include "topology/igft.ma".
+nlemma hint_auto2 : ∀T.∀U,V:Ω^T.(∀x.x ∈ U → x ∈ V) → U ⊆ V.
+nnormalize; nauto;
+nqed.
+
alias symbol "covers" = "covers set".
alias symbol "coverage" = "coverage cover".
alias symbol "I" = "I".
(U ⊆ P) → (∀a:A.∀j:𝐈 a. 𝐂 a j ◃ U → 𝐂 a j ⊆ P → a ∈ P) →
◃ U ⊆ P.
#A; #U; #P; #refl; #infty; #a; #H; nelim H
- [ nauto | #b; #j; #K1; #K2; napply (infty … j) [ nassumption | napply K2]##]
+ [ nauto | (*nauto depth=4;*) #b; #j; #K1; #K2;
+ napply infty; nauto; ##]
nqed.
alias symbol "covers" = "covers".
alias symbol "covers" = "covers".
alias symbol "covers" = "covers set".
alias symbol "covers" = "covers".
+alias symbol "covers" = "covers set".
nlemma cover_ind'':
∀A:Ax.∀U:Ω^A.∀P:A → CProp[0].
(∀a. a ∈ U → P a) → (∀a:A.∀j:𝐈 a. 𝐂 a j ◃ U → (∀b. b ∈ 𝐂 a j → P b) → P a) →
nlemma eq_rect_Type0_r':
∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type[0]. P a (refl A a) → P x p.
- #A; #a; #x; #p; ncases p; #P; #H; nassumption.
+ #A; #a; #x; #p; ncases p; nauto;
nqed.
nlemma eq_rect_Type0_r:
alias symbol "covers" = "covers".
alias symbol "covers" = "covers".
+alias symbol "covers" = "covers set".
+alias symbol "covers" = "covers set".
nlet rec cover_rect
(A:uuAx) (U:Ω^(uuax A)) (memdec: memdec … U) (P:uuax A → Type[0])
(refl: ∀a:uuax A. a ∈ U → P a)
nrewrite > E2; nnormalize; #_; nauto]##]
#Hcut;
nlapply (infty b); nnormalize; nrewrite > E; nnormalize; #H2;
- napply (H2 one); #y; #E2; nrewrite > E2
+ napply (H2 one); #y; #E2; nrewrite > E2
+ (* [##2: napply cover_rect] nauto depth=1; *)
[ napply Hcut
- ##| napply (cover_rect A U memdec P refl infty a); napply Hcut]##]
+ ##| napply (cover_rect A U memdec P refl infty a); nauto ]##]
nqed.
\ No newline at end of file