]
qed.
-(* inductive move_states : Type[0] ≝
-| start : move_states
-| q1 : move_states
-| q2 : move_states
-| q3 : move_states
-| qacc : move_states
-| qfail : move_states.
-
-definition
-*)
-
-definition mystates : FinSet → FinSet ≝ λalpha:FinSet.FinProd (initN 5) alpha.
-
-definition move_char ≝
- λalpha:FinSet.λsep:alpha.
- mk_TM alpha (mystates alpha)
- (λp.let 〈q,a〉 ≝ p in
- let 〈q',b〉 ≝ q in
- match a with
- [ None ⇒ 〈〈4,sep〉,None ?〉
- | Some a' ⇒
- match q' with
- [ O ⇒ (* qinit *)
- match a' == sep with
- [ true ⇒ 〈〈4,sep〉,None ?〉
- | false ⇒ 〈〈1,a'〉,Some ? 〈a',L〉〉 ]
- | S q' ⇒ match q' with
- [ O ⇒ (* q1 *)
- 〈〈2,a'〉,Some ? 〈b,R〉〉
- | S q' ⇒ match q' with
- [ O ⇒ (* q2 *)
- 〈〈3,sep〉,Some ? 〈b,R〉〉
- | S q' ⇒ match q' with
- [ O ⇒ (* qacc *)
- 〈〈3,sep〉,None ?〉
- | S q' ⇒ (* qfail *)
- 〈〈4,sep〉,None ?〉 ] ] ] ] ])
- 〈0,sep〉
- (λq.let 〈q',a〉 ≝ q in q' == 3 ∨ q' == 4).
-
-definition mk_tape :
- ∀sig:FinSet.list sig → option sig → list sig → tape sig ≝
- λsig,lt,c,rt.match c with
- [ Some c' ⇒ midtape sig lt c' rt
- | None ⇒ match lt with
- [ nil ⇒ match rt with
- [ nil ⇒ niltape ?
- | cons r0 rs0 ⇒ leftof ? r0 rs0 ]
- | cons l0 ls0 ⇒ rightof ? l0 ls0 ] ].
-
-lemma cmove_q0_q1 :
- ∀alpha:FinSet.∀sep,a,ls,a0,rs.
- a0 == sep = false →
- step alpha (move_char alpha sep)
- (mk_config ?? 〈0,a〉 (mk_tape … ls (Some ? a0) rs)) =
- mk_config alpha (states ? (move_char alpha sep)) 〈1,a0〉
- (tape_move_left alpha ls a0 rs).
-#alpha #sep #a *
-[ #a0 #rs #Ha0 whd in ⊢ (??%?);
- normalize in match (trans ???); >Ha0 %
-| #a1 #ls #a0 #rs #Ha0 whd in ⊢ (??%?);
- normalize in match (trans ???); >Ha0 %
-]
-qed.
-
-lemma cmove_q1_q2 :
- ∀alpha:FinSet.∀sep,a,ls,a0,rs.
- step alpha (move_char alpha sep)
- (mk_config ?? 〈1,a〉 (mk_tape … ls (Some ? a0) rs)) =
- mk_config alpha (states ? (move_char alpha sep)) 〈2,a0〉
- (tape_move_right alpha ls a rs).
-#alpha #sep #a #ls #a0 * //
-qed.
-
-lemma cmove_q2_q3 :
- ∀alpha:FinSet.∀sep,a,ls,a0,rs.
- step alpha (move_char alpha sep)
- (mk_config ?? 〈2,a〉 (mk_tape … ls (Some ? a0) rs)) =
- mk_config alpha (states ? (move_char alpha sep)) 〈3,sep〉
- (tape_move_right alpha ls a rs).
-#alpha #sep #a #ls #a0 * //
-qed.
-
-definition option_hd ≝
- λA.λl:list A. match l with
- [ nil ⇒ None ?
- | cons a _ ⇒ Some ? a ].
-
-definition Rmove_char_true ≝
- λalpha,sep,t1,t2.
- ∀a,b,ls,rs. b ≠ sep →
- t1 = midtape alpha (a::ls) b rs →
- t2 = mk_tape alpha (a::b::ls) (option_hd ? rs) (tail ? rs).
-
-definition Rmove_char_false ≝
- λalpha,sep,t1,t2.
- left ? t1 ≠ [] → current alpha t1 ≠ None alpha →
- current alpha t1 = Some alpha sep ∧ t2 = t1.
-
-lemma loop_S_true :
- ∀A,n,f,p,a. p a = true →
- loop A (S n) f p a = Some ? a. /2/
-qed.
-
-lemma loop_S_false :
- ∀A,n,f,p,a. p a = false →
- loop A (S n) f p a = loop A n f p (f a).
-normalize #A #n #f #p #a #Hpa >Hpa %
-qed.
-
-notation < "𝐅" non associative with precedence 90
- for @{'bigF}.
-notation < "𝐃" non associative with precedence 90
- for @{'bigD}.
-
-interpretation "FinSet" 'bigF = (mk_FinSet ???).
-interpretation "DeqSet" 'bigD = (mk_DeqSet ???).
-
-lemma trans_init_sep:
- ∀alpha,sep,x.
- trans ? (move_char alpha sep) 〈〈0,x〉,Some ? sep〉 = 〈〈4,sep〉,None ?〉.
-#alpha #sep #x normalize >(\b ?) //
-qed.
-
-lemma trans_init_not_sep:
- ∀alpha,sep,x,y.y == sep = false →
- trans ? (move_char alpha sep) 〈〈0,x〉,Some ? y〉 = 〈〈1,y〉,Some ? 〈y,L〉〉.
-#alpha #sep #x #y #H1 normalize >H1 //
-qed.
-
-lemma sem_move_char :
- ∀alpha,sep.
- accRealize alpha (move_char alpha sep)
- 〈3,sep〉 (Rmove_char_true alpha sep) (Rmove_char_false alpha sep).
-#alpha #sep *
-[@(ex_intro ?? 2)
- @(ex_intro … (mk_config ?? 〈4,sep〉 (niltape ?)))
- % [% [whd in ⊢ (??%?);% |#Hfalse destruct ] |#H1 #H2 @False_ind @(absurd ?? H2) %]
-|#l0 #lt0 @(ex_intro ?? 2)
- @(ex_intro … (mk_config ?? 〈4,sep〉 (leftof ? l0 lt0)))
- % [% [whd in ⊢ (??%?);% |#Hfalse destruct ] |#H1 #H2 @False_ind @(absurd ?? H2) %]
-|#r0 #rt0 @(ex_intro ?? 2)
- @(ex_intro … (mk_config ?? 〈4,sep〉 (rightof ? r0 rt0)))
- % [% [whd in ⊢ (??%?);% |#Hfalse destruct ] |#H1 #H2 #H3 @False_ind @(absurd ?? H3) %]
-| #lt #c #rt cases (true_or_false (c == sep)) #Hc
- [ @(ex_intro ?? 2)
- @(ex_intro ?? (mk_config ?? 〈4,sep〉 (midtape ? lt c rt)))
- %
- [%
- [ >(\P Hc) >loop_S_false //
- >loop_S_true
- [ @eq_f whd in ⊢ (??%?); >trans_init_sep %
- |>(\P Hc) whd in ⊢(??(???(???%))?);
- >trans_init_sep % ]
- | #Hfalse destruct
- ]
- |#_ #H1 #H2 % // normalize >(\P Hc) % ]
- | @(ex_intro ?? 4)
- cases lt
- [ @ex_intro
- [|%
- [ %
- [ >loop_S_false //
- >cmove_q0_q1 //
- | normalize in ⊢ (%→?); #Hfalse destruct (Hfalse)
- ]
- | normalize in ⊢ (%→?); #_ #H1 @False_ind @(absurd ?? H1) %
- ]
- ]
- | #l0 #lt @ex_intro
- [| %
- [ %
- [ >loop_S_false //
- >cmove_q0_q1 //
- | #_ #a #b #ls #rs #Hb #Htape
- destruct (Htape)
- >cmove_q1_q2
- >cmove_q2_q3
- cases rs normalize //
- ]
- | normalize in ⊢ (% → ?); * #Hfalse
- @False_ind /2/
- ]
- ]
- ]
- ]
-]
-qed.
-
-definition R_while_cmove ≝
- λalpha,sep,t1,t2.
- ∀a,b,ls,rs,rs'. b ≠ sep → memb ? sep rs = false →
- t1 = midtape alpha (a::ls) b (rs@sep::rs') →
- t2 = midtape alpha (a::reverse ? rs@b::ls) sep rs'.
-
-lemma star_cases :
- ∀A,R,x,y.star A R x y → x = y ∨ ∃z.R x z ∧ star A R z y.
-#A #R #x #y #Hstar elim Hstar
-[ #b #c #Hleft #Hright *
- [ #H1 %2 @(ex_intro ?? c) % //
- | * #x0 * #H1 #H2 %2 @(ex_intro ?? x0) % /2/ ]
-| /2/ ]
-qed.
-
-axiom star_ind_r :
- ∀A:Type[0].∀R:relation A.∀Q:A → A → Prop.
- (∀a.Q a a) →
- (∀a,b,c.R a b → star A R b c → Q b c → Q a c) →
- ∀x,y.star A R x y → Q x y.
-(* #A #R #Q #H1 #H2 #x #y #H0 elim H0
-[ #b #c #Hleft #Hright #IH
- cases (star_cases ???? Hleft)
- [ #Hx @H2 //
- | * #z * #H3 #H4 @(H2 … H3) /2/
-[
-|
-generalize in match (λb.H2 x b y); elim H0
-[#b #c #Hleft #Hright #H2' #H3 @H3
- @(H3 b)
- elim H0
-[ #b #c #Hleft #Hright #IH //
-| *)
-
-lemma sem_move_char :
- ∀alpha,sep.
- WRealize alpha (whileTM alpha (move_char alpha sep) 〈3,sep〉)
- (R_while_cmove alpha sep).
-#alpha #sep #inc #i #outc #Hloop
-lapply (sem_while … (sem_move_char alpha sep) inc i outc Hloop) [%]
-* #t1 * #Hstar @(star_ind_r ??????? Hstar)
-[ #a whd in ⊢ (% → ?); #H1 #a #b #ls #rs #rs' #Hb #Hrs #Hinc
- >Hinc in H1; normalize in ⊢ (% → ?); #H1
- cases (H1 ??)
- [ #Hfalse @False_ind @(absurd ?? Hb) destruct %
- |% #H2 destruct (H2)
- |% #H2 destruct ]
-| #a #b #c #Hstar1 #HRtrue #IH #HRfalse
- lapply (IH HRfalse) -IH whd in ⊢ (%→%); #IH
- #a0 #b0 #ls #rs #rs' #Hb0 #Hrs #Ha
- whd in Hstar1;
- lapply (Hstar1 … Hb0 Ha) #Hb
- @(IH … Hb0 Hrs) >Hb whd in HRfalse;
- [
- inc Rtrue* b Rtrue c Rfalse outc
-
-|
-]
-qed.
-
- #H1
- #a #b #ls #rs #rs #Hb #Hrs #Hinc
- >Hinc in H2;whd in ⊢ ((??%? → ?) → ?);
-
-lapply (H inc i outc Hloop) *
-
(* (*