruct
+  elim (cpr_conf_lfpr … HV01 … HV02 … HK01 … HK02) #V #HV1 #HV2
+  elim (IH … HV01 … HV02 … HK01 … HK02) -IH -HV01 -HV02 -HK01 -HK02
+  /3 width=5 by lfpr_zero, fqu_fqup, fqu_drop, ex2_intro/
+| #i #IH #L1 #HL01 #L2 #HL02
+  elim (lfxs_inv_lref_pair_sn … HL01) -HL01 #K1 #V1 #HK01 #H destruct
+  elim (lfxs_inv_lref_pair_sn … HL02) -HL02 #K2 #V2 #HK02 #H destruct
+  elim (IH …  HK01 … HK02) -IH -HK01 -HK02
+  /3 width=5 by lfpr_lref, fqu_fqup, fqu_drop, ex2_intro/
+| #l #IH #L1 #HL01 #L2 #HL02
+  elim (lfxs_inv_gref_pair_sn … HL01) -HL01 #K1 #V1 #HK01 #H destruct
+  elim (lfxs_inv_gref_pair_sn … HL02) -HL02 #K2 #V2 #HK02 #H destruct
+  elim (IH …  HK01 … HK02) -IH -HK01 -HK02
+  /3 width=5 by lfpr_gref, fqu_fqup, fqu_drop, ex2_intro/
+]
+qed-.
+
+theorem lfpr_conf_cpr: ∀h,G. lfxs_confluent_R (cpm 0 h G) (cpm 0 h G).
+#h #G #L0 #T0 @(fqup_wf_ind_eq … G L0 T0) -G -L0 -T0 #G #L #T #IH #G0 #L0 * [| * ]
+[ #I0 #HG #HL #HT #T1 #H1 #T2 #H2 #L1 #HL01 #L2 #HL02 destruct
+  elim (cpr_inv_atom1_drops … H1) -H1
+  elim (cpr_inv_atom1_drops … H2) -H2
+  [ #H2 #H1 destruct
+    /3 width=7 by lfpr_conf_cpr_atom_atom/
+  | * #K0 #V0 #V2 * [2: #i2 ] #HLK0 #HV02 #HVT2 #H2 #H1 destruct
+
+(*
+
+theorem lpr_conf: ∀G. confluent … (lpr G).
+/3 width=6 by lpx_sn_conf, cpr_conf_lpr/
+qed-.
+
+*)
diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc_new/lfxs_main.etc b/matita/matita/contribs/lambdadelta/basic_2/etc_new/lfxs_main.etc
new file mode 100644 (file)
index 0000000..fddbfd6
--- /dev/null
@@ -0,0 +1,25 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "basic_2/static/lfxs_lfxs.ma".
+include "basic_2/static/frees_frees.ma".
+
+(* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
+
+theorem lfxs_conf: ∀R. R_confluent_lfxs R R R R →
+                   ∀T. confluent … (lfxs R T).
+#R #H1R #T #L0 #L1 * #f1 #Hf1 #HL01 #L2 * #f #Hf #HL02
+lapply (frees_mono … Hf1 … Hf) -Hf1 #Hf12
+lapply (lexs_eq_repl_back … HL01 … Hf12) -f1 #HL01
+elim (lexs_conf … HL01 … HL02)  
diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc_new/ltls.etc b/matita/matita/contribs/lambdadelta/basic_2/etc_new/ltls.etc
new file mode 100644 (file)
index 0000000..c68bf4b
--- /dev/null
@@ -0,0 +1,47 @@
+include "basic_2/notation/functions/droppreds_3.ma".
+include "basic_2/grammar/lenv_length.ma".
+
+axiom pred_minus: ∀x,y. y < x → ⫰(x - y) = x - ⫯y. 
+
+(*
+axiom drops_T_isuni_inv_refl: ∀n,L. ⬇*[n] L ≡ L → n = 0.
+
+lemma le_succ_trans: ∀m,n. ⫯m ≤ n → m ≤ n.
+/2 width=1 by lt_to_le/ qed-.
+*)
+
+lemma tls_pred: ∀f,n. 0 < n → ⫱*[n] f = ⫱ ⫱*[⫰n] f.
+#f #n #Hn >tls_S >S_pred //
+qed-.
+
+definition ltls (f): lenv → lenv → rtmap ≝ λL,K. ⫱*[|L|-|K|] f.
+
+interpretation "ltls (rtmap)" 'DropPreds L K f = (ltls f L K).
+
+lemma ltls_refl: ∀f,L1,L2. |L1| ≤ |L2| → ⫱*[L1, L2] f = f.
+#f #L1 #L2 #HL12 whd in ⊢ (??%?); >(eq_minus_O … HL12) -HL12 //
+qed.
+
+lemma ltls_pair2: ∀f,I,L1,L2,V. |L2| < |L1| → ⫱⫱*[L1, L2.ⓑ{I}V] f = ⫱*[L1, L2] f.
+#f #I #L1 #L2 #V #HL12 whd in ⊢ (??(?%)%); <pred_minus // <tls_pred //
+/2 width=1 by lt_plus_to_minus_r/
+qed-.
+
+lemma ltls_pair1_push: ∀f,I,L1,L2,V. |L2| ≤ |L1| → ⫱*[L1.ⓑ{I}V, L2] ↑f = ⫱*[L1, L2] f.
+#f #I #L1 #L2 #V #HL12 whd in ⊢ (??%%); >minus_Sn_m //
+qed.
+
+lemma ltls_pair1_next: ∀f,I,L1,L2,V. |L2| ≤ |L1| → ⫱*[L1.ⓑ{I}V, L2] ⫯f = ⫱*[L1, L2] f.
+#f #I #L1 #L2 #V #HL12 whd in ⊢ (??%%); >minus_Sn_m //
+qed.
+
+lemma ltls_sle_pair: ∀f1,f2,L1,L2. ⫱*[L2, L1] f2 ⊆ ⫱*[L1, L2] f1 →
+                     ∀I,V1. ⫱*[L2, L1.ⓑ{I}V1] f2 ⊆ ⫱*[L1.ⓑ{I}V1, L2] ⫯f1.
+#f1 #f2 #L1 #L2 elim (lt_or_ge (|L1|) (|L2|))
+[ #HL12 >ltls_refl in ⊢ (??%→?); /2 width=1 by lt_to_le/
+  #Hf21 #I #V1 >ltls_refl in ⊢ (??%); //
+  <(ltls_pair2 … I … V1 HL12) in Hf21; -HL12 /2 width=1 by sle_inv_tl1/
+| #HL21 >ltls_refl // #Hf21 #I #V1 >ltls_refl /2 width=1 by le_S/
+  >ltls_pair1_next //
+]
+qed.
index 7966fdd7cbf6a0f5318c4816db518ece5955b97e..7e7c3debca3fefda7eb09d60ef299918e5fa23fa 100644 (file)
@@ -14,7 +14,6 @@
 
 include "ground_2/relocation/rtmap_sand.ma".
 include "ground_2/relocation/rtmap_sor.ma".
-include "basic_2/grammar/lenv_weight.ma".
 include "basic_2/relocation/lexs.ma".
 
 (* GENERIC ENTRYWISE EXTENSION OF CONTEXT-SENSITIVE REALTIONS FOR TERMS *****)
@@ -43,25 +42,27 @@ theorem lexs_trans (RN) (RP) (f): lexs_transitive RN RN RN RN RP →
 /2 width=9 by lexs_trans_gen/ qed-.
 
 (* Basic_2A1: includes: lpx_sn_conf *)
-theorem lexs_conf: ∀RN1,RP1,RN2,RP2.
-                   lexs_confluent RN1 RN2 RN1 RP1 RN2 RP2 →
-                   lexs_confluent RP1 RP2 RN1 RP1 RN2 RP2 →
-                   ∀f. confluent2 … (lexs RN1 RP1 f) (lexs RN2 RP2 f).
-#RN1 #RP1 #RN2 #RP2 #HRN #HRP #f #L0 generalize in match f; -f
-@(f_ind … lw … L0) -L0 #x #IH *
-[ #_ #f #X1 #H1 #X2 #H2 -x
-  >(lexs_inv_atom1 … H1) -X1
-  >(lexs_inv_atom1 … H2) -X2 /2 width=3 by lexs_atom, ex2_intro/
-| #L0 #I #V0 #Hx #f elim (pn_split f) *
-  #g #H #X1 #H1 #X2 #H2 destruct
-  [ elim (lexs_inv_push1 … H1) -H1 #L1 #V1 #HL01 #HV01 #H destruct
-    elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #HL02 #HV02 #H destruct
-    elim (IH … HL01 … HL02) -IH // #L #HL1 #HL2
-    elim (HRP … HV01 … HV02 … HL01 … HL02) -L0 -V0 /3 width=5 by lexs_push, ex2_intro/
-  | elim (lexs_inv_next1 … H1) -H1 #L1 #V1 #HL01 #HV01 #H destruct
-    elim (lexs_inv_next1 … H2) -H2 #L2 #V2 #HL02 #HV02 #H destruct
-    elim (IH … HL01 … HL02) -IH // #L #HL1 #HL2
-    elim (HRN … HV01 … HV02 … HL01 … HL02) -L0 -V0 /3 width=5 by lexs_next, ex2_intro/
+theorem lexs_conf (RN1) (RP1) (RN2) (RP2): lexs_confluent RN1 RN2 RN1 RP1 RN2 RP2 →
+                                           lexs_confluent RP1 RP2 RN1 RP1 RN2 RP2 →
+                                           ∀f. confluent2 … (lexs RN1 RP1 f) (lexs RN2 RP2 f).
+#RN1 #RP1 #RN2 #RP2 #HRN #HRP #f #L0
+generalize in match f; -f elim L0 -L0
+[ #f #L1 #HL01 #L2 #HL02 -HRN -HRP
+  lapply (lexs_inv_atom1 … HL01) -HL01 #H destruct
+  lapply (lexs_inv_atom1 … HL02) -HL02 #H destruct
+  /2 width=3 by ex2_intro/
+| #K0 #I #V0 #IH #f #L1 #HL01 #L2 #HL02
+  elim (pn_split f) * #g #H destruct
+  [ elim (lexs_inv_push1 … HL01) -HL01 #K1 #V1 #HK01 #HV01 #H destruct
+    elim (lexs_inv_push1 … HL02) -HL02 #K2 #V2 #HK02 #HV02 #H destruct
+    elim (IH … HK01 … HK02) -IH #K #HK1 #HK2
+    elim (HRP … HV01 … HV02 … HK01 … HK02) -HRP -HRN -K0 -V0
+    /3 width=5 by lexs_push, ex2_intro/
+  | elim (lexs_inv_next1 … HL01) -HL01 #K1 #V1 #HK01 #HV01 #H destruct
+    elim (lexs_inv_next1 … HL02) -HL02 #K2 #V2 #HK02 #HV02 #H destruct
+    elim (IH … HK01 … HK02) -IH #K #HK1 #HK2
+    elim (HRN … HV01 … HV02 … HK01 … HK02) -HRN -HRP -K0 -V0
+    /3 width=5 by lexs_next, ex2_intro/
   ]
 ]
 qed-.
index 299b0f8c8139115f3b49db70aac74330421fddc2..381233f0436b84ca59d2362a86bb43e40b00bf65 100644 (file)
@@ -34,8 +34,8 @@ lemma lfpr_sort: ∀h,I,G,L1,L2,V1,V2,s.
                  ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 → ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, ⋆s] L2.ⓑ{I}V2.
 /2 width=1 by lfxs_sort/ qed.
 
-lemma lfpr_zero: ∀h,I,G,L1,L2,V.
-                 ⦃G, L1⦄ ⊢ ➡[h, V] L2 → ⦃G, L1.ⓑ{I}V⦄ ⊢ ➡[h, #0] L2.ⓑ{I}V.
+lemma lfpr_zero: ∀h,I,G,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 →
+                 ⦃G, L1⦄ ⊢ V1 ➡[h] V2 → ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, #0] L2.ⓑ{I}V2.
 /2 width=1 by lfxs_zero/ qed.
 
 lemma lfpr_lref: ∀h,I,G,L1,L2,V1,V2,i.
@@ -60,6 +60,12 @@ lemma lfpr_inv_atom_sn: ∀h,I,G,Y2. ⦃G, ⋆⦄ ⊢ ➡[h, ⓪{I}] Y2 → Y2 =
 lemma lfpr_inv_atom_dx: ∀h,I,G,Y1. ⦃G, Y1⦄ ⊢ ➡[h, ⓪{I}] ⋆ → Y1 = ⋆.
 /2 width=3 by lfxs_inv_atom_dx/ qed-.
 
+lemma lfpr_inv_sort: ∀h,G,Y1,Y2,s. ⦃G, Y1⦄ ⊢ ➡[h, ⋆s] Y2 →
+                     (Y1 = ⋆ ∧ Y2 = ⋆) ∨
+                     ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 &
+                                      Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+/2 width=1 by lfxs_inv_sort/ qed-.
+
 lemma lfpr_inv_zero: ∀h,G,Y1,Y2. ⦃G, Y1⦄ ⊢ ➡[h, #0] Y2 →
                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
                      ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 &
@@ -73,6 +79,12 @@ lemma lfpr_inv_lref: ∀h,G,Y1,Y2,i. ⦃G, Y1⦄ ⊢ ➡[h, #⫯i] Y2 →
                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
 /2 width=1 by lfxs_inv_lref/ qed-.
 
+lemma lfpr_inv_gref: ∀h,G,Y1,Y2,l. ⦃G, Y1⦄ ⊢ ➡[h, §l] Y2 →
+                     (Y1 = ⋆ ∧ Y2 = ⋆) ∨
+                     ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 &
+                                      Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+/2 width=1 by lfxs_inv_gref/ qed-.
+
 lemma lfpr_inv_bind: ∀h,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V.T] L2 →
                      ⦃G, L1⦄ ⊢ ➡[h, V] L2 ∧ ⦃G, L1.ⓑ{I}V⦄ ⊢ ➡[h, T] L2.ⓑ{I}V.
 /2 width=2 by lfxs_inv_bind/ qed-.
@@ -83,6 +95,14 @@ lemma lfpr_inv_flat: ∀h,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ➡[h, ⓕ{I}V.T] L2 
 
 (* Advanced inversion lemmas ************************************************)
 
+lemma lfpr_inv_sort_pair_sn: ∀h,I,G,Y2,L1,V1,s. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, ⋆s] Y2 →
+                             ∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
+/2 width=2 by lfxs_inv_sort_pair_sn/ qed-.
+
+lemma lfpr_inv_sort_pair_dx: ∀h,I,G,Y1,L2,V2,s. ⦃G, Y1⦄ ⊢ ➡[h, ⋆s] L2.ⓑ{I}V2 →
+                             ∃∃L1,V1. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
+/2 width=2 by lfxs_inv_sort_pair_dx/ qed-.
+
 lemma lfpr_inv_zero_pair_sn: ∀h,I,G,Y2,L1,V1. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, #0] Y2 →
                              ∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 & ⦃G, L1⦄ ⊢ V1 ➡[h] V2 &
                                       Y2 = L2.ⓑ{I}V2.
@@ -101,6 +121,14 @@ lemma lfpr_inv_lref_pair_dx: ∀h,I,G,Y1,L2,V2,i. ⦃G, Y1⦄ ⊢ ➡[h, #⫯i]
                              ∃∃L1,V1. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 & Y1 = L1.ⓑ{I}V1.
 /2 width=2 by lfxs_inv_lref_pair_dx/ qed-.
 
+lemma lfpr_inv_gref_pair_sn: ∀h,I,G,Y2,L1,V1,l. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, §l] Y2 →
+                             ∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 & Y2 = L2.ⓑ{I}V2.
+/2 width=2 by lfxs_inv_gref_pair_sn/ qed-.
+
+lemma lfpr_inv_gref_pair_dx: ∀h,I,G,Y1,L2,V2,l. ⦃G, Y1⦄ ⊢ ➡[h, §l] L2.ⓑ{I}V2 →
+                             ∃∃L1,V1. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 & Y1 = L1.ⓑ{I}V1.
+/2 width=2 by lfxs_inv_gref_pair_dx/ qed-.
+
 (* Basic forward lemmas *****************************************************)
 
 lemma lfpr_fwd_bind_sn: ∀h,p,I,G,L1,L2,V,T.
index e8955fd1eca40270d173896be0b676c6c7b99f7f..a78a84a89d4a9ea6fcb232b998a2112547cbde1e 100644 (file)
@@ -298,7 +298,7 @@ lapply (lifts_mono … HX … HVU) -HX #H destruct
 /4 width=7 by cpm_bind, cpr_flat, ex2_intro/ (**) (* full auto not tried *)
 qed-.
 
-theorem cpr_conf_lfpr: ∀h,G. lfxs_confluent (cpm 0 h G) (cpm 0 h G) (cpm 0 h G) (cpm 0 h G).
+theorem cpr_conf_lfpr: ∀h,G. R_confluent_lfxs (cpm 0 h G) (cpm 0 h G) (cpm 0 h G) (cpm 0 h G).
 #h #G #L0 #T0 @(fqup_wf_ind_eq … G L0 T0) -G -L0 -T0 #G #L #T #IH #G0 #L0 * [| * ]
 [ #I0 #HG #HL #HT #T1 #H1 #T2 #H2 #L1 #HL01 #L2 #HL02 destruct
   elim (cpr_inv_atom1_drops … H1) -H1
@@ -371,13 +371,3 @@ lemma lfpr_cpr_conf_sn: ∀h,G,L0,T0,T1. ⦃G, L0⦄ ⊢ T0 ➡[h] T1 → ∀L1.
 #h #G #L0 #T0 #T1 #HT01 #L1 #HL01
 elim (cpr_conf_lfpr … HT01 T0 … L0 … HL01) /2 width=3 by ex2_intro/
 qed-.
-
-(* Main properties **********************************************************)
-
-(*
-
-theorem lpr_conf: ∀G. confluent … (lpr G).
-/3 width=6 by lpx_sn_conf, cpr_conf_lpr/
-qed-.
-
-*)
index c0ca76840f32238d9fdeb0438d47313eab8333d7..ad9f1e03fa40f3b6ea091022b62b6dfd6bc538e8 100644 (file)
@@ -60,6 +60,12 @@ lemma lfpx_inv_atom_sn: ∀h,I,G,Y2. ⦃G, ⋆⦄ ⊢ ⬈[h, ⓪{I}] Y2 → Y2 =
 lemma lfpx_inv_atom_dx: ∀h,I,G,Y1. ⦃G, Y1⦄ ⊢ ⬈[h, ⓪{I}] ⋆ → Y1 = ⋆.
 /2 width=3 by lfxs_inv_atom_dx/ qed-.
 
+lemma lfpx_inv_sort: ∀h,G,Y1,Y2,s. ⦃G, Y1⦄ ⊢ ⬈[h, ⋆s] Y2 →
+                     (Y1 = ⋆ ∧ Y2 = ⋆) ∨
+                     ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ⬈[h, ⋆s] L2 &
+                                      Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+/2 width=1 by lfxs_inv_sort/ qed-.
+
 lemma lfpx_inv_zero: ∀h,G,Y1,Y2. ⦃G, Y1⦄ ⊢ ⬈[h, #0] Y2 →
                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
                      ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ⬈[h, V1] L2 &
@@ -73,6 +79,12 @@ lemma lfpx_inv_lref: ∀h,G,Y1,Y2,i. ⦃G, Y1⦄ ⊢ ⬈[h, #⫯i] Y2 →
                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
 /2 width=1 by lfxs_inv_lref/ qed-.
 
+lemma lfpx_inv_gref: ∀h,G,Y1,Y2,l. ⦃G, Y1⦄ ⊢ ⬈[h, §l] Y2 →
+                     (Y1 = ⋆ ∧ Y2 = ⋆) ∨
+                     ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ⬈[h, §l] L2 &
+                                      Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+/2 width=1 by lfxs_inv_gref/ qed-.
+
 lemma lfpx_inv_bind: ∀h,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, ⓑ{p,I}V.T] L2 →
                      ⦃G, L1⦄ ⊢ ⬈[h, V] L2 ∧ ⦃G, L1.ⓑ{I}V⦄ ⊢ ⬈[h, T] L2.ⓑ{I}V.
 /2 width=2 by lfxs_inv_bind/ qed-.
@@ -83,6 +95,14 @@ lemma lfpx_inv_flat: ∀h,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, ⓕ{I}V.T] L2 
 
 (* Advanced inversion lemmas ************************************************)
 
+lemma lfpx_inv_sort_pair_sn: ∀h,I,G,Y2,L1,V1,s. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ⬈[h, ⋆s] Y2 →
+                             ∃∃L2,V2. ⦃G, L1⦄ ⊢ ⬈[h, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
+/2 width=2 by lfxs_inv_sort_pair_sn/ qed-.
+
+lemma lfpx_inv_sort_pair_dx: ∀h,I,G,Y1,L2,V2,s. ⦃G, Y1⦄ ⊢ ⬈[h, ⋆s] L2.ⓑ{I}V2 →
+                             ∃∃L1,V1. ⦃G, L1⦄ ⊢ ⬈[h, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
+/2 width=2 by lfxs_inv_sort_pair_dx/ qed-.
+
 lemma lfpx_inv_zero_pair_sn: ∀h,I,G,Y2,L1,V1. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ⬈[h, #0] Y2 →
                              ∃∃L2,V2. ⦃G, L1⦄ ⊢ ⬈[h, V1] L2 & ⦃G, L1⦄ ⊢ V1 ⬈[h] V2 &
                                       Y2 = L2.ⓑ{I}V2.
@@ -101,6 +121,14 @@ lemma lfpx_inv_lref_pair_dx: ∀h,I,G,Y1,L2,V2,i. ⦃G, Y1⦄ ⊢ ⬈[h, #⫯i]
                              ∃∃L1,V1. ⦃G, L1⦄ ⊢ ⬈[h, #i] L2 & Y1 = L1.ⓑ{I}V1.
 /2 width=2 by lfxs_inv_lref_pair_dx/ qed-.
 
+lemma lfpx_inv_gref_pair_sn: ∀h,I,G,Y2,L1,V1,l. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ⬈[h, §l] Y2 →
+                             ∃∃L2,V2. ⦃G, L1⦄ ⊢ ⬈[h, §l] L2 & Y2 = L2.ⓑ{I}V2.
+/2 width=2 by lfxs_inv_gref_pair_sn/ qed-.
+
+lemma lfpx_inv_gref_pair_dx: ∀h,I,G,Y1,L2,V2,l. ⦃G, Y1⦄ ⊢ ⬈[h, §l] L2.ⓑ{I}V2 →
+                             ∃∃L1,V1. ⦃G, L1⦄ ⊢ ⬈[h, §l] L2 & Y1 = L1.ⓑ{I}V1.
+/2 width=2 by lfxs_inv_gref_pair_dx/ qed-.
+
 (* Basic forward lemmas *****************************************************)
 
 lemma lfpx_fwd_bind_sn: ∀h,p,I,G,L1,L2,V,T.
index 88a8bd542182ff72e19c288ded5cbe5915d3a725..dba35a74a47133e5e02215421dc13a2d6cc3f44d 100644 (file)
@@ -26,12 +26,12 @@ definition lfxs (R) (T): relation lenv ≝
 interpretation "generic extension on referred entries (local environment)"
    'RelationStar R T L1 L2 = (lfxs R T L1 L2).
 
-definition lfxs_confluent: relation4 (relation3 lenv term term)
-                                     (relation3 lenv term term) … ≝
-                           λR1,R2,RP1,RP2.
-                           ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
-                           ∀L1. L0 ⦻*[RP1, T0] L1 → ∀L2. L0 ⦻*[RP2, T0] L2 →
-                           ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
+definition R_confluent_lfxs: relation4 (relation3 lenv term term)
+                                       (relation3 lenv term term) … ≝
+                             λR1,R2,RP1,RP2.
+                             ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
+                             ∀L1. L0 ⦻*[RP1, T0] L1 → ∀L2. L0 ⦻*[RP2, T0] L2 →
+                             ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
 
 (* Basic properties ***********************************************************)
 
@@ -72,6 +72,10 @@ lemma lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
 #R1 #R2 #HR #L1 #L2 #T * /4 width=7 by lexs_co, ex2_intro/
 qed-.
 
+lemma pippo: ∀R1,R2,RP1,RP2. R_confluent_lfxs R1 R2 RP1 RP2 →
+             lexs_confluent R1 R2 RP1 cfull RP2 cfull.
+#R1 #R2 #RP1 #RP2 #HR #f #L0 #T0 #T1 #HT01 #T2 #HT02 #L1 #HL01 #L2 #HL02  
+
 (* Basic inversion lemmas ***************************************************)
 
 lemma lfxs_inv_atom_sn: ∀R,I,Y2. ⋆ ⦻*[R, ⓪{I}] Y2 → Y2 = ⋆.
@@ -82,6 +86,19 @@ lemma lfxs_inv_atom_dx: ∀R,I,Y1. Y1 ⦻*[R, ⓪{I}] ⋆ → Y1 = ⋆.
 #R #I #Y1 * /2 width=4 by lexs_inv_atom2/
 qed-.
 
+lemma lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⦻*[R, ⋆s] Y2 →
+                     (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
+                     ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, ⋆s] L2 &
+                                      Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+#R * [ | #Y1 #I #V1 ] #Y2 #s * #f #H1 #H2
+[ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
+| lapply (frees_inv_sort … H1) -H1 #Hf
+  elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
+  elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
+  /5 width=8 by frees_sort_gen, ex3_5_intro, ex2_intro, or_intror/
+]
+qed-.
+
 lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⦻*[R, #0] Y2 →
                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
@@ -104,6 +121,19 @@ lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⦻*[R, #⫯i] Y2 →
 ]
 qed-.
 
+lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⦻*[R, §l] Y2 →
+                     (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
+                     ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, §l] L2 &
+                                      Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+#R * [ | #Y1 #I #V1 ] #Y2 #l * #f #H1 #H2
+[ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
+| lapply (frees_inv_gref … H1) -H1 #Hf
+  elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
+  elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
+  /5 width=8 by frees_gref_gen, ex3_5_intro, ex2_intro, or_intror/
+]
+qed-.
+
 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
                      L1 ⦻*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
@@ -118,6 +148,22 @@ qed-.
 
 (* Advanced inversion lemmas ************************************************)
 
+lemma lfxs_inv_sort_pair_sn: ∀R,I,Y2,L1,V1,s. L1.ⓑ{I}V1 ⦻*[R, ⋆s] Y2 →
+                             ∃∃L2,V2. L1 ⦻*[R, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
+#R #I #Y2 #L1 #V1 #s #H elim (lfxs_inv_sort … H) -H *
+[ #H destruct
+| #J #Y1 #L2 #X1 #V2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
+]
+qed-.
+
+lemma lfxs_inv_sort_pair_dx: ∀R,I,Y1,L2,V2,s. Y1 ⦻*[R, ⋆s] L2.ⓑ{I}V2 →
+                             ∃∃L1,V1. L1 ⦻*[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
+#R #I #Y1 #L2 #V2 #s #H elim (lfxs_inv_sort … H) -H *
+[ #_ #H destruct
+| #J #L1 #Y2 #V1 #X2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
+]
+qed-.
+
 lemma lfxs_inv_zero_pair_sn: ∀R,I,Y2,L1,V1. L1.ⓑ{I}V1 ⦻*[R, #0] Y2 →
                              ∃∃L2,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
                                       Y2 = L2.ⓑ{I}V2.
@@ -154,6 +200,22 @@ lemma lfxs_inv_lref_pair_dx: ∀R,I,Y1,L2,V2,i. Y1 ⦻*[R, #⫯i] L2.ⓑ{I}V2 
 ]
 qed-.
 
+lemma lfxs_inv_gref_pair_sn: ∀R,I,Y2,L1,V1,l. L1.ⓑ{I}V1 ⦻*[R, §l] Y2 →
+                             ∃∃L2,V2. L1 ⦻*[R, §l] L2 & Y2 = L2.ⓑ{I}V2.
+#R #I #Y2 #L1 #V1 #l #H elim (lfxs_inv_gref … H) -H *
+[ #H destruct
+| #J #Y1 #L2 #X1 #V2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
+]
+qed-.
+
+lemma lfxs_inv_gref_pair_dx: ∀R,I,Y1,L2,V2,l. Y1 ⦻*[R, §l] L2.ⓑ{I}V2 →
+                             ∃∃L1,V1. L1 ⦻*[R, §l] L2 & Y1 = L1.ⓑ{I}V1.
+#R #I #Y1 #L2 #V2 #l #H elim (lfxs_inv_gref … H) -H *
+[ #_ #H destruct
+| #J #L1 #Y2 #V1 #X2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
+]
+qed-.
+
 (* Basic forward lemmas *****************************************************)
 
 lemma lfxs_fwd_bind_sn: ∀R,p,I,L1,L2,V,T. L1 ⦻*[R, ⓑ{p,I}V.T] L2 → L1 ⦻*[R, V] L2.