include "tutorial/chapter8.ma".
-\ 5img class="anchor" src="icons/tick.png" id="move"\ 6let rec move (S: \ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) (x:S) (E: \ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S) on E : \ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S ≝
+let rec move (S: \ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) (x:S) (E: \ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S) on E : \ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S ≝
match E with
- [ pz ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter7/pitem.con(0,1,1)"\ 6pz\ 5/a\ 6 S, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〉\ 5/a\ 6
+ [ pz ⇒ 〈\ 5a href="cic:/matita/tutorial/chapter7/pitem.con(0,1,1)"\ 6pz\ 5/a\ 6 S, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〉\ 5/a\ 6
| pe ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a title="pitem epsilon" href="cic:/fakeuri.def(1)"\ 6ϵ\ 5/a\ 6, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〉\ 5/a\ 6
| ps y ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a title="pitem ps" href="cic:/fakeuri.def(1)"\ 6`\ 5/a\ 6y, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〉\ 5/a\ 6
| pp y ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a title="pitem ps" href="cic:/fakeuri.def(1)"\ 6`\ 5/a\ 6y, x \ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 y \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〉\ 5/a\ 6
| pc e1 e2 ⇒ (move ? x e1) \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 (move ? x e2)
| pk e ⇒ (move ? x e)\ 5a title="lk" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6\ 5a title="lk" href="cic:/fakeuri.def(1)"\ 6⊛\ 5/a\ 6 ].
-\ 5img class="anchor" src="icons/tick.png" id="move_plus"\ 6lemma move_plus: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀x:S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
+lemma move_plus: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀x:S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S x (i1 \ 5a title="pitem or" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 i2) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? x i1) \ 5a title="oplus" href="cic:/fakeuri.def(1)"\ 6⊕\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? x i2).
// qed.
-\ 5img class="anchor" src="icons/tick.png" id="move_cat"\ 6lemma move_cat: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀x:S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
+lemma move_cat: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀x:S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S x (i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 i2) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? x i1) \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? x i2).
// qed.
-\ 5img class="anchor" src="icons/tick.png" id="move_star"\ 6lemma move_star: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀x:S.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
+lemma move_star: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀x:S.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S x i\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? x i)\ 5a title="lk" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6\ 5a title="lk" href="cic:/fakeuri.def(1)"\ 6⊛\ 5/a\ 6.
// qed.
*)
-\ 5img class="anchor" src="icons/tick.png" id="pmove"\ 6definition pmove ≝ λS:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.λx:S.λe:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S. \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? x (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e).
+definition pmove ≝ λS:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.λx:S.λe:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S. \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? x (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e).
-\ 5img class="anchor" src="icons/tick.png" id="pmove_def"\ 6lemma pmove_def : ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀x:S.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.∀b.
+lemma pmove_def : ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀x:S.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.∀b.
\ 5a href="cic:/matita/tutorial/chapter9/pmove.def(7)"\ 6pmove\ 5/a\ 6 ? x \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,b\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〉\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? x i.
// qed.
-\ 5img class="anchor" src="icons/tick.png" id="eq_to_eq_hd"\ 6lemma eq_to_eq_hd: ∀A.∀l1,l2:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A.∀a,b.
+lemma eq_to_eq_hd: ∀A.∀l1,l2:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A.∀a,b.
a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6l1 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6l2 → a \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b.
#A #l1 #l2 #a #b #H destruct //
qed.
(* Obviously, a move does not change the carrier of the item, as one can easily
prove by induction on the item. *)
-\ 5img class="anchor" src="icons/tick.png" id="same_kernel"\ 6lemma same_kernel: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀a:S.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
+lemma same_kernel: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀a:S.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? a i)\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6i\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6.
#S #a #i elim i //
[#i1 #i2 #H1 #H2 >\ 5a href="cic:/matita/tutorial/chapter9/move_cat.def(7)"\ 6move_cat\ 5/a\ 6 >\ 5a href="cic:/matita/tutorial/chapter8/erase_odot.def(7)"\ 6erase_odot\ 5/a\ 6 //
(* Here is our first, major result, stating the correctness of the
move operation. The proof is a simple induction on i. *)
-\ 5img class="anchor" src="icons/tick.png" id="move_ok"\ 6theorem move_ok:
+theorem move_ok:
∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀a:S.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.∀w: \ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"\ 6word\ 5/a\ 6 S.
\ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 ? a i\ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6}\ 5/a\ 6 w \ 5a title="iff" href="cic:/fakeuri.def(1)"\ 6↔\ 5/a\ 6 \ 5a title="in_pl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{i\ 5a title="in_pl" href="cic:/fakeuri.def(1)"\ 6}\ 5/a\ 6 (a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6w).
#S #a #i elim i
notation > "x ↦* E" non associative with precedence 60 for @{moves ? $x $E}.
-\ 5img class="anchor" src="icons/tick.png" id="moves"\ 6let rec moves (S : \ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) w e on w : \ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S ≝
+let rec moves (S : \ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) w e on w : \ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S ≝
match w with
[ nil ⇒ e
| cons x w' ⇒ w' ↦* (\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S x (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e))].
-\ 5img class="anchor" src="icons/tick.png" id="moves_empty"\ 6lemma moves_empty: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
+lemma moves_empty: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6 \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6]\ 5/a\ 6 e \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 e.
// qed.
-\ 5img class="anchor" src="icons/tick.png" id="moves_cons"\ 6lemma moves_cons: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀a:S.∀w.∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
+lemma moves_cons: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀a:S.∀w.∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? (a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6w) e \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w (\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e)).
// qed.
-\ 5img class="anchor" src="icons/tick.png" id="moves_left"\ 6lemma moves_left : ∀S,a,w,e.
+lemma moves_left : ∀S,a,w,e.
\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S (w\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6(a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6\ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6\ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6]\ 5/a\ 6)) e \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S w e)).
#S #a #w elim w // #x #tl #Hind #e >\ 5a href="cic:/matita/tutorial/chapter9/moves_cons.def(8)"\ 6moves_cons\ 5/a\ 6 >\ 5a href="cic:/matita/tutorial/chapter9/moves_cons.def(8)"\ 6moves_cons\ 5/a\ 6 //
qed.
-\ 5img class="anchor" src="icons/tick.png" id="not_epsilon_sem"\ 6lemma not_epsilon_sem: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀a:S.∀w: \ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"\ 6word\ 5/a\ 6 S. ∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
+lemma not_epsilon_sem: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀a:S.∀w: \ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"\ 6word\ 5/a\ 6 S. ∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
\ 5a href="cic:/matita/basics/logic/iff.def(1)"\ 6iff\ 5/a\ 6 ((a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6w) \ 5a title="in_prl mem" href="cic:/fakeuri.def(1)"\ 6∈\ 5/a\ 6 e) ((a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6w) \ 5a title="in_pl mem" href="cic:/fakeuri.def(1)"\ 6∈\ 5/a\ 6 \ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e).
#S #a #w * #i #b cases b normalize
[% /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/Or.con(0,1,2)"\ 6or_introl\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/ * // #H destruct |% normalize /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5/span\ 6\ 5/span\ 6/]
qed.
-\ 5img class="anchor" src="icons/tick.png" id="same_kernel_moves"\ 6lemma same_kernel_moves: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀w.∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
+lemma same_kernel_moves: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀w.∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w e)\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6.
#S #w elim w //
qed.
-\ 5img class="anchor" src="icons/tick.png" id="decidable_sem"\ 6theorem decidable_sem: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀w: \ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"\ 6word\ 5/a\ 6 S. ∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
+theorem decidable_sem: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀w: \ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"\ 6word\ 5/a\ 6 S. ∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
(\ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 ? w e) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6) \ 5a title="iff" href="cic:/fakeuri.def(1)"\ 6↔\ 5/a\ 6 \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e\ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6}\ 5/a\ 6 w.
#S #w elim w
- [* #i #b >\ 5a href="cic:/matita/tutorial/chapter9/moves_empty.def(8)"\ 6moves_empty\ 5/a\ 6 cases b % /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/tutorial/chapter7/true_to_epsilon.def(9)"\ 6true_to_epsilon\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/\ 5span class="error" title="error location"\ 6\ 5/span\ 6 #H @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
+ [* #i #b >\ 5a href="cic:/matita/tutorial/chapter9/moves_empty.def(8)"\ 6moves_empty\ 5/a\ 6 cases b % /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/tutorial/chapter7/true_to_epsilon.def(9)"\ 6true_to_epsilon\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/ #H @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
|#a #w1 #Hind #e >\ 5a href="cic:/matita/tutorial/chapter9/moves_cons.def(8)"\ 6moves_cons\ 5/a\ 6
@\ 5a href="cic:/matita/basics/logic/iff_trans.def(2)"\ 6iff_trans\ 5/a\ 6 [||@\ 5a href="cic:/matita/basics/logic/iff_sym.def(2)"\ 6iff_sym\ 5/a\ 6 @\ 5a href="cic:/matita/tutorial/chapter9/not_epsilon_sem.def(9)"\ 6not_epsilon_sem\ 5/a\ 6]
@\ 5a href="cic:/matita/basics/logic/iff_trans.def(2)"\ 6iff_trans\ 5/a\ 6 [||@\ 5a href="cic:/matita/tutorial/chapter9/move_ok.def(14)"\ 6move_ok\ 5/a\ 6] @Hind
We conclude this chapter with a few properties of the move opertions in relation
with the pit state. *)
-\ 5img class="anchor" src="icons/tick.png" id="pit_pre"\ 6definition pit_pre ≝ λS.λi.\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter8/blank.fix(0,1,3)"\ 6blank\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6i\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6), \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〉\ 5/a\ 6.
+definition pit_pre ≝ λS.λi.\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a href="cic:/matita/tutorial/chapter8/blank.fix(0,1,3)"\ 6blank\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6i\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6), \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〉\ 5/a\ 6.
(* The following function compute the list of characters occurring in a given
item i. *)
-\ 5img class="anchor" src="icons/tick.png" id="occur"\ 6let rec occur (S: \ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) (i: \ 5a href="cic:/matita/tutorial/chapter7/re.ind(1,0,1)"\ 6re\ 5/a\ 6 S) on i ≝
+let rec occur (S: \ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) (i: \ 5a href="cic:/matita/tutorial/chapter7/re.ind(1,0,1)"\ 6re\ 5/a\ 6 S) on i ≝
match i with
[ z ⇒ \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6 \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6]\ 5/a\ 6
| e ⇒ \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6 \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6]\ 5/a\ 6
(* If a symbol a does not occur in i, then move(i,a) gets to the
pit state. *)
-\ 5img class="anchor" src="icons/tick.png" id="not_occur_to_pit"\ 6lemma not_occur_to_pit: ∀S,a.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (\ 5a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"\ 6occur\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6i\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6)) \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6≠\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 →
+lemma not_occur_to_pit: ∀S,a.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S. \ 5a href="cic:/matita/tutorial/chapter5/memb.fix(0,2,4)"\ 6memb\ 5/a\ 6 S a (\ 5a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"\ 6occur\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6i\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6)) \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6≠\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 →
\ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a i \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i.
#S #a #i elim i //
[#x normalize cases (a\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5a title="eqb" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6x) normalize // #H @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
(* We cannot escape form the pit state. *)
-\ 5img class="anchor" src="icons/tick.png" id="move_pit"\ 6lemma move_pit: ∀S,a,i. \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i)) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i.
+lemma move_pit: ∀S,a,i. \ 5a href="cic:/matita/tutorial/chapter9/move.fix(0,2,6)"\ 6move\ 5/a\ 6 S a (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i)) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i.
#S #a #i elim i //
[#i1 #i2 #Hind1 #Hind2 >\ 5a href="cic:/matita/tutorial/chapter9/move_cat.def(7)"\ 6move_cat\ 5/a\ 6 >Hind1 >Hind2 //
|#i1 #i2 #Hind1 #Hind2 >\ 5a href="cic:/matita/tutorial/chapter9/move_plus.def(7)"\ 6move_plus\ 5/a\ 6 >Hind1 >Hind2 //
]
qed.
-\ 5img class="anchor" src="icons/tick.png" id="moves_pit"\ 6lemma moves_pit: ∀S,w,i. \ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S w (\ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i.
+lemma moves_pit: ∀S,w,i. \ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S w (\ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S i.
#S #w #i elim w //
qed.
(* If any character in w does not occur in i, then moves(i,w) gets
to the pit state. *)
-\ 5img class="anchor" src="icons/tick.png" id="to_pit"\ 6lemma to_pit: ∀S,w,e. \ 5a title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 S w (\ 5a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"\ 6occur\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6)) →
+lemma to_pit: ∀S,w,e. \ 5a title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter5/sublist.def(5)"\ 6sublist\ 5/a\ 6 S w (\ 5a href="cic:/matita/tutorial/chapter9/occur.fix(0,1,6)"\ 6occur\ 5/a\ 6 S (\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6)) →
\ 5a href="cic:/matita/tutorial/chapter9/moves.fix(0,1,7)"\ 6moves\ 5/a\ 6 S w e \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter9/pit_pre.def(4)"\ 6pit_pre\ 5/a\ 6 S (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e).
#S #w elim w
[#e * #H @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 @H normalize #a #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
|#Hfalse >\ 5a href="cic:/matita/tutorial/chapter9/moves_cons.def(8)"\ 6moves_cons\ 5/a\ 6 >\ 5a href="cic:/matita/tutorial/chapter9/not_occur_to_pit.def(8)"\ 6not_occur_to_pit\ 5/a\ 6 // >Hfalse /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/basics/bool/eqnot_to_noteq.def(4)"\ 6eqnot_to_noteq\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
]
]
-qed.
+qed.
\ No newline at end of file