[ one \Rightarrow (S O)
   | (next z) \Rightarrow S (pos2nat z)].
 
-let rec nat2int x \def
-  match x with
-  [ O \Rightarrow positive O
-  | (S z) \Rightarrow positive (S z)].
+definition nat2int \def \lambda x. positive x.
 
 coercion pos2nat.
 
 coercion nat2int.
 
-let rec plus x y \def
-  match x with
-  [ (positive n) \Rightarrow x
-  | (negative z) \Rightarrow y].
-
-theorem a: plus O one.
-
-
+definition fst \def \lambda x,y:int.x.
+alias symbol "eq" (instance 0) = "leibnitz's equality".
 
+theorem a: fst O one = fst (positive O) (next one).
+reflexivity.
+qed.
 
 
 
 
 alias symbol "eq" (instance 0) = "leibnitz's equality".
 theorem a:\forall x.x=x.
 alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)".
-goal 5.
 exact nat.
 intro.
 reflexivity.
 theorem b:\forall p:nat. p * 0=0.
 intro.
 auto.
-abort.
-qed.
\ No newline at end of file
+qed.