For Scott's encoding, two.
*)
let num_more_args = 2;;
+let _very_verbose = false;;
+
+let verbose s =
+ if _very_verbose then prerr_endline s
+;;
let convergent_dummy = `N(-1);;
exception Pacman
exception Bottom
exception Backtrack of string
+exception Fail of string
let first bound p var f =
let p = {p with trail = (List.map (!) p.deltas)::p.trail} in
in aux 0
;;
-prerr_endline "########## main ##########";;
-
-(* Commands:
- v ==> v := \a. a k1 .. kn \^m.0
- + ==> v := \^k. numero for every v such that ...
- * ==> tries v as long as possible and then +v as long as possible
-*)
-let main problems =
- let rec aux ({ps} as p) n l =
- if List.for_all (function `N _ -> true | _ -> false) ps && p.div = None then begin
- p
- end else
- let _ = prerr_endline (string_of_problem "main" p) in
- let x,l =
- match l with
- | cmd::l -> cmd,l
- | [] -> read_line (),[] in
- let cmd =
- if x = "+" then
- `DoneWith
- else if x = "*" then
- `Auto
- else
- `Step x in
- match cmd with
- | `DoneWith -> assert false (*aux (eat p) n l*) (* CSC: TODO *)
- | `Step x -> assert false
- (* let x = var_of_string x in
- aux (instantiate p x 1 n) n l *)
- | `Auto -> aux (auto p n) n l
- in
- List.iter
- (fun (p,n,cmds) ->
- Console.print_hline();
- let p_finale = aux p n cmds in
- let freshno,sigma = p_finale.freshno, p_finale.sigma in
- prerr_endline ("------- <DONE> ------\n ");
- (* prerr_endline (string_of_problem "Original problem" p); *)
- prerr_endline "---------------------";
- let l = Array.to_list (Array.init (freshno + 1) string_of_var) in
- prerr_endline "---------------------";
- List.iter (fun (x,inst) -> prerr_endline (string_of_var x ^ " := " ^ print ~l inst)) sigma;
+let solve p =
+ if List.for_all (function `N _ -> true | _ -> false) p.ps && p.div = None
+ then (prerr_endline "Initial problem is already completed, nothing to do")
+ else (
+ Console.print_hline();
+ prerr_endline (string_of_problem "main" p);
+ let p_finale =
+ try
+ auto p p.initialSpecialK
+ with Backtrack _ -> raise (Fail "Unsolvable problem, apparently") in
+ let freshno,sigma = p_finale.freshno, p_finale.sigma in
+ prerr_endline ("------- <DONE> ------ measure=. \n ");
+ (* prerr_endline (string_of_problem "Original problem" p); *)
+ (* prerr_endline "---------------------"; *)
+ let l = Array.to_list (Array.init (freshno + 1) string_of_var) in
+ (* prerr_endline "---------------------"; *)
+ List.iter (fun (x,inst) -> prerr_endline (string_of_var x ^ " := " ^ print ~l inst)) sigma;
(*
- prerr_endline "----------------------";
- let ps =
- List.fold_left (fun ps (x,inst) ->
- (* CSC: XXXX Is the subst always sorted correctly? Otherwise, implement a recursive subst *)
- (* In this non-recursive version, the intermediate states may containt Matchs *)
- List.map (fun t -> let t = subst false x inst (t :> nf) in cast_to_i_num_var t) ps)
- (p.ps :> i_num_var list) sigma in
- prerr_endline (string_of_problem {p with ps= List.map (function t -> cast_to_i_n_var t) ps; freshno});
- List.iteri (fun i (n,more_args) -> assert (more_args = 0 && n = `N i)) ps ;
+ prerr_endline "----------------------";
+ let ps =
+ List.fold_left (fun ps (x,inst) ->
+ (* CSC: XXXX Is the subst always sorted correctly? Otherwise, implement a recursive subst *)
+ (* In this non-recursive version, the intermediate states may containt Matchs *)
+ List.map (fun t -> let t = subst false x inst (t :> nf) in cast_to_i_num_var t) ps)
+ (p.ps :> i_num_var list) sigma in
+ prerr_endline (string_of_problem {p with ps= List.map (function t -> cast_to_i_n_var t) ps; freshno});
+ List.iteri (fun i (n,more_args) -> assert (more_args = 0 && n = `N i)) ps ;
*)
- prerr_endline "---------<OPT>----------";
- let sigma = optimize_numerals p_finale in (* optimize numerals *)
- let l = Array.to_list (Array.init (freshno + 1) string_of_var) in
- List.iter (fun (x,inst) -> prerr_endline (string_of_var x ^ " := " ^ print ~l inst)) sigma;
- prerr_endline "---------<PURE>---------";
+ prerr_endline "---------<OPT>----------";
+ let sigma = optimize_numerals p_finale in (* optimize numerals *)
+ let l = Array.to_list (Array.init (freshno + 1) string_of_var) in
+ List.iter (fun (x,inst) -> prerr_endline (string_of_var x ^ " := " ^ print ~l inst)) sigma;
- let div = option_map (fun div -> ToScott.scott_of_nf (div :> nf)) p.div in
- let conv = List.map (fun t -> ToScott.scott_of_nf (t :> nf)) p.conv in
- let ps = List.map (fun t -> ToScott.scott_of_nf (t :> nf)) p.ps in
+ prerr_endline "---------<PURE>---------";
+ let scott_of_nf t = ToScott.scott_of_nf (t :> nf) in
+ let div = option_map scott_of_nf p.div in
+ let conv = List.map scott_of_nf p.conv in
+ let ps = List.map scott_of_nf p.ps in
- let sigma' = List.map (fun (x,inst) -> x, ToScott.scott_of_nf inst) sigma in
- let e' = env_of_sigma freshno sigma' in
+ let sigma' = List.map (fun (x,inst) -> x, ToScott.scott_of_nf inst) sigma in
+ let e' = env_of_sigma freshno sigma' in
(*
- prerr_endline "---------<PPP>---------";
+ prerr_endline "---------<PPP>---------";
let rec print_e e =
- "[" ^ String.concat ";" (List.map (fun (e,t,[]) -> print_e e ^ ":" ^ Pure.print t) e) ^ "]"
+"[" ^ String.concat ";" (List.map (fun (e,t,[]) -> print_e e ^ ":" ^ Pure.print t) e) ^ "]"
in
- prerr_endline (print_e e);
- List.iter (fun (t,t_ok) ->
- prerr_endline ("T0= " ^ Pure.print t ^ "\nTM= " ^ Pure.print (Pure.unwind (e,t,[])) ^ "\nOM= " ^ Pure.print t_ok);
- (*assert (Pure.unwind (e,t,[]) = t_ok)*)
- ) (List.combine ps ps_ok);
+ prerr_endline (print_e e);
+ List.iter (fun (t,t_ok) ->
+ prerr_endline ("T0= " ^ Pure.print t ^ "\nTM= " ^ Pure.print (Pure.unwind (e,t,[])) ^ "\nOM= " ^ Pure.print t_ok);
+ (*assert (Pure.unwind (e,t,[]) = t_ok)*)
+ ) (List.combine ps ps_ok);
*)
- prerr_endline "--------<REDUCE>---------";
- (function Some div ->
- print_endline (Pure.print div);
- let t = Pure.mwhd (e',div,[]) in
- prerr_endline ("*:: " ^ (Pure.print t));
- assert (t = Pure.B)
- | None -> ()) div;
- List.iter (fun n ->
- prerr_endline ("_::: " ^ (Pure.print n));
- let t = Pure.mwhd (e',n,[]) in
- prerr_endline ("_:: " ^ (Pure.print t));
- assert (t <> Pure.B)
- ) conv ;
- List.iteri (fun i n ->
- prerr_endline ((string_of_int i) ^ "::: " ^ (Pure.print n));
- let t = Pure.mwhd (e',n,[]) in
- prerr_endline ((string_of_int i) ^ ":: " ^ (Pure.print t));
- assert (t = Scott.mk_n i)
- ) ps ;
- prerr_endline "-------- </DONE> --------"
- ) problems
+ prerr_endline "--------<REDUCE>---------";
+ (function Some div ->
+ print_endline (Pure.print div);
+ let t = Pure.mwhd (e',div,[]) in
+ prerr_endline ("*:: " ^ (Pure.print t));
+ assert (t = Pure.B)
+ | None -> ()) div;
+ List.iter (fun n ->
+ verbose ("_::: " ^ (Pure.print n));
+ let t = Pure.mwhd (e',n,[]) in
+ verbose ("_:: " ^ (Pure.print t));
+ assert (t <> Pure.B)
+ ) conv ;
+ List.iteri (fun i n ->
+ verbose ((string_of_int i) ^ "::: " ^ (Pure.print n));
+ let t = Pure.mwhd (e',n,[]) in
+ verbose ((string_of_int i) ^ ":: " ^ (Pure.print t));
+ assert (t = Scott.mk_n i)
+ ) ps ;
+ prerr_endline "-------- </DONE> --------"
+ )
+;;
(********************** problems *******************)
| _ -> assert false
;;
-type t = problem * int * string list;;
-
-let magic_conv ~div ~conv ~nums cmds =
+let problem_of ~div ~conv ~nums =
let all_tms = (match div with None -> [] | Some div -> [div]) @ nums @ conv in
let all_tms, var_names = parse' all_tms in
let div, (tms, conv) = match div with
if match div with None -> false | Some div -> List.exists (eta_subterm div) (tms@conv)
then (
prerr_endline "--- TEST SKIPPED ---";
- {freshno=0; div=None; conv=[]; ps=[]; sigma=[]; deltas=[]; initialSpecialK=0; trail=[]}, 0, []
+ {freshno=0; div=None; conv=[]; ps=[]; sigma=[]; deltas=[]; initialSpecialK=0; trail=[]}
) else
let tms = sort_uniq ~compare:eta_compare tms in
let special_k = compute_special_k (Listx.from_list all_tms) in (* compute initial special K *)
(* casts *)
- let div = option_map cast_to_i_var div in
- let conv = Util.filter_map (function #i_n_var as t -> Some (cast_to_i_n_var t) | _ -> None) conv in
- let tms = List.map cast_to_i_n_var tms in
+ let div =
+ match div with
+ | None | Some `Bottom -> None
+ | Some (`I _ as t) -> Some t
+ | _ -> raise (Fail "div is not an inert or BOT in the initial problem") in
+ let conv = Util.filter_map (
+ function
+ | #i_n_var as t -> Some t
+ | `Lam _ -> None
+ | _ -> raise (Fail "A term in conv is not i_n_var")
+ ) conv in
+ let tms = List.map (
+ function
+ | #i_n_var as y -> y
+ | _ -> raise (Fail "A term in num is not i_n_var")
+ ) tms in
let ps = List.map append_zero tms in (* crea lista applicando zeri o dummies *)
let freshno = List.length var_names in
let dummy = `Var (max_int / 2, -666) in
[ ref (Array.to_list (Array.init (List.length ps) (fun i -> i, dummy))) ] in
let trail = [] in
- {freshno; div; conv; ps; sigma=[] ; deltas; initialSpecialK=special_k; trail}, special_k, cmds
+ {freshno; div; conv; ps; sigma=[] ; deltas; initialSpecialK=special_k; trail}
;;
-let magic strings cmds = magic_conv None [] strings cmds;;
+let should_fail f =
+ try
+ solve (f ());
+ failwith "The problem should have failed"
+ with Fail _ ->
+ prerr_endline "The problem failed, as expected"
+;;
open Lambda4;;
+let magic strings = problem_of None [] strings;;
+let solve_many = List.iter solve;;
-let p2 = magic [ "x y"; "x z" ; "x (y z)"] ["*"]
+let p2 = magic [ "x y"; "x z" ; "x (y z)"]
let p4 = magic
- [ "x y"; "x (a. a x)" ; "y (y z)" ] ["*"]
+ [ "x y"; "x (a. a x)" ; "y (y z)" ]
let p5 = magic
["a (x. x a) b"; "b (x. x b) a"]
- ["*"]
;;
let p6 = magic
["a (x. x a) b"; "b (x. x b) (c a)"]
- ["*"]
+
;;
let p7 = magic
["a (x. (x a)(a x x a)(x x) )"]
- ["*"]
+
;;
let p8 = magic
["x x (x x)"]
- ["*"]
+
;;
let p9 = magic
["x x (x x x) (x x (x x)) (x x (x x x)) x x"]
- ["*"]
+
;;
let p10 = magic
["x (y (x a b c))"]
- ["*"]
+
;;
let p11 = magic
["x x"; "x (y.y)"]
- ["*"]
+
;;
let p12 = magic
["x x (x x)"; "x x (x (y.y))"]
- ["*"]
+
;;
let p13 = magic
["x x (x x (x x x x x (x x)))"]
- ["*"]
+
;;
let p14 = magic
["a (a a (a (a a)) (a (a a)))"]
- ["*"]
+
;;
let p15 = magic
["a (a (a a)) (a a (a a) (a (a (a a))) (a (a a)) (a a (a a) (a (a (a a))) (a (a a)))) (a a (a a) (a (a (a a))) (a (a a)))"]
- ["*"]
+
;;
let p16 = magic
["a (a a) (a a (a (a a)) (a (a a)) (a a (a (a a)) a))"]
- ["*"]
+
;;
let p17 = magic
["b a"; "b (c.a)"]
- ["*"]
+
;;
let p18 = magic
["a (a a) (a a a (a (a (a a) a)) (a a a (a (a (a a) a))))" ; "a a" ; "a (a a)"]
- ["*"]
+
;;
let p19 = magic
["a (a a) (a a a (a (a (a a) a)) a)"]
- ["*"]
+
;;
let p20 = magic
- ["a (a b) (b (a b) (a (a b))) (a (a b) (a (a b)) (a (a b)) c) (a (a b) (a (a b)) (b (a b)) c (a a (a (a b) (a (a b)) b)) (a (a b) (a (a b)) (b (a b)) (a a) (a c (b (a b)))))"]["*"];;
+ ["a (a b) (b (a b) (a (a b))) (a (a b) (a (a b)) (a (a b)) c) (a (a b) (a (a b)) (b (a b)) c (a a (a (a b) (a (a b)) b)) (a (a b) (a (a b)) (b (a b)) (a a) (a c (b (a b)))))"];;
let p21 = magic
["(((y z) (y z)) ((z (y z)) ((y z) (z z))))";
"(((z z) x) (y z))";
"((z (y z)) ((y z) (z z)))"
-] ["*"];;
+] ;;
let p22 = magic
["((z y) ((((y (z y)) x) (y (z y))) ((y (z y)) (z z))))";
"((z y) (((((y (z y)) x) (y (z y))) ((y (z y)) (z z))) (((((y (z y)) x) (y (z y))) ((y (z y)) (z z))) ((x y) (z z)))))";
-"(y ((((y (z y)) x) (y (z y))) ((y (z y)) (z z))))"] ["*"];;
+"(y ((((y (z y)) x) (y (z y))) ((y (z y)) (z z))))"] ;;
(* diverging tests *)
(* test p23 leads to test p24 *)
let p23 = magic
-["z z z"; "z (z z) (x. x)"] ["*"];;
+["z z z"; "z (z z) (x. x)"] ;;
(* because of the last term, the magic number is 1 and we diverge;
but setting the magic number to 0 allows to solve the problem;
thus our strategy is incomplete *)
let p24 = magic
-["b b"; "b f"; "f b"; "a (x.x)"] ["*"];;
+["b b"; "b f"; "f b"; "a (x.x)"] ;;
(* because of the last term, the magic number is 1 and we diverge;
but setting the magic number to 0 allows to solve the problem;
thus our strategy is incomplete *)
let p25 = magic
-["b b"; "b f"; "f b"; "f (x.x)"] ["*"];;
+["b b"; "b f"; "f b"; "f (x.x)"] ;;
(* BUG:
0 (n (d (o.n) ...)))
After instantiating n, the magic number (for d) should be 2, not 1! *)
let p26 = magic
["(((x y) (z. (y. (y. z)))) (z. y))";
-"(((x y) x) (y y))"] ["*"];;
+"(((x y) x) (y y))"] ;;
let p27 = magic
["(((((((z y) (z (z y))) (z (z y))) ((z y) (((z y) (z (z y))) ((z y) x)))) (((((z y) (z (z y))) (z (z y))) x) y)) (((((z y) (z (z y))) (z (z y))) ((z y) (((z y) (z (z y))) ((z y) x)))) (((((z y) (z (z y))) (z (z y))) x) y))) ((((((z y) (z (z y))) (z (z y))) ((z y) (((z y) (z (z y))) ((z y) x)))) (((((z y) (z (z y))) (z (z y))) x) y)) (((((z y) (z (z y))) (z (z y))) ((z y) (((z y) (z (z y))) ((z y) x)))) (((((z y) (z (z y))) (z (z y))) x) y))))";
"((((((z y) (z (z y))) (z (z y))) ((z y) (((z y) (z (z y))) ((z y) x)))) (((((z y) (z (z y))) (z (z y))) x) y)) (((((z y) (z (z y))) (z (z y))) ((z y) (((z y) (z (z y))) ((z y) x)))) (((((z y) (z (z y))) (z (z y))) x) y)))";
-"(((((z y) (z (z y))) (z (z y))) ((z y) (((z y) (z (z y))) ((z y) x)))) (((((z y) (z (z y))) (z (z y))) x) y))"] ["*"];;
+"(((((z y) (z (z y))) (z (z y))) ((z y) (((z y) (z (z y))) ((z y) x)))) (((((z y) (z (z y))) (z (z y))) x) y))"] ;;
let p28 = magic
["((((z (x. (z. (x. x)))) (z x)) x) (z (x. (z. (x. x)))))";
- "(((z (x. (z. (x. x)))) (z x)) ((z x) (x. (z. (x. x)))))" ] ["*"];;
+ "(((z (x. (z. (x. x)))) (z x)) ((z x) (x. (z. (x. x)))))" ] ;;
let p29 = magic
["((((((x x) (x x)) (z. (y x))) (z. ((x x) y))) y) ((x x) y))";
-"(((((x x) (x x)) (z. (y x))) (z. ((x x) y))) y)"] ["*"];;
+"(((((x x) (x x)) (z. (y x))) (z. ((x x) y))) y)"] ;;
let p30 = magic
["((b c) (b. (z a)))";
"((v (a. (z v))) ((y (b c)) ((z a) (v y))))";
"((v (v. c)) z)";
"((v y) (v (a. (z v))))";
-"((y (b c)) ((z a) (v y)))"] ["*"];;
+"((y (b c)) ((z a) (v y)))"] ;;
let p31 = magic
[" (((((((v (((a v) w) (((a v) w) v))) (w. c)) (b (a v))) c) (z. a)) (x. (w. (w. c)))) (((a (y c)) ((y c) ((a v) (w (z. a))))) (w. c)))";
"((((((v (((a v) w) (((a v) w) v))) (w. c)) (b (a v))) c) (z. a)) (x. (w. (w. c))))";
"(((((b (a v)) (a. (y c))) z) (w. w)) ((a c) c))";
"(((((v (((a v) w) (((a v) w) v))) (w. c)) (b (a v))) c) (z. a))";
-"((((a (y c)) ((y c) ((a v) (w (z. a))))) (w. c)) (x. w))"] ["*"];;
+"((((a (y c)) ((y c) ((a v) (w (z. a))))) (w. c)) (x. w))"] ;;
let p32 = magic
["(((((a y) v) (z a)) (z (((z a) (z a)) (w. v)))) (y. (a y)))";
"(((((z a) (z a)) b) (v. (v. (z a)))) (v. ((a y) v)))";
"((((a y) v) (z a)) (z (((z a) (z a)) (w. v))))";
"((((w (a. (z. ((z a) (z a))))) (v. ((a y) v))) (((z a) (z a)) b)) (w. (((z a) (z a)) (c. (c ((z a) (z a)))))))"
-] ["*"];;
+] ;;
(* Shows an error when the strategy that minimizes special_k is NOT used *)
let p33 = magic
"(((((a (c. y)) (v w)) ((b (z (a (c. y)))) (b (z (a (c. y)))))) ((a (c. y)) b)) (c. y))";
"(((((a (c. y)) (v w)) ((b (z (a (c. y)))) (b (z (a (c. y)))))) (b (z (a (c. y))))) ((c b) (b. (b w))))";
(* "(((((a (c. y)) b) v) (z (a (c. y)))) (a. (b (z (a (c. y))))))" *)
-] ["*"];;
+] ;;
let p34 = magic [
"b c (b c) (c (d (j. e))) (b c (b c) (j.c f)) (b f (j. k. d)) (b (j. k. l. b c (b c)) (b g)) a";
"d (j. e) e (j. c f) b (b c (b c) (j. c f)) a";
"d (j. e) e (j. c f) b (b c (b c) (j. c f) (g b)) a";
"d (j. e) e (j. c f) b (j. k. j (l. e) e (l. k f) b) a";
-] ["*"];;
+] ;;
(* 0: (b c (b c) (c (d j.e)) (b c (b c) j.(c f)) (b f j.k.d) (b j.k.l.(b c (b c)) (b g)) a)
1: (d j.e e j.(c f) j.(c j) b a)
2: (d j.e e j.(c f) b (b c (b c) j.(c f)) a)
"(((((((((b z) v) (a ((v (y y)) (v (y y))))) (y (v (y y)))) ((w ((a b) z)) (a ((v (y y)) (v (y y)))))) (z ((y (v (y y))) b))) (((y (v (y y))) ((y (v (y y))) x)) ((((c (a b)) (y y)) ((y (v (y y))) b)) (((c (a b)) (y y)) ((y (v (y y))) b))))) (z (z b))) ((y y) (((b z) v) (a ((v (y y)) (v (y y)))))))";
"((((((((a b) z) w) (((b z) v) (a ((v (y y)) (v (y y)))))) ((y y) ((y (v (y y))) b))) ((((((c (a b)) (y y)) ((y (v (y y))) b)) (((c (a b)) (y y)) ((y (v (y y))) b))) (((((c (a b)) (y y)) (y (v (y y)))) (z w)) ((w (((v (y y)) (v (y y))) a)) (w (z ((y (v (y y))) b)))))) (z w))) (((((((b z) v) (a ((v (y y)) (v (y y))))) (y (v (y y)))) ((w ((a b) z)) (a ((v (y y)) (v (y y)))))) (z ((y (v (y y))) b))) (c (a b)))) (((((b z) (c b)) (c ((v (y y)) (v (y y))))) (((((c (a b)) (y y)) ((y (v (y y))) b)) (((c (a b)) (y y)) ((y (v (y y))) b))) ((c b) (z (z b))))) (((((((b z) v) (a ((v (y y)) (v (y y))))) (y (v (y y)))) (b (((v (y y)) (v (y y))) ((y y) (z (z b)))))) (((((w ((a b) z)) (a ((v (y y)) (v (y y))))) (((v (y y)) (v (y y))) a)) (((((b z) v) (a ((v (y y)) (v (y y))))) (y (v (y y)))) (b (((v (y y)) (v (y y))) ((y y) (z (z b))))))) (b z))) ((x ((c b) (c b))) (((((b z) v) (a ((v (y y)) (v (y y))))) (y (v (y y)))) ((w ((a b) z)) (a ((v (y y)) (v (y y))))))))))";
"((((((((b z) v) (a ((v (y y)) (v (y y))))) (y (v (y y)))) ((w ((a b) z)) (a ((v (y y)) (v (y y)))))) (z ((y (v (y y))) b))) (((y (v (y y))) ((y (v (y y))) x)) ((((c (a b)) (y y)) ((y (v (y y))) b)) (((c (a b)) (y y)) ((y (v (y y))) b))))) (v (y y)))"
-] ["*"];;
+] ;;
let p36 = magic
[
"(((((((y a) (((z v) (y a)) (b a))) ((b a) (b a))) (((y c) (x a)) (v (((y a) (((z v) (y a)) (b a))) z)))) ((b a) (b a))) ((a c) (b (((y a) (((z v) (y a)) (b a))) (z a))))) ((((((b (((y a) (((z v) (y a)) (b a))) z)) (c ((y (x a)) ((z v) (y a))))) (v (((y a) (((z v) (y a)) (b a))) z))) (((((y a) (((z v) (y a)) (b a))) z) (((z v) (y a)) (c y))) ((x a) (((y a) (((z v) (y a)) (b a))) z)))) ((c ((y (x a)) ((z v) (y a)))) (b (((y a) (((z v) (y a)) (b a))) z)))) ((((b (z a)) (y a)) (y c)) (a (((((y a) (((z v) (y a)) (b a))) ((b a) (b a))) (x a)) ((((y a) (((z v) (y a)) (b a))) z) (((z v) (y a)) (c y))))))))";
"(((((((z v) (y a)) (b a)) w) b) (((b a) ((((z v) (y a)) (b a)) w)) ((((z v) (y a)) (b a)) w))) (((b a) ((((y a) (((z v) (y a)) (b a))) ((((y a) (((z v) (y a)) (b a))) ((b a) (b a))) (x a))) w)) (((c y) a) v)))";
"(((((((z v) (y a)) (b a)) w) b) (a (((((y a) (((z v) (y a)) (b a))) ((b a) (b a))) (x a)) ((((y a) (((z v) (y a)) (b a))) z) (((z v) (y a)) (c y)))))) ((((y a) (((z v) (y a)) (b a))) ((((y a) (((z v) (y a)) (b a))) ((b a) (b a))) (x a))) x))"
-] ["*"];;
+] ;;
(* issue with eta-equality of terms in ps *)
let p37 = magic
["x (a y) z"; "x (a z. y z) w"; "a c"]
- ["*"];;
+ ;;
(**********************)
-let q1 () = magic_conv
+let q1 () = problem_of
None
["a d e"]
["a b"; "a c"]
- ["*"];;
+ ;;
-let q2 () = magic_conv
+let q2 () = problem_of
None
["a d e"]
["a b" ]
- ["*"];;
+ ;;
-let q3 () = magic_conv
+let q3 () = problem_of
(Some "x")
["a d e f"]
["a b" ]
- ["*"];;
+ ;;
-let q4 () = magic_conv
+let q4 () = problem_of
None
["f (x.a b c d)"]
["a b" ]
- ["*"];;
+ ;;
-let q5 () = magic_conv
+let q5 () = problem_of
(Some"x")
["(y. x)"]
["x"]
- ["*"];;
+ ;;
-let q6 () = magic_conv
+let q6 () = problem_of
(Some"x")
["(y. x z)"]
["y"]
- ["*"];;
+ ;;
-let q7 () = magic_conv
+let q7 () = problem_of
(Some "(b (c d (e f f k.(g e))) f)")
["(g (e f) (g e h) (f d (e f) k.e) k.(c d l.(c d)) (f d k.g (b (g (e f)) (b (g (e f)) (e f)) (g (e f) (g e h)))) k.l.(h f (b i)))";
"(g (e f) (g e h) (f d (e f) k.e) k.(c d l.(c d)) (b (g (e f))) k.l.(g f (k f f (k f f m.(g k)))))";
["(f d (e f) k.e k.l.(c d) (b (g e) k.h) (i b k.l.m.e b) a)";
"(f d (e f) k.e k.l.(c d) (b (g e) k.h) (d k.e) (f d (e f) k.e) a)";
"(g (e f) (g e h) (f d (e f) k.e) k.(c d l.(c d)) (g e h) (g f (e f f (e f f k.(g e))) (g (e f)) (b (c d (e f f k.(g e))) (b (g (e f)) (e f)) (b (g (e f)) k.l.e))) a)"]
- ["*"];;
+ ;;
(**********************)
-let q8 () = magic_conv
+let q8 () = problem_of
(Some"x a")
- ["y (x b c)"] ["j"] ["*"]
+ ["y (x b c)"] ["j"]
;;
-let q9 () = magic_conv
+let q9 () = problem_of
(Some"x a")
- ["y x"] ["a (y a b b b)"] ["*"]
+ ["y x"] ["a (y a b b b)"]
;;
-let q11 () = magic_conv
+let q11 () = problem_of
(Some "x y")
- ["a (x z)"] [] ["*"];;
+ ["a (x z)"] [] ;;
-let q10 () = magic_conv
+let q10 () = problem_of
(Some "b (k. c) d (e (f g) (k. g)) (k. l. c) (k. l. b (m. c)) (k. l. c) (b (k. c) (k. l. b (m. c)) (k. c f)
(k. e (f g))) (b (k. c) (k. e) f (b (k. c) (k. l. b (m. c)) (k. c f)) (b (k. c) (k. e) f (b (k. c) (k. l. b
(m. c)) (k. c f))) (k. b (l. c) b (l. b (m. c))) (k. b (l. c)))")
"b (k. c) d (e (f g) (k. g)) (k. l. c) (k. l. b (m. c)) (k. l. m. n. o. p. o) (e (f g) (k. g) (c f) (k. i) f)";
"b (k. c) d (e (f g) (k. g)) (k. l. c) (k. l. b (m. c)) (k. l. c) (k. b)";
"e (f g) (k. g) (c f) (k. e) (k. b (l. c)) (c f (k. b (l. c)) (k. l. b (m. k))) (k. b (l. k)) (e (f g) (k. g) (c f) (c f (k. b (l. c)) (k. e)))";
-] ["*"];;
+] ;;
-let m1 () = magic_conv None []
+let m1 () = problem_of None []
["y z"; "x z"; "x (a k) u"; "x (a r)"; "x (a k) v"]
- ["*"]
+
;;
-let m2 () = magic_conv None []
+let m2 () = problem_of None []
["y z"; "x z"; "x (a k) u"; "x (a r)"; "x (a k) v"]
- ["*"]
+
;;
-let n1 () = magic_conv (Some"b (c b) (k. l. c b d) (c e) (k. l. m. f) (g (k. c e) (b (c b) (k. l. c b d) (c e) b)) (f c (h (k. c c g))) (g (k. c e) (k. i) f e (g (k. c e) (k. i) (c b) (c (c e)) (k. l. c b d)) (k. e c (k (l. f))) (g (k. c e) (k. i) e)) (g (k. c e) (k. i) (c b) (f c) b)")
+let n1 () = problem_of (Some"b (c b) (k. l. c b d) (c e) (k. l. m. f) (g (k. c e) (b (c b) (k. l. c b d) (c e) b)) (f c (h (k. c c g))) (g (k. c e) (k. i) f e (g (k. c e) (k. i) (c b) (c (c e)) (k. l. c b d)) (k. e c (k (l. f))) (g (k. c e) (k. i) e)) (g (k. c e) (k. i) (c b) (f c) b)")
[
"b (c b) (k. l. c b d) (c e) (k. l. m. f) (g (k. c e) (b (c b) (k. l. c b d) (c e) b)) (f c (h (k. c c g))) (g (k. c e) (k. i) f e (g (k. c e) (k. i) (c b) (c (c e)) (k. l. c b d)) (k. e c (k (l. f))) (g (k. c e) (k. i) e)) (b (k. f) (g (k. c e) (k. i) (c b) (c (c e))) (k. l. m. f) (g (k. c e) (k. i) f e) (k. i))";
"g (k. c e) (k. i) (c b) (c (c e)) (k. l. c b d) (k. l. g (m. c e) (m. i) (c b) (l c) b) (e c (d d (d c)) (c e (k. f)) (b (c b) (k. l. c b d) (c e) (k. l. m. f)))";
"d h (b (c b) (k. l. c b d) (c e)) (k. g (l. c e) (l. i) (c b) (k c) b) d b (b (c b) (k. l. c b d) (c e) b (g (k. c e) (k. i) (c b)) (k. c)) a";
"g (k. c e) (k. d d) (k. k k) (e c (d d (d c)) i) (k. g (l. k e) (l. d d)) (g i (b (c b) (k. l. c b d) (e c (d d (d c)) (k. c e (f c)) (k. k (c k) (l. m. c k d) (c e) k (g (l. c e) (l. i) (c k)) (l. c))))) (c b) a";
"g (k. c e) (k. i) f e (g (k. c e) (k. i) (c b) (c (c e)) (k. l. c b d)) (k. e c (k (l. f))) (g (k. c e) (k. i) e) a"
-] ["*"];;
+] ;;
-let n2 () = magic_conv
+let n2 () = problem_of
(Some"b b (c d) (k. d e) (k. k) (k. l. b)")
[
"b b (d e (k. d e)) (g (k. e) (k. k)) (b (b b) (d (g (d e) (g (k. e)) h) (b b (c d) (k. l. b)) (b (k. h))) (k. k (k k) (l. l))) (f (e (c d))) (b b (d e (k. d e)) (b b) (b (b b) (d (g (d e) (g (k. e)) h) (b b (c d) (k. l. b)) (b (k. h))))) (d e (k. d e) g (i (k. k)))";
"d e (k. d e) (k. b (l. h)) (k. l. d e) (d (g (d e) (g (k. e)) h) (g (d e) (k. l. l))) a";
"f (g (k. e)) (k. b b) (c d (k. k d) (k. l. l) c) (k. c d) (k. c) (k. l. m. b b) a";
"f (g (k. e)) (k. b b) (c d (k. k d) (k. l. l) c) (k. c d) (b (b b) (d (g(d e) (g (k. e)) h) (b b (c d) (k. l. b)) (b (k. h))) (e (b b (c d))) (d (g (d e) (g (k. e)) h) (b b (c d) (k. l. b)) (g (k. e) (k. k)))) (k. d e (l. d e) f) a";
-] ["*"]
+]
;;
-let n3 () = magic_conv
+let n3 () = problem_of
(Some"b (k. c (c d e f)) (k. l. f (m. f) (m. f) (m. n. n))")
[
"b (g (k. e e)) (k. b (g (l. e e))) (g (h (k. i)) (k. e)) (f (k. f) (k. f) i) (i (k. c (c d e f)) (k. l. l) (k. g (h (l. i)) (k d) f) e) (k. l. h) (k. f (l. f) (l. f) (l. e)) (k. l. l (m. l))";
"e e (k. k d e (l. l)) (g e) (c d e b (e e (c (c d e f)))) (d (e e (k. k d e (l. l))) (k. k i)) (k. i (l. c (c d e f))) (k. h) a";
"f (k. f) (k. f) (f h) (f h (c d e (f i))) (k. b) (f i (c d e)) (k. h) a";
"g e f (f (k. f) (f (k. f) (k. l. f)) (c d e b)) (f (k. f) (k. f) (k. l. l) b) (f (k. h)) (c d e (f i) (e e) (g e) (k. l. e)) (f (k. f) f) (f (k. f) (k. f) (k. l. l) (c (k. i (l. c (c d e f))))) a";
-] ["*"];;
+] ;;
(* ************************************************************************** *)
-let o1 () = magic_conv None [] ["x a b"; "x (_. BOT) c"] ["*"];;
-let o2 () = magic_conv None [] ["x (y (_. BOT) a) c"; "x (y a PAC) d"] ["*"];;
-let o3 () = magic_conv
+let o1 () = problem_of None [] ["x a b"; "x (_. BOT) c"] ;;
+let o2 () = problem_of None [] ["x (y (_. BOT) a) c"; "x (y a PAC) d"] ;;
+let o3 () = problem_of
(Some"y (x a1 BOMB c) (x BOMB b1 d)")
[ "y (x a2 BOMB c) (x BOMB b1 d)";
- "y (x a1 BOMB c) (x BOMB b2 d)";] [] ["*"];;
-let o4 () = magic_conv (Some"x BOMB a1 c")
- [ "x y BOMB d"; "x BOMB a2 c" ] [] ["*"];;
-
-
-main [o1() ; o2(); o3(); o4();];;
-
-main ([
+ "y (x a1 BOMB c) (x BOMB b2 d)";] [] ;;
+let o4 () = problem_of (Some"x BOMB a1 c")
+ [ "x y BOMB d"; "x BOMB a2 c" ] [] ;;
+let o5 () = problem_of (Some"BOT") [] [] ;;
+let o6 () = problem_of (Some"x BOMB") ["x y"] [];;
+
+solve_many (List.map ((|>) ()) [
+ o1; o2; o3; o4; o5; o6
+]);;
+
+should_fail(fun () -> problem_of None ["BOT"] []);;
+should_fail(fun () -> problem_of (Some"x y") ["x BOMB"] []);;
+should_fail(fun () -> problem_of (Some"x y z") ["x BOMB z"; "x y y"] []);;
+
+solve_many [
+ problem_of
+ (* DISPLAY PROBLEM (main) - measure=965
+ Discriminating sets (deltas):
+ 0 <> 1 <> 2 <> 3 <> 4
+ *)(* DIVERGENT *)
+ (Some"b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))) (d b (k. b) (f g (e f))) (c (e h)) (k. b c d (l. c (l k)) (b c (l. e e) (b c d (l. e l) (e e (b (l. m. b)) d (l. d))) (l. c)))")
+ (* CONVERGENT *) [
+ (* _ *) "b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))) (d b (k. b) (f g (e f))) (c (e h)) (e e (b (k. l. b)) (k. e k)) (k. e e) (k. g (l. g (m. b c)) (l. i (f g)))";
+ (* _ *) "b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))) (d b (k. b) (f g (e f))) (c (e h)) (d b (k. b)) (k. d k (k (l. m. k)) (c (e h))) (b c (k. c (e h)))";
+ (* _ *) "b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))) (d b (k. b) (f g (e f))) (c (e h)) (e e (b (k. l. b)) (k. e k)) (k. e e)";
+ (* _ *) "b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))) (d b (k. b) (f g (e f))) (c (e h)) (d b (k. b)) (k. d k (k (l. m. k)) (c (e h)))";
+ (* _ *) "b (k. l. b) (e f) (b c d) (e e (b (k. l. b)) d) (e (k. l. b c) (k. l. b k) (b c)) d (e e (e e) (d (k. f)) (b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))))) (e e (b (k. l. b)) (b (k. l. b) (e f) (b c
+ d)) (e e (b (k. l. b)) d (k. d) (b (k. l. b))) (k. b c k (l. e l) (e e (b (l. m. b)) k (l. k)) (f g (c (e h))) (k b (l. b) (f g (e f))) (c (e h))) (k. i (f g) (l. l)))";
+ ] (* NUMERIC *) [
+ (* 0 *) "b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))) (d b (k. b) (f g (e f))) (c (e h)) (d b (k. b)) (k. l. c (l k)) a";
+ (* 1 *) "b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))) (d b (k. b) (f g (e f))) (c (e h)) (e e (b (k. l. b)) (k. e k)) a";
+ (* 2 *) "b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))) (d b (k. b) (f g (e f))) (c (e h)) (e e (b (k. l. b)) (k. e k)) (k. l. c (k h)) a";
+ (* 3 *) "b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))) (d b (k. b) (f g (e f))) (c (e h)) (e e (b (k. l. b)) (k. e k)) (k. l. c (k h)) (d b (b c d (k. c (k h))) (b c d (k. e k) (b c))) a";
+ (* 4 *) "b c d (k. e k) (e e (b (k. l. b)) d (k. d)) (f g (c (e h))) (d b (k. b) (f g (e f))) (c (e h)) (e e (b (k. l. b)) (k. e k)) (k. b k d (l. e l) (e e (b (l. m. b)) d (l. d)) (f g (k (e h)))) a";
+ ]; problem_of
+ (* DISPLAY PROBLEM (main) - measure=561
+ Discriminating sets (deltas):
+ 0 <> 1 <> 2 <> 3 <> 4
+ *)(* DIVERGENT *)
+ (Some"b (c b) (k. d) (e f (k. e) (k. b) (f d)) (e f (k. g k) d) (k. c k (c k g))")
+ (* CONVERGENT *) [
+ (* _ *) "c (k. l. l b k) (k. l. d) (e f (k. k) (g e)) (k. l. m. n. n b m) (k. b (b (k e))) (k. g) (e f (k. k (g e) h) b (e (k. g) (h c (g c) f)))";
+ (* _ *) "e f (k. k) (k. l. c b) (k. l. l (k b) g) (k. e f (l. l)) (h c (c (k. l. l b k) (k. l. d) (e f (k. k) (g e))) (k. g e (g e))) (k. g (l. e f g) (l. h c) (g (l. e f g) (l. h c)))";
+ (* _ *) "e f (k. k (g e) h) (g (k. e f g) (c (c b g) (k. l. l b g))) (k. k (g e) h) (k. h) (b (b (g e)) (k. c (l. m. m b l))) (k. l. g l (g l) (m. c b))";
+ (* _ *) "c (k. l. l b k) (k. l. d) (e f (k. k) (g e)) (k. l. m. n. n b m) (k. b (b (k e))) (k. g)";
+ (* _ *) "e f (k. k) (g e) (e f (k. e)) (e f (k. e)) (h c (b (g e) h (k. c (l. m. m k l))))";
+ ] (* NUMERIC *) [
+ (* 0 *) "c (k. l. l b k) (k. l. d) (e f (k. k) (g e)) (k. l. m. n. n b m) (k. b (b (k e))) (k. i) a";
+ (* 1 *) "e f (k. k (g e) h) (g (k. e f g) (c (c b g) (k. l. l b g))) (k. k (g e) h) (k. h) (b (b (g e)) (k. c (l. m. m b l))) (h (c b) g i) a";
+ (* 2 *) "e f (k. k) (g e) (e f (k. e)) (h (k. g e (g e)) (h (k. g e (g e)))) (k. d) a";
+ (* 3 *) "e f (k. k) (g e) (e f (k. e)) (h (k. g e (g e)) (h (k. g e (g e)))) (k. d) (k. l. m. c k) a";
+ (* 4 *) "g (k. e f g) (k. h c) (b (g e) h (k. c (l. m. m k l))) (k. c b g) (k. e f (l. l) (g e) (e f (l. e))) f a";
+ ]
+];;
+
+failwith "OKAy";;
+
+solve_many ([
p2 ; p4 ; p5 ; p6 ; p7 ; p8 ; p9 ; p10 ; p11 ; p12 ; p13 ;
p14 ; p15 ; p16 ; p17 ; p18 ; p19 ; p20 ; p21 ; p22 ; p23 ;
p24 ; p25 ; p26 ; p27 ; p28 ; p29 ; p30 ; p31 ; p32 ; p33 ;