\close
-\open non_logical_abbreviations \* [1] 2.4. *\
+\open non_logical_abbreviations \* [1] 2.4. 2.7 *\
+
+ \def "object application"
+ OAt = [f:*Obj, x:*Obj] At(T(f), T(x)) : *Obj => *Obj -> *Term
\def "convergence of a term to an object"
Conv = [t:*Term] EX([y:*Obj] E(t, y)) : *Term -> *Prop
Eq = [t1:*Term, t2:*Term] [y:*Obj] Iff(E(t1, y), E(t2, y))
: *Term => *Term -> *Prop
+ \def "classification membership of a term"
+ TEta = [t:*Term, a:*Obj] EEx(a, [y:*Obj] E(t, y))
+ : *Term => *Obj -> *Prop
+
+ \def "operation (rule with inhabited domain)"
+ Op = [f:*Obj] Ex([x:*Obj] Conv(OAt(f, x))) : *Obj -> *Prop
+
+ \def "classification inclusion"
+ ESub = [a1:*Obj, a2:*Obj] EAll(a1, [x:*Obj] Eta(x, a2))
+ : *Obj => *Obj -> *Prop
+
+ \def "classification morphism"
+ ETo = [f:*Obj, a:*Obj, b:*Obj] EAll(a, [x:*Obj] TEta(OAt(f, x), b))
+ : *Obj => *Obj => *Obj -> *Prop
+
\close
-\open non_logical_axioms \* [1] 2.4. *\
+\open non_logical_axioms \* [1] 2.4. 3.2 *\
\* we axiomatize E because *Term is not inductively generated *\
\ax e_refl: [y:*Obj] E(T(y), y)
-\*
- \ax e_at_in: [f:*Obj][x:*Obj][y:*Obj] App(f,x,y) -> E(At(T(f), T(x)), y)
+ \ax e_at_in: [t1:*Term][t2:*Term][f:*Obj][x:*Obj][y:*Obj]
+ E(t1, f) -> E(t2, x) -> App(f, x, y) -> E(At(t1, t2), y)
+\*
\ax e_at_out: [f:*Obj][x:*Obj][y:*Obj] E(At(T(f), T(x)), y) -> App(f,x,y)
*\
+ \ax "I (i)" id_dec: [x:*Obj][y:*Obj] Or(Id(x, y), NId(x, y))
+
+ \ax "I (ii)" at_mono: [f:*Obj][x:*Obj][y1:*Obj][y2:*Obj]
+ E(OAt(f, x), y1) -> E(OAt(f, x), y2) -> Id(y1, y2)
+
+ \ax "I (iii)" eta_cl: [x:*Obj][a:*Obj] Eta(x, a) -> Cl(a)
+
\close