notation "□ \sub b" non associative with precedence 90 for @{'box $b}.
notation > "□_term 90 b" non associative with precedence 90 for @{'box $b}.
-interpretation "Universal image ⊩⎻*" 'box x = (fun_1 _ _ (or_f_minus_star _ _) (rel x)).
+interpretation "Universal image ⊩⎻*" 'box x = (fun12 _ _ (or_f_minus_star _ _) (rel x)).
notation "◊ \sub b" non associative with precedence 90 for @{'diamond $b}.
notation > "◊_term 90 b" non associative with precedence 90 for @{'diamond $b}.
-interpretation "Existential image ⊩" 'diamond x = (fun_1 _ _ (or_f _ _) (rel x)).
+interpretation "Existential image ⊩" 'diamond x = (fun12 _ _ (or_f _ _) (rel x)).
notation "'Rest' \sub b" non associative with precedence 90 for @{'rest $b}.
notation > "'Rest'⎽term 90 b" non associative with precedence 90 for @{'rest $b}.
-interpretation "Universal pre-image ⊩*" 'rest x = (fun_1 _ _ (or_f_star _ _) (rel x)).
+interpretation "Universal pre-image ⊩*" 'rest x = (fun12 _ _ (or_f_star _ _) (rel x)).
notation "'Ext' \sub b" non associative with precedence 90 for @{'ext $b}.
notation > "'Ext'⎽term 90 b" non associative with precedence 90 for @{'ext $b}.
-interpretation "Existential pre-image ⊩⎻" 'ext x = (fun_1 _ _ (or_f_minus _ _) (rel x)).
+interpretation "Existential pre-image ⊩⎻" 'ext x = (fun12 _ _ (or_f_minus _ _) (rel x)).
-lemma hint : ∀p,q.arrows1 OA p q → ORelation_setoid p q.
-intros; assumption;
-qed.
-
-coercion hint nocomposites.
-
-definition A : ∀b:BP. unary_morphism (oa_P (form b)) (oa_P (form b)).
+definition A : ∀b:BP. unary_morphism1 (form b) (form b).
intros; constructor 1;
[ apply (λx.□_b (Ext⎽b x));
- | do 2 unfold uncurry_arrows; intros; apply (†(†H));]
+ | do 2 unfold FunClass_1_OF_Type_OF_setoid21; intros; apply (†(†e));]
qed.
+(*
lemma xxx : ∀x.carr x → carr1 (setoid1_of_setoid x). intros; assumption; qed.
coercion xxx nocomposites.
+*)
-lemma down_p : ∀S,I:SET.∀u:S⇒S.∀c:arrows1 SET I S.∀a:I.∀a':I.a=a'→u (c a)=u (c a').
-intros; unfold uncurry_arrows; change in c with (I ⇒ S);
-apply (†(†H));
+lemma down_p : ∀S:SET1.∀I:SET.∀u:S⇒S.∀c:arrows2 SET1 I S.∀a:I.∀a':I.a=a'→u (c a)=u (c a').
+intros; apply (†(†e));
qed.
-alias symbol "eq" = "setoid eq".
-alias symbol "and" = "o-algebra binary meet".
-record concrete_space : Type ≝
+record concrete_space : Type2 ≝
{ bp:> BP;
(*distr : is_distributive (form bp);*)
- downarrow: unary_morphism (oa_P (form bp)) (oa_P (form bp));
+ downarrow: unary_morphism1 (form bp) (form bp);
downarrow_is_sat: is_saturation ? downarrow;
converges: ∀q1,q2.
(Ext⎽bp q1 ∧ (Ext⎽bp q2)) = (Ext⎽bp ((downarrow q1) ∧ (downarrow q2)));
all_covered: Ext⎽bp (oa_one (form bp)) = oa_one (concr bp);
- il2: ∀I:SET.∀p:arrows1 SET I (oa_P (form bp)).
+ il2: ∀I:SET.∀p:arrows2 SET1 I (form bp).
downarrow (∨ { x ∈ I | downarrow (p x) | down_p ???? }) =
∨ { x ∈ I | downarrow (p x) | down_p ???? };
il1: ∀q.downarrow (A ? q) = A ? q