].
qed.
-(*
+
lemma insert_sorted:
\forall A:Set. \forall le:A\to A\to bool.
(\forall a,b:A. le a b = false \to le b a = true) \to
\forall l:list A. \forall x:A.
ordered A le l = true \to ordered A le (insert A le x l) = true.
- intros (A le H l x K).
- letin P ≝ (\lambda ll. ordered A le ll = true).
- fold simplify (P (insert A le x l)).
+ intros 5 (A le H l x).
apply (
let rec insert_ind (l: list A) \def
- match l in list return λli. l = li → P (insert A le x li) with
- [ nil ⇒ (? : l = [] → P [x])
+ match l in list
+ return
+ λli.
+ l = li → ordered ? le li = true →
+ ordered ? le (insert A le x li) = true
+ with
+ [ nil ⇒ (? : l = [] → ordered ? le [] = true → ordered ? le [x] = true)
| (cons he l') ⇒
match le x he
return
- λb. le x he = b → l = he::l' → P (match b with
- [ true ⇒ x::he::l'
- | false ⇒ he::(insert A le x l') ])
+ λb. le x he = b → l = he::l' →
+ ordered ? le (he::l') = true → ordered ? le
+ (match b with
+ [ true ⇒ x::he::l'
+ | false ⇒ he::(insert A le x l') ]) = true
with
- [ true ⇒ (? : le x he = true → l = he::l' → P (x::he::l'))
+ [ true ⇒
+ (? :
+ le x he = true →
+ l = he::l' →
+ ordered ? le (he::l') = true →
+ ordered ? le (x::he::l') = true)
| false ⇒
- (? : \forall lrec. P (insert A le x lrec) \to
- le x he = false → l = he::l' → P (he::(insert A le x l')))
- l' (insert_ind l')
+ let res ≝ insert_ind l' in
+ (? :
+ le x he = false → l = he::l' →
+ ordered ? le (he::l') = true →
+ ordered ? le (he::(insert ? le x l')) = true)
]
(refl_eq ? (le x he))
] (refl_eq ? l) in insert_ind l);
intros; simplify;
- [ rewrite > H1;
- apply andb_elim; simplify;
- generalize in match K; clear K;
- rewrite > H2; intro;
- apply H3
- |
+ [ rewrite > insert_ind;
+ [ generalize in match (H ? ? H1); clear H1; intro;
+ generalize in match H3; clear H3;
+ elim l'; simplify;
+ [ rewrite > H4;
+ reflexivity
+ | elim (le x s); simplify;
+ [ rewrite > H4;
+ reflexivity
+ | simplify in H3;
+ rewrite > (andb_true_true ? ? H3);
+ reflexivity
+ ]
+ ]
+
+ | apply (ordered_injective ? ? ? H3)
+ ]
+ | rewrite > H1;
+ rewrite > H3;
+ reflexivity
| reflexivity
- ].
-
-
-
-
-
-
- [ rewrite > H1; simplify;
- generalize in match (ordered_injective A le l K);
- rewrite > H2; simplify; intro; change with (ordered A le l' = true).
- elim l'; simplify;
- [ reflexivity
- |
-
-
- rewrite > H1; simplify.
- elim l'; [ reflexivity | simplify;
- | simplify.
- | reflexivity.
].
-*)
-
-lemma insert_sorted:
- \forall A:Set. \forall le:A\to A\to bool.
- (\forall a,b:A. le a b = false \to le b a = true) \to
- \forall l:list A. \forall x:A.
- ordered A le l = true \to ordered A le (insert A le x l) = true.
- intros 5 (A le H l x).
- elim l;
- [ 2: simplify;
- apply (bool_elim ? (le x s));
- [ intros;
- simplify;
- fold simplify (ordered ? le (s::l1));
- apply andb_elim;
- rewrite > H3;
- assumption;
- | change with (le x s = false → ordered ? le (s::insert A le x l1) = true);
- generalize in match H2;
- clear H1; clear H2;
- generalize in match s;
- clear s;
- elim l1
- [ simplify;
- rewrite > (H x a H2);
- reflexivity;
- | simplify in \vdash (? ? (? ? ? %) ?);
- change with (ordered A le (a::(insert A le x (s::l2))) = true);
- simplify;
- apply (bool_elim ? (le x s));
- [ intros;
- simplify;
- fold simplify (ordered A le (s::l2));
- apply andb_elim;
- rewrite > (H x a H3);
- simplify;
- fold simplify (ordered A le (s::l2));
- apply andb_elim;
- rewrite > H4;
- apply (ordered_injective A le (a::s::l2));
- assumption;
- | intros;
- simplify;
- fold simplify (ordered A le (s::(insert A le x l2)));
- apply andb_elim;
- simplify in H2;
- fold simplify (ordered A le (s::l2)) in H2;
- generalize in match H2;
- apply (andb_elim (le a s));
- elim (le a s);
- [ change with (ordered A le (s::l2) = true \to ordered A le (s::insert A le x l2) = true);
- intros;
- apply (H1 s);
- assumption;
- | simplify; intros; assumption
- ]
- ]
- ]
- ]
- | simplify; reflexivity;
- ]
qed.
-
+
theorem insertionsort_sorted:
∀A:Set.
∀le:A → A → bool.∀eq:A → A → bool.