R ≟ (mk_unary_morphism1 … (or_f_minus …) (prop11 … (or_f_minus_morphism1 …)))
(* ------------------------ *) ⊢
fun11 … R r ≡ or_f_minus P Q r.
+
+naxiom daemon : False.
nlemma ORelation_eq_respects_leq_or_f_star_:
∀P,Q:OAlgebra.∀r,r':ORelation P Q.
r=r' → ∀x. r* x ≤ r'* x.
#P; #Q; #a; #a'; #e; #x; (*CSC: una schifezza *)
+ ncases daemon.
+ (*
ngeneralize in match (. (or_prop1 P Q a' (a* x) x)^-1) in ⊢ %; #H; napply H;
nchange with (or_f P Q a' (a* x) ≤ x);
napply (. ?‡#)
nchange with (or_f P Q a' = or_f P Q a);
napply (.= †e^-1); napply #]
napply (. (or_prop1 …));
- napply oa_leq_refl.
+ napply oa_leq_refl.*)
nqed.
nlemma ORelation_eq3:
∀P,Q:OAlgebra.∀r,r':ORelation P Q.
r=r' → ∀x. r⎻* x ≤ r'⎻* x.
#P; #Q; #a; #a'; #e; #x; (*CSC: una schifezza *)
+ ncases daemon. (*
ngeneralize in match (. (or_prop2 P Q a' (a⎻* x) x)^-1) in ⊢ %; #H; napply H;
nchange with (or_f_minus P Q a' (a⎻* x) ≤ x);
napply (. ?‡#)
nchange with (a'⎻ = a⎻);
napply (.= †e^-1); napply #]
napply (. (or_prop2 …));
- napply oa_leq_refl.
+ napply oa_leq_refl.*)
nqed.
nlemma ORelation_eq4:
| napply ORelation_eq4]
nqed.
+
unification hint 0 ≔ P, Q, r;
R ≟ (mk_unary_morphism1 … (or_f_minus_star …) (prop11 … (or_f_minus_star_morphism1 …)))
(* ------------------------ *) ⊢
fun11 … R r ≡ or_f_minus_star P Q r.
+
+ninductive one : Type[0] ≝ unit : one.
+
+(*
+ndefinition force : ∀S:Type[2].∀T1,T2:Type[1].(T1 → T2) → ∀R:S.∀lock:one.Type[2] ≝
+ λS,T1,T2,T,R,lock. match lock with [ unit => S ].
+*)
+
+ndefinition force : ∀S:Type[2]. S → ∀T:Type[2]. T → one → Type[2] ≝
+ λS,s,T,t,lock. match lock with [ unit => S ].
+
+(*
+ndefinition enrich_as :
+ ∀S:Type[2].∀T1,T2:Type[1]. ∀T:T1→T2. ∀R:S.∀lock:one.force S T1 T2 T R lock ≝
+ λS,T1,T2,T,R,lock. match lock return λlock.match lock with [ unit ⇒ S ]
+ with [ unit ⇒ R ].
+*)
+ndefinition enrich_as :
+ ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one.force S s T t lock ≝
+ λS,s,T,t,lock. match lock return λlock.match lock with [ unit ⇒ S ]
+ with [ unit ⇒ s ].
+
+(*
+ncoercion enrich_as : ∀S:Type[2].∀T1,T2:Type[1].∀T:T1→T2.∀R:S.∀lock:one.force S T1 T2 T R lock
+ ≝ enrich_as on T : ? → ? to force ? ? ? ? ? ?.
+*)
+
+ncoercion enrich_as : ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one. force S s T t lock
+ ≝ enrich_as on t: ? to force ? ? ? ? ?.
+
+
+(* does not work here
+nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C.
+#A; #B; #C; #f; #g; napply(f \circ g).
+nqed.*)
+
+(*
+unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B;
+ lock ≟ unit
+(* --------------------------------------------------------------- *) ⊢
+ (unary_morphism1 A C)
+ ≡
+ (force (unary_morphism1 A C) (carr1 A) (carr1 C)
+ (composition1 A B C f g) (comp1_unary_morphisms A B C f g) lock)
+ .
+*)
+
+unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B;
+ lock ≟ unit
+(* --------------------------------------------------------------- *) ⊢
+ (unary_morphism1 A C)
+ ≡
+ (force (unary_morphism1 A C) (comp1_unary_morphisms A B C f g)
+ (carr1 A → carr1 C) (composition1 A B C f g) lock)
+ .
+
+(*
+unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B, X;
+ lock ≟ unit
+(* --------------------------------------------------------------- *) ⊢
+ (unary_morphism1 A C)
+ ≡
+ (force (unary_morphism1 A C) (carr1 A) (carr1 C)
+ (fun11 … X) (X) lock)
+ .
+*)
+
+nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C.
+#A; #B; #C; #f; #g; napply(f ∘ g).
+nqed.
+
+(*
+
+ndefinition uffa: ∀A,B. ∀U: unary_morphism1 A B. (A → B) → CProp[0].
+ #A;#B;#_;#_; napply True.
+nqed.
+ndefinition mk_uffa: ∀A,B.∀U: unary_morphism1 A B. ∀f: (A → B). uffa A B U f.
+ #A; #B; #U; #f; napply I.
+nqed.
+
+ndefinition coerc_to_unary_morphism1:
+ ∀A,B. ∀U: unary_morphism1 A B. uffa A B U (fun11 … U) → unary_morphism1 A B.
+ #A; #B; #U; #_; nassumption.
+nqed.
+
+ncheck (λA,B,C,f,g.coerc_to_unary_morphism1 ??? (mk_uffa ??? (composition1 A B C f g))).
+*)
ndefinition ORelation_composition : ∀P,Q,R.
binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R).
#P; #Q; #R; @
[ #F; #G; @
- [ napply (comp1_unary_morphisms … G F) (*CSC: was (G ∘ F);*)
- | napply (comp1_unary_morphisms … G⎻* F⎻* ) (*CSC: was (G⎻* ∘ F⎻* );*)
+ [ napply (G ∘ F) (* napply (comp1_unary_morphisms … G F) (*CSC: was (G ∘ F);*) *)
+ | napply (G⎻* ∘ F⎻* ) (* napply (comp1_unary_morphisms … G⎻* F⎻* ) (*CSC: was (G⎻* ∘ F⎻* );*)*)
| napply (comp1_unary_morphisms … F* G* ) (*CSC: was (F* ∘ G* );*)
| napply (comp1_unary_morphisms … F⎻ G⎻) (*CSC: was (F⎻ ∘ G⎻);*)
| #p; #q; nnormalize;