--- /dev/null
+(* Copyright (C) 2000, HELM Team.
+ *
+ * This file is part of HELM, an Hypertextual, Electronic
+ * Library of Mathematics, developed at the Computer Science
+ * Department, University of Bologna, Italy.
+ *
+ * HELM is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * HELM is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with HELM; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+ * MA 02111-1307, USA.
+ *
+ * For details, see the HELM World-Wide-Web page,
+ * http://cs.unibo.it/helm/.
+ *)
+
+(* $Id$ *)
+
+(* TODO unify exceptions *)
+
+exception WrongUriToInductiveDefinition;;
+exception Impossible of int;;
+exception ReferenceToConstant;;
+exception ReferenceToVariable;;
+exception ReferenceToCurrentProof;;
+exception ReferenceToInductiveDefinition;;
+
+let debug = false
+let profile = false
+let debug_print s = if debug then prerr_endline (Lazy.force s)
+
+let fdebug = ref 1;;
+let debug t env s =
+ let rec debug_aux t i =
+ let module C = Cic in
+ let module U = UriManager in
+ CicPp.ppobj (C.Variable ("DEBUG", None, t, [], [])) ^ "\n" ^ i
+ in
+ if !fdebug = 0 then
+ debug_print (lazy (s ^ "\n" ^ List.fold_right debug_aux (t::env) ""))
+;;
+
+module type Strategy =
+ sig
+ type stack_term
+ type env_term
+ type config = int * env_term list * NCic.term * stack_term list
+ val to_env :
+ reduce: (config -> config) ->
+ unwind: (config -> NCic.term) ->
+ config -> env_term
+ val from_stack : stack_term -> config
+ val from_stack_list_for_unwind :
+ unwind: (config -> NCic.term) ->
+ stack_term list -> NCic.term list
+ val from_env : env_term -> config
+ val from_env_for_unwind :
+ unwind: (config -> NCic.term) ->
+ env_term -> NCic.term
+ val stack_to_env :
+ reduce: (config -> config) ->
+ unwind: (config -> NCic.term) ->
+ stack_term -> env_term
+ val compute_to_env :
+ reduce: (config -> config) ->
+ unwind: (config -> NCic.term) ->
+ int -> env_term list ->
+ NCic.term -> env_term
+ val compute_to_stack :
+ reduce: (config -> config) ->
+ unwind: (config -> NCic.term) ->
+ config -> stack_term
+ end
+;;
+
+(*
+module CallByValueByNameForUnwind =
+ struct
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ and stack_term = config
+ and env_term = config * config (* cbv, cbn *)
+ and ens_term = config * config (* cbv, cbn *)
+
+ let to_env c = c,c
+ let to_ens c = c,c
+ let from_stack config = config
+ let from_stack_list_for_unwind ~unwind l = List.map unwind l
+ let from_env (c,_) = c
+ let from_ens (c,_) = c
+ let from_env_for_unwind ~unwind (_,c) = unwind c
+ let from_ens_for_unwind ~unwind (_,c) = unwind c
+ let stack_to_env ~reduce ~unwind config = reduce config, (0,[],[],unwind config,[])
+ let compute_to_env ~reduce ~unwind k e ens t = (k,e,ens,t,[]), (k,e,ens,t,[])
+ let compute_to_stack ~reduce ~unwind config = config
+ end
+;;
+*)
+
+module CallByValueByNameForUnwind' =
+ struct
+ type config = int * env_term list * NCic.term * stack_term list
+ and stack_term = config lazy_t * NCic.term lazy_t (* cbv, cbn *)
+ and env_term = config lazy_t * NCic.term lazy_t (* cbv, cbn *)
+ let to_env ~reduce ~unwind c = lazy (reduce c),lazy (unwind c)
+ let from_stack (c,_) = Lazy.force c
+ let from_stack_list_for_unwind ~unwind:_ l =
+ List.map (function (_,c) -> Lazy.force c) l
+ let from_env (c,_) = Lazy.force c
+ let from_env_for_unwind ~unwind:_ (_,c) = Lazy.force c
+ let stack_to_env ~reduce:_ ~unwind:_ config = config
+ let compute_to_env ~reduce ~unwind k e t =
+ lazy (reduce (k,e,t,[])), lazy (unwind (k,e,t,[]))
+ let compute_to_stack ~reduce ~unwind config =
+ lazy (reduce config), lazy (unwind config)
+ end
+;;
+
+
+(* Old Machine
+module CallByNameStrategy =
+ struct
+ type stack_term = Cic.term
+ type env_term = Cic.term
+ type ens_term = Cic.term
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ let to_env v = v
+ let to_ens v = v
+ let from_stack ~unwind v = v
+ let from_stack_list ~unwind l = l
+ let from_env v = v
+ let from_ens v = v
+ let from_env_for_unwind ~unwind v = v
+ let from_ens_for_unwind ~unwind v = v
+ let stack_to_env ~reduce ~unwind v = v
+ let compute_to_stack ~reduce ~unwind k e ens t = unwind k e ens t
+ let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t
+ end
+;;
+
+module CallByNameStrategy =
+ struct
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ and stack_term = config
+ and env_term = config
+ and ens_term = config
+
+ let to_env c = c
+ let to_ens c = c
+ let from_stack config = config
+ let from_stack_list_for_unwind ~unwind l = List.map unwind l
+ let from_env c = c
+ let from_ens c = c
+ let from_env_for_unwind ~unwind c = unwind c
+ let from_ens_for_unwind ~unwind c = unwind c
+ let stack_to_env ~reduce ~unwind config = 0,[],[],unwind config,[]
+ let compute_to_env ~reduce ~unwind k e ens t = k,e,ens,t,[]
+ let compute_to_stack ~reduce ~unwind config = config
+ end
+;;
+
+module CallByValueStrategy =
+ struct
+ type stack_term = Cic.term
+ type env_term = Cic.term
+ type ens_term = Cic.term
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ let to_env v = v
+ let to_ens v = v
+ let from_stack ~unwind v = v
+ let from_stack_list ~unwind l = l
+ let from_env v = v
+ let from_ens v = v
+ let from_env_for_unwind ~unwind v = v
+ let from_ens_for_unwind ~unwind v = v
+ let stack_to_env ~reduce ~unwind v = v
+ let compute_to_stack ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[])
+ let compute_to_env ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[])
+ end
+;;
+
+module CallByValueStrategyByNameOnConstants =
+ struct
+ type stack_term = Cic.term
+ type env_term = Cic.term
+ type ens_term = Cic.term
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ let to_env v = v
+ let to_ens v = v
+ let from_stack ~unwind v = v
+ let from_stack_list ~unwind l = l
+ let from_env v = v
+ let from_ens v = v
+ let from_env_for_unwind ~unwind v = v
+ let from_ens_for_unwind ~unwind v = v
+ let stack_to_env ~reduce ~unwind v = v
+ let compute_to_stack ~reduce ~unwind k e ens =
+ function
+ Cic.Const _ as t -> unwind k e ens t
+ | t -> reduce (k,e,ens,t,[])
+ let compute_to_env ~reduce ~unwind k e ens =
+ function
+ Cic.Const _ as t -> unwind k e ens t
+ | t -> reduce (k,e,ens,t,[])
+ end
+;;
+
+module LazyCallByValueStrategy =
+ struct
+ type stack_term = Cic.term lazy_t
+ type env_term = Cic.term lazy_t
+ type ens_term = Cic.term lazy_t
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ let to_env v = lazy v
+ let to_ens v = lazy v
+ let from_stack ~unwind v = Lazy.force v
+ let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
+ let from_env v = Lazy.force v
+ let from_ens v = Lazy.force v
+ let from_env_for_unwind ~unwind v = Lazy.force v
+ let from_ens_for_unwind ~unwind v = Lazy.force v
+ let stack_to_env ~reduce ~unwind v = v
+ let compute_to_stack ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[]))
+ let compute_to_env ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[]))
+ end
+;;
+
+module LazyCallByValueStrategyByNameOnConstants =
+ struct
+ type stack_term = Cic.term lazy_t
+ type env_term = Cic.term lazy_t
+ type ens_term = Cic.term lazy_t
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ let to_env v = lazy v
+ let to_ens v = lazy v
+ let from_stack ~unwind v = Lazy.force v
+ let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
+ let from_env v = Lazy.force v
+ let from_ens v = Lazy.force v
+ let from_env_for_unwind ~unwind v = Lazy.force v
+ let from_ens_for_unwind ~unwind v = Lazy.force v
+ let stack_to_env ~reduce ~unwind v = v
+ let compute_to_stack ~reduce ~unwind k e ens t =
+ lazy (
+ match t with
+ Cic.Const _ as t -> unwind k e ens t
+ | t -> reduce (k,e,ens,t,[]))
+ let compute_to_env ~reduce ~unwind k e ens t =
+ lazy (
+ match t with
+ Cic.Const _ as t -> unwind k e ens t
+ | t -> reduce (k,e,ens,t,[]))
+ end
+;;
+
+module LazyCallByNameStrategy =
+ struct
+ type stack_term = Cic.term lazy_t
+ type env_term = Cic.term lazy_t
+ type ens_term = Cic.term lazy_t
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ let to_env v = lazy v
+ let to_ens v = lazy v
+ let from_stack ~unwind v = Lazy.force v
+ let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
+ let from_env v = Lazy.force v
+ let from_ens v = Lazy.force v
+ let from_env_for_unwind ~unwind v = Lazy.force v
+ let from_ens_for_unwind ~unwind v = Lazy.force v
+ let stack_to_env ~reduce ~unwind v = v
+ let compute_to_stack ~reduce ~unwind k e ens t = lazy (unwind k e ens t)
+ let compute_to_env ~reduce ~unwind k e ens t = lazy (unwind k e ens t)
+ end
+;;
+
+module
+ LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns
+=
+ struct
+ type stack_term = reduce:bool -> Cic.term
+ type env_term = reduce:bool -> Cic.term
+ type ens_term = reduce:bool -> Cic.term
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ let to_env v =
+ let value = lazy v in
+ fun ~reduce -> Lazy.force value
+ let to_ens v =
+ let value = lazy v in
+ fun ~reduce -> Lazy.force value
+ let from_stack ~unwind v = (v ~reduce:false)
+ let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
+ let from_env v = (v ~reduce:true)
+ let from_ens v = (v ~reduce:true)
+ let from_env_for_unwind ~unwind v = (v ~reduce:true)
+ let from_ens_for_unwind ~unwind v = (v ~reduce:true)
+ let stack_to_env ~reduce ~unwind v = v
+ let compute_to_stack ~reduce ~unwind k e ens t =
+ let svalue =
+ lazy (
+ match t with
+ Cic.Const _ as t -> unwind k e ens t
+ | t -> reduce (k,e,ens,t,[])
+ ) in
+ let lvalue =
+ lazy (unwind k e ens t)
+ in
+ fun ~reduce ->
+ if reduce then Lazy.force svalue else Lazy.force lvalue
+ let compute_to_env ~reduce ~unwind k e ens t =
+ let svalue =
+ lazy (
+ match t with
+ Cic.Const _ as t -> unwind k e ens t
+ | t -> reduce (k,e,ens,t,[])
+ ) in
+ let lvalue =
+ lazy (unwind k e ens t)
+ in
+ fun ~reduce ->
+ if reduce then Lazy.force svalue else Lazy.force lvalue
+ end
+;;
+
+module ClosuresOnStackByValueFromEnvOrEnsStrategy =
+ struct
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ and stack_term = config
+ and env_term = config
+ and ens_term = config
+
+ let to_env config = config
+ let to_ens config = config
+ let from_stack config = config
+ let from_stack_list_for_unwind ~unwind l = List.map unwind l
+ let from_env v = v
+ let from_ens v = v
+ let from_env_for_unwind ~unwind config = unwind config
+ let from_ens_for_unwind ~unwind config = unwind config
+ let stack_to_env ~reduce ~unwind config = reduce config
+ let compute_to_env ~reduce ~unwind k e ens t = (k,e,ens,t,[])
+ let compute_to_stack ~reduce ~unwind config = config
+ end
+;;
+
+module ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy =
+ struct
+ type stack_term =
+ int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term
+ type env_term = Cic.term
+ type ens_term = Cic.term
+ type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
+ let to_env v = v
+ let to_ens v = v
+ let from_stack ~unwind (k,e,ens,t) = unwind k e ens t
+ let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
+ let from_env v = v
+ let from_ens v = v
+ let from_env_for_unwind ~unwind v = v
+ let from_ens_for_unwind ~unwind v = v
+ let stack_to_env ~reduce ~unwind (k,e,ens,t) =
+ match t with
+ Cic.Const _ as t -> unwind k e ens t
+ | t -> reduce (k,e,ens,t,[])
+ let compute_to_env ~reduce ~unwind k e ens t =
+ unwind k e ens t
+ let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t)
+ end
+;;
+
+*)
+
+module Reduction(RS : Strategy) =
+ struct
+ type env = RS.env_term list
+ type stack = RS.stack_term list
+ type config = int * env * NCic.term * stack
+
+ let rec unwind (k,e,t,s) =
+ let t =
+ if k = 0 then t
+ else
+ NCicSubstitution.psubst ~avoid_beta_redexes:true
+ true 0 (RS.from_env_for_unwind ~unwind) e t
+ in
+ if s = [] then t
+ else NCic.Appl(t::(RS.from_stack_list_for_unwind ~unwind s))
+ ;;
+
+ let list_nth l n = try List.nth l n with Failure _ -> assert false;;
+ let rec replace i s t =
+ match i,s with
+ | 0,_::tl -> t::tl
+ | n,he::tl -> he::(replace (n - 1) tl t)
+ | _,_ -> assert false
+ ;;
+
+ let rec reduce ~delta ?(subst = []) context : config -> config =
+ let rec aux = function
+ | k, e, NCic.Rel n, s when n <= k ->
+ let k',e',t',s' = RS.from_env (list_nth e (n-1)) in
+ aux (k',e',t',s'@s)
+ | k, _, NCic.Rel n, s as config (* when n > k *) ->
+ (match List.nth context (n - 1 - k) with
+ | (_,NCic.Decl _) -> config
+ | (_,NCic.Def (x,_)) -> aux (0,[],NCicSubstitution.lift (n - k) x,s))
+ | (k, e, NCic.Meta (n,l), s) as config ->
+ (try
+ let _,_, term,_ = NCicUtils.lookup_subst n subst in
+ aux (k, e, NCicSubstitution.subst_meta l term,s)
+ with NCicUtils.Subst_not_found _ -> config)
+ | (_, _, NCic.Sort _, _) as config -> config
+ | (_, _, NCic.Implicit _, _) -> assert false
+ | (_, _, NCic.Prod _, _) as config -> config
+ | (_, _, NCic.Lambda _, []) as config -> config
+ | (k, e, NCic.Lambda (_,_,t), p::s) ->
+ aux (k+1, (RS.stack_to_env ~reduce:aux ~unwind p)::e, t,s)
+ | (k, e, NCic.LetIn (_,_,m,t), s) ->
+ let m' = RS.compute_to_env ~reduce:aux ~unwind k e m in
+ aux (k+1, m'::e, t, s)
+ | (_, _, NCic.Appl [], _) -> assert false
+ | (k, e, NCic.Appl (he::tl), s) ->
+ let tl' =
+ List.map (fun t->RS.compute_to_stack ~reduce:aux ~unwind (k,e,t,[])) tl
+ in
+ aux (k, e, he, tl' @ s)
+ | (_, _, NCic.Const(NReference.Ref (_,_,NReference.Def) as refer), s) as config ->
+ let _,_,body,_,_,height = NCicEnvironment.get_checked_def refer in
+ if delta >= height then config else aux (0, [], body, s)
+ | (_, _, NCic.Const (NReference.Ref
+ (_,_,NReference.Fix (_,recindex)) as refer),s) as config ->
+ let _,_,body,_, _, height = NCicEnvironment.get_checked_fix refer in
+ if delta >= height then config else
+ (match
+ try Some (RS.from_stack (List.nth s recindex))
+ with Failure _ -> None
+ with
+ | None -> config
+ | Some recparam ->
+ match reduce ~delta:0 ~subst context recparam with
+ | (_,_,NCic.Const (NReference.Ref (_,_,NReference.Con _)), _) as c ->
+ let new_s =
+ replace recindex s (RS.compute_to_stack ~reduce:aux ~unwind c)
+ in
+ aux (0, [], body, new_s)
+ | _ -> config)
+ | (_, _, NCic.Const _, _) as config -> config
+ | (k, e, NCic.Match (_,_,term,pl),s) as config ->
+ let decofix = function
+ | (_,_,NCic.Const(NReference.Ref(_,_,NReference.CoFix _)as refer),s)->
+ let _,_,body,_,_,_ = NCicEnvironment.get_checked_cofix refer in
+ reduce ~delta:0 ~subst context (0,[],body,s)
+ | config -> config
+ in
+ (match decofix (reduce ~delta:0 ~subst context (k,e,term,[])) with
+ | (_, _, NCic.Const (NReference.Ref (_,_,NReference.Con (_,j))),[]) ->
+ aux (k, e, List.nth pl (j-1), s)
+ | (_, _, NCic.Const
+ (NReference.Ref (_,_,NReference.Con (_,j)) as refer), s') ->
+ let leftno = NCicEnvironment.get_indty_leftno refer in
+ let _,params = HExtlib.split_nth leftno s' in
+ aux (k, e, List.nth pl (j-1), params@s)
+ | _ -> config)
+ in
+ aux
+ ;;
+
+ let whd ?(delta=0) ?(subst=[]) context t =
+ unwind (reduce ~delta ~subst context (0, [], t, []))
+ ;;
+
+ end
+;;
+
+
+(* ROTTO = rompe l'unificazione poiche' riduce gli argomenti di un'applicazione
+ senza ridurre la testa
+module R = Reduction CallByNameStrategy;; OK 56.368s
+module R = Reduction CallByValueStrategy;; ROTTO
+module R = Reduction CallByValueStrategyByNameOnConstants;; ROTTO
+module R = Reduction LazyCallByValueStrategy;; ROTTO
+module R = Reduction LazyCallByValueStrategyByNameOnConstants;; ROTTO
+module R = Reduction LazyCallByNameStrategy;; OK 0m56.398s
+module R = Reduction
+ LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns;;
+ OK 59.058s
+module R = Reduction ClosuresOnStackByValueFromEnvOrEnsStrategy;; OK 58.583s
+module R = Reduction
+ ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy;; OK 58.094s
+module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);; OK 58.127s
+*)
+(*module R = Reduction(CallByValueByNameForUnwind);;*)
+module RS = CallByValueByNameForUnwind';;
+(*module R = Reduction(CallByNameStrategy);;*)
+(*module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);;*)
+
+(*
+module R = Reduction(RS);;
+module U = UriManager;;
+
+let whd = R.whd
+*)
+
+(*
+let whd =
+ let profiler_whd = HExtlib.profile ~enable:profile "are_convertible.whd" in
+ fun ?(delta=true) ?(subst=[]) context t ->
+ profiler_whd.HExtlib.profile (whd ~delta ~subst context) t
+*)
+
+(*
+
+ (* mimic ocaml (<< 3.08) "=" behaviour. Tests physical equality first then
+ * fallbacks to structural equality *)
+let (===) x y =
+ Pervasives.compare x y = 0
+
+(* t1, t2 must be well-typed *)
+let are_convertible whd ?(subst=[]) ?(metasenv=[]) =
+ let heuristic = ref true in
+ let rec aux test_equality_only context t1 t2 ugraph =
+ let rec aux2 test_equality_only t1 t2 ugraph =
+
+ (* this trivial euristic cuts down the total time of about five times ;-) *)
+ (* this because most of the time t1 and t2 are "sintactically" the same *)
+ if t1 === t2 then
+ true,ugraph
+ else
+ begin
+ let module C = Cic in
+ match (t1,t2) with
+ (C.Rel n1, C.Rel n2) -> (n1 = n2),ugraph
+ | (C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2)) ->
+ if U.eq uri1 uri2 then
+ (try
+ List.fold_right2
+ (fun (uri1,x) (uri2,y) (b,ugraph) ->
+ let b',ugraph' = aux test_equality_only context x y ugraph in
+ (U.eq uri1 uri2 && b' && b),ugraph'
+ ) exp_named_subst1 exp_named_subst2 (true,ugraph)
+ with
+ Invalid_argument _ -> false,ugraph
+ )
+ else
+ false,ugraph
+ | (C.Meta (n1,l1), C.Meta (n2,l2)) ->
+ if n1 = n2 then
+ let b2, ugraph1 =
+ let l1 = CicUtil.clean_up_local_context subst metasenv n1 l1 in
+ let l2 = CicUtil.clean_up_local_context subst metasenv n2 l2 in
+ List.fold_left2
+ (fun (b,ugraph) t1 t2 ->
+ if b then
+ match t1,t2 with
+ None,_
+ | _,None -> true,ugraph
+ | Some t1',Some t2' ->
+ aux test_equality_only context t1' t2' ugraph
+ else
+ false,ugraph
+ ) (true,ugraph) l1 l2
+ in
+ if b2 then true,ugraph1 else false,ugraph
+ else
+ false,ugraph
+ | C.Meta (n1,l1), _ ->
+ (try
+ let _,term,_ = NCicUtils.lookup_subst n1 subst in
+ let term' = CicSubstitution.subst_meta l1 term in
+(*
+prerr_endline ("%?: " ^ CicPp.ppterm t1 ^ " <==> " ^ CicPp.ppterm t2);
+prerr_endline ("%%%%%%: " ^ CicPp.ppterm term' ^ " <==> " ^ CicPp.ppterm t2);
+*)
+ aux test_equality_only context term' t2 ugraph
+ with CicUtil.Subst_not_found _ -> false,ugraph)
+ | _, C.Meta (n2,l2) ->
+ (try
+ let _,term,_ = CicUtil.lookup_subst n2 subst in
+ let term' = CicSubstitution.subst_meta l2 term in
+(*
+prerr_endline ("%?: " ^ CicPp.ppterm t1 ^ " <==> " ^ CicPp.ppterm t2);
+prerr_endline ("%%%%%%: " ^ CicPp.ppterm term' ^ " <==> " ^ CicPp.ppterm t1);
+*)
+ aux test_equality_only context t1 term' ugraph
+ with CicUtil.Subst_not_found _ -> false,ugraph)
+ (* TASSI: CONSTRAINTS *)
+ | (C.Sort (C.Type t1), C.Sort (C.Type t2)) when test_equality_only ->
+ (try
+ true,(CicUniv.add_eq t2 t1 ugraph)
+ with CicUniv.UniverseInconsistency _ -> false,ugraph)
+ | (C.Sort (C.Type t1), C.Sort (C.Type t2)) ->
+ (try
+ true,(CicUniv.add_ge t2 t1 ugraph)
+ with CicUniv.UniverseInconsistency _ -> false,ugraph)
+ | (C.Sort s1, C.Sort (C.Type _)) -> (not test_equality_only),ugraph
+ | (C.Sort s1, C.Sort s2) -> (s1 = s2),ugraph
+ | (C.Prod (name1,s1,t1), C.Prod(_,s2,t2)) ->
+ let b',ugraph' = aux true context s1 s2 ugraph in
+ if b' then
+ aux test_equality_only ((Some (name1, (C.Decl s1)))::context)
+ t1 t2 ugraph'
+ else
+ false,ugraph
+ | (C.Lambda (name1,s1,t1), C.Lambda(_,s2,t2)) ->
+ let b',ugraph' = aux test_equality_only context s1 s2 ugraph in
+ if b' then
+ aux test_equality_only ((Some (name1, (C.Decl s1)))::context)
+ t1 t2 ugraph'
+ else
+ false,ugraph
+ | (C.LetIn (name1,s1,t1), C.LetIn(_,s2,t2)) ->
+ let b',ugraph' = aux test_equality_only context s1 s2 ugraph in
+ if b' then
+ aux test_equality_only
+ ((Some (name1, (C.Def (s1,None))))::context) t1 t2 ugraph'
+ else
+ false,ugraph
+ | (C.Appl l1, C.Appl l2) ->
+ (try
+ List.fold_right2
+ (fun x y (b,ugraph) ->
+ if b then
+ aux test_equality_only context x y ugraph
+ else
+ false,ugraph) l1 l2 (true,ugraph)
+ with
+ Invalid_argument _ -> false,ugraph
+ )
+ | (C.Const (uri1,exp_named_subst1), C.Const (uri2,exp_named_subst2)) ->
+ let b' = U.eq uri1 uri2 in
+ if b' then
+ (try
+ List.fold_right2
+ (fun (uri1,x) (uri2,y) (b,ugraph) ->
+ if b && U.eq uri1 uri2 then
+ aux test_equality_only context x y ugraph
+ else
+ false,ugraph
+ ) exp_named_subst1 exp_named_subst2 (true,ugraph)
+ with
+ Invalid_argument _ -> false,ugraph
+ )
+ else
+ false,ugraph
+ | (C.MutInd (uri1,i1,exp_named_subst1),
+ C.MutInd (uri2,i2,exp_named_subst2)
+ ) ->
+ let b' = U.eq uri1 uri2 && i1 = i2 in
+ if b' then
+ (try
+ List.fold_right2
+ (fun (uri1,x) (uri2,y) (b,ugraph) ->
+ if b && U.eq uri1 uri2 then
+ aux test_equality_only context x y ugraph
+ else
+ false,ugraph
+ ) exp_named_subst1 exp_named_subst2 (true,ugraph)
+ with
+ Invalid_argument _ -> false,ugraph
+ )
+ else
+ false,ugraph
+ | (C.MutConstruct (uri1,i1,j1,exp_named_subst1),
+ C.MutConstruct (uri2,i2,j2,exp_named_subst2)
+ ) ->
+ let b' = U.eq uri1 uri2 && i1 = i2 && j1 = j2 in
+ if b' then
+ (try
+ List.fold_right2
+ (fun (uri1,x) (uri2,y) (b,ugraph) ->
+ if b && U.eq uri1 uri2 then
+ aux test_equality_only context x y ugraph
+ else
+ false,ugraph
+ ) exp_named_subst1 exp_named_subst2 (true,ugraph)
+ with
+ Invalid_argument _ -> false,ugraph
+ )
+ else
+ false,ugraph
+ | (C.MutCase (uri1,i1,outtype1,term1,pl1),
+ C.MutCase (uri2,i2,outtype2,term2,pl2)) ->
+ let b' = U.eq uri1 uri2 && i1 = i2 in
+ if b' then
+ let b'',ugraph''=aux test_equality_only context
+ outtype1 outtype2 ugraph in
+ if b'' then
+ let b''',ugraph'''= aux test_equality_only context
+ term1 term2 ugraph'' in
+ List.fold_right2
+ (fun x y (b,ugraph) ->
+ if b then
+ aux test_equality_only context x y ugraph
+ else
+ false,ugraph)
+ pl1 pl2 (b''',ugraph''')
+ else
+ false,ugraph
+ else
+ false,ugraph
+ | (C.Fix (i1,fl1), C.Fix (i2,fl2)) ->
+ let tys,_ =
+ List.fold_left
+ (fun (types,len) (n,_,ty,_) ->
+ (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types,
+ len+1)
+ ) ([],0) fl1
+ in
+ if i1 = i2 then
+ List.fold_right2
+ (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) (b,ugraph) ->
+ if b && recindex1 = recindex2 then
+ let b',ugraph' = aux test_equality_only context ty1 ty2
+ ugraph in
+ if b' then
+ aux test_equality_only (tys@context) bo1 bo2 ugraph'
+ else
+ false,ugraph
+ else
+ false,ugraph)
+ fl1 fl2 (true,ugraph)
+ else
+ false,ugraph
+ | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) ->
+ let tys,_ =
+ List.fold_left
+ (fun (types,len) (n,ty,_) ->
+ (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types,
+ len+1)
+ ) ([],0) fl1
+ in
+ if i1 = i2 then
+ List.fold_right2
+ (fun (_,ty1,bo1) (_,ty2,bo2) (b,ugraph) ->
+ if b then
+ let b',ugraph' = aux test_equality_only context ty1 ty2
+ ugraph in
+ if b' then
+ aux test_equality_only (tys@context) bo1 bo2 ugraph'
+ else
+ false,ugraph
+ else
+ false,ugraph)
+ fl1 fl2 (true,ugraph)
+ else
+ false,ugraph
+ | C.Cast (bo,_),t -> aux2 test_equality_only bo t ugraph
+ | t,C.Cast (bo,_) -> aux2 test_equality_only t bo ugraph
+ | (C.Implicit _, _) | (_, C.Implicit _) -> assert false
+ | (_,_) -> false,ugraph
+ end
+ in
+ let res =
+ if !heuristic then
+ aux2 test_equality_only t1 t2 ugraph
+ else
+ false,ugraph
+ in
+ if fst res = true then
+ res
+ else
+begin
+(*if !heuristic then prerr_endline ("NON FACILE: " ^ CicPp.ppterm t1 ^ " <===> " ^ CicPp.ppterm t2);*)
+ (* heuristic := false; *)
+ debug t1 [t2] "PREWHD";
+(*prerr_endline ("PREWHD: " ^ CicPp.ppterm t1 ^ " <===> " ^ CicPp.ppterm t2);*)
+(*
+prerr_endline ("PREWHD: " ^ CicPp.ppterm t1 ^ " <===> " ^ CicPp.ppterm t2);
+ let t1' = whd ?delta:(Some true) ?subst:(Some subst) context t1 in
+ let t2' = whd ?delta:(Some true) ?subst:(Some subst) context t2 in
+ debug t1' [t2'] "POSTWHD";
+*)
+let rec convert_machines ugraph =
+ function
+ [] -> true,ugraph
+ | ((k1,env1,ens1,h1,s1),(k2,env2,ens2,h2,s2))::tl ->
+ let (b,ugraph) as res =
+ aux2 test_equality_only
+ (R.unwind (k1,env1,ens1,h1,[])) (R.unwind (k2,env2,ens2,h2,[])) ugraph
+ in
+ if b then
+ let problems =
+ try
+ Some
+ (List.combine
+ (List.map
+ (fun si-> R.reduce ~delta:false ~subst context(RS.from_stack si))
+ s1)
+ (List.map
+ (fun si-> R.reduce ~delta:false ~subst context(RS.from_stack si))
+ s2)
+ @ tl)
+ with
+ Invalid_argument _ -> None
+ in
+ match problems with
+ None -> false,ugraph
+ | Some problems -> convert_machines ugraph problems
+ else
+ res
+in
+ convert_machines ugraph
+ [R.reduce ~delta:true ~subst context (0,[],[],t1,[]),
+ R.reduce ~delta:true ~subst context (0,[],[],t2,[])]
+(*prerr_endline ("POSTWH: " ^ CicPp.ppterm t1' ^ " <===> " ^ CicPp.ppterm t2');*)
+(*
+ aux2 test_equality_only t1' t2' ugraph
+*)
+end
+ in
+ aux false (*c t1 t2 ugraph *)
+;;
+*)
+
+(* DEBUGGING ONLY
+let whd ?(delta=true) ?(subst=[]) context t =
+ let res = whd ~delta ~subst context t in
+ let rescsc = CicReductionNaif.whd ~delta ~subst context t in
+ if not (fst (are_convertible CicReductionNaif.whd ~subst context res rescsc CicUniv.empty_ugraph)) then
+ begin
+ debug_print (lazy ("PRIMA: " ^ CicPp.ppterm t)) ;
+ flush stderr ;
+ debug_print (lazy ("DOPO: " ^ CicPp.ppterm res)) ;
+ flush stderr ;
+ debug_print (lazy ("CSC: " ^ CicPp.ppterm rescsc)) ;
+ flush stderr ;
+fdebug := 0 ;
+let _ = are_convertible CicReductionNaif.whd ~subst context res rescsc CicUniv.empty_ugraph in
+ assert false ;
+ end
+ else
+ res
+;;
+*)
+
+(*
+let are_convertible = are_convertible whd
+
+let whd = R.whd
+*)
+
+(*
+let profiler_other_whd = HExtlib.profile ~enable:profile "~are_convertible.whd"
+let whd ?(delta=true) ?(subst=[]) context t =
+ let foo () =
+ whd ~delta ~subst context t
+ in
+ profiler_other_whd.HExtlib.profile foo ()
+*)
+
+(*
+let rec normalize ?(delta=true) ?(subst=[]) ctx term =
+ let module C = Cic in
+ let t = whd ~delta ~subst ctx term in
+ let aux = normalize ~delta ~subst in
+ let decl name t = Some (name, C.Decl t) in
+ match t with
+ | C.Rel n -> t
+ | C.Var (uri,exp_named_subst) ->
+ C.Var (uri, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst)
+ | C.Meta (i,l) ->
+ C.Meta (i,List.map (function Some t -> Some (aux ctx t) | None -> None) l)
+ | C.Sort _ -> t
+ | C.Implicit _ -> t
+ | C.Cast (te,ty) -> C.Cast (aux ctx te, aux ctx ty)
+ | C.Prod (n,s,t) ->
+ let s' = aux ctx s in
+ C.Prod (n, s', aux ((decl n s')::ctx) t)
+ | C.Lambda (n,s,t) ->
+ let s' = aux ctx s in
+ C.Lambda (n, s', aux ((decl n s')::ctx) t)
+ | C.LetIn (n,s,t) ->
+ (* the term is already in weak head normal form *)
+ assert false
+ | C.Appl (h::l) -> C.Appl (h::(List.map (aux ctx) l))
+ | C.Appl [] -> assert false
+ | C.Const (uri,exp_named_subst) ->
+ C.Const (uri, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst)
+ | C.MutInd (uri,typeno,exp_named_subst) ->
+ C.MutInd (uri,typeno, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst)
+ | C.MutConstruct (uri,typeno,consno,exp_named_subst) ->
+ C.MutConstruct (uri, typeno, consno,
+ List.map (fun (n,t) -> n,aux ctx t) exp_named_subst)
+ | C.MutCase (sp,i,outt,t,pl) ->
+ C.MutCase (sp,i, aux ctx outt, aux ctx t, List.map (aux ctx) pl)
+(*CSC: to be completed, I suppose *)
+ | C.Fix _ -> t
+ | C.CoFix _ -> t
+*)
+
+(*
+let normalize ?delta ?subst ctx term =
+(* prerr_endline ("NORMALIZE:" ^ CicPp.ppterm term); *)
+ let t = normalize ?delta ?subst ctx term in
+(* prerr_endline ("NORMALIZED:" ^ CicPp.ppterm t); *)
+ t
+*)
+
+(* performs an head beta/cast reduction
+let rec head_beta_reduce ?(delta=false) ?(upto=(-1)) t =
+ match upto with
+ 0 -> t
+ | n ->
+ match t with
+ (Cic.Appl (Cic.Lambda (_,_,t)::he'::tl')) ->
+ let he'' = CicSubstitution.subst he' t in
+ if tl' = [] then
+ he''
+ else
+ let he''' =
+ match he'' with
+ Cic.Appl l -> Cic.Appl (l@tl')
+ | _ -> Cic.Appl (he''::tl')
+ in
+ head_beta_reduce ~delta ~upto:(upto - 1) he'''
+ | Cic.Cast (te,_) -> head_beta_reduce ~delta ~upto te
+ | Cic.Appl (Cic.Const (uri,ens)::tl) as t when delta=true ->
+ let bo =
+ match fst (CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri) with
+ Cic.Constant (_,bo,_,_,_) -> bo
+ | Cic.Variable _ -> raise ReferenceToVariable
+ | Cic.CurrentProof (_,_,bo,_,_,_) -> Some bo
+ | Cic.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
+ in
+ (match bo with
+ None -> t
+ | Some bo ->
+ head_beta_reduce ~upto
+ ~delta (Cic.Appl ((CicSubstitution.subst_vars ens bo)::tl)))
+ | Cic.Const (uri,ens) as t when delta=true ->
+ let bo =
+ match fst (CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri) with
+ Cic.Constant (_,bo,_,_,_) -> bo
+ | Cic.Variable _ -> raise ReferenceToVariable
+ | Cic.CurrentProof (_,_,bo,_,_,_) -> Some bo
+ | Cic.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
+ in
+ (match bo with
+ None -> t
+ | Some bo ->
+ head_beta_reduce ~delta ~upto (CicSubstitution.subst_vars ens bo))
+ | t -> t
+*)
+(*
+let are_convertible ?subst ?metasenv context t1 t2 ugraph =
+ let before = Unix.gettimeofday () in
+ let res = are_convertible ?subst ?metasenv context t1 t2 ugraph in
+ let after = Unix.gettimeofday () in
+ let diff = after -. before in
+ if diff > 0.1 then
+ begin
+ let nc = List.map (function None -> None | Some (n,_) -> Some n) context in
+ prerr_endline
+ ("\n#(" ^ string_of_float diff ^ "):\n" ^ CicPp.pp t1 nc ^ "\n<=>\n" ^ CicPp.pp t2 nc);
+ end;
+ res
+*)