apply meet_comm;
qed.
+lemma le_asnk_ansk:
+ ∀R.∀ml:mlattice R.∀xn:sequence ml.∀k,n.
+ (ank ?? xn k (S n)) ≤ (ank ?? xn (S k) n).
+intros (R ml xn k n);
+apply (Le≪ (xn k ∧ ank ?? xn (S k) n) (ankS ?????)); apply lem;
+qed.
+
(* 3.27 *)
-lemma foo:
+lemma sup_increasing:
∀R.∀ml:mlattice R.∀xn:sequence ml.
∀alpha:sequence ml. (∀k.strong_inf ml (ank ?? xn k) (alpha k)) →
increasing ml alpha.
intros (R ml xn alpha H); unfold strong_inf in H; unfold lower_bound in H; unfold;
-intro n;
-letin H2 ≝ (λk.ankS ?? xn k n); clearbody H2;
-cut (∀k.((xn k) ∧ (ank ?? xn (S k) n)) ≤ (ank ?? xn (S k) n)) as H3; [2:intro k; apply lem;]
-cut (∀k.(ank ?? xn k (S n)) ≤ (ank ?? xn (S k) n)) as H4; [2:
- intro k; apply (le_transitive ml ???? (H3 ?));
- apply (Le≪ ? (H2 k));
-
-elim (H (S n)) (H4 H5); intro H6; elim (H5 ? H6) (m Hm);
-lapply (H4 m) as H7;
-
- clear H5 H6;
-
-
-
-lapply (H n) as H1; clear H; elim H1 (LB H); clear H1;
-lapply (LB (S n)) as H1; clear LB;
-lapply (ankS ?? xn n n) as H2;
-
-lapply (Le≪ (xn n∧ank R ml xn (S n) n) H2);
-
-cases H (LB H1); clear H;
+intro r;
+elim (H r) (H1r H2r);
+elim (H (S r)) (H1sr H2sr); clear H H2r H1sr;
+intro e; cases (H2sr ? e) (w Hw); clear e H2sr;
+lapply (H1r (S w)) as Hsw; clear H1r;
+lapply (le_transitive ???? Hsw (le_asnk_ansk ?????)) as H;
+cases (H Hw);
+qed.
-
-
-
-
\ No newline at end of file
(* coercion cic:/matita/metric_space/apart_of_metric_space.con. *)
-lemma ap2delta: ∀R.∀m:metric_space R.∀x,y:m.x#y → 0 < δ x y.
+lemma ap2delta: ∀R.∀m:metric_space R.∀x,y:m.ap_apart (apart_of_metric_space ? m) x y → 0 < δ x y.
intros 2 (R m); cases m 0; simplify; intros; assumption; qed.