only_bits qin ∧ cin ≠ bar ∧ |qin| = S n ∧ t = bar::qin@[cin].
lemma table_to_list: ∀n,l,h,c. is_config n c →
- (∃ll,lr.table_TM n l h = ll@c@lr) →
- ∃out,t. tuple_encoding n h t = (c@out) ∧ mem ? t l.
+ ∀ll,lr.table_TM n l h = ll@c@lr →
+ ∃out,lr0,t. lr = out@lr0 ∧ tuple_encoding n h t = (c@out) ∧ mem ? t l.
#n #l #h #c * #qin * #cin * * * #H1 #H2 #H3 #H4
- * #ll * #lr lapply ll -ll elim l
+#ll #lr lapply ll -ll elim l
[>H4 #ll cases ll normalize [|#hd #tl ] #Habs destruct
|#t1 #othert #Hind #ll >table_TM_cons #Htuple
cut (S n < |ll@c@lr|)
normalize in ⊢ (???%→?); whd in ⊢ (??%?→?); #Htemp
lapply (cons_injective_l ????? Htemp) #Hc1
lapply (cons_injective_r ????? Htemp) -Htemp #Heq2
- %{(q2@[c2;m])} %{t1} %
- [>Ht1 >Heq1 >Hc1 @eq_f >associative_append %
+ %{(q2@[c2;m])} %{(table_TM n othert h)} %{t1} %
+ [ %[ // |>Ht1 >Heq1 >Hc1 @eq_f >associative_append % ]
|%1 %
]
|(* ll not nil *)
whd in ⊢ (??%?→?); #Heq destruct (Heq)
cases (compare_append … e0) #l *
[* cases l
- [#_ #Htab cases (Hind [ ] (sym_eq … Htab)) #out * #t * #Ht #Hmemt
- %{out} %{t} % // %2 //
+ [#_ #Htab cases (Hind [ ] (sym_eq … Htab))
+ #out * #lr0 * #t * * #Hlr #Ht #Hmemt
+ %{out} %{lr0} %{t} % [% //| %2 //]
|(* this case is absurd *)
#al #tll #Heq1 >H4 #Heq2 @False_ind
lapply (cons_injective_l ? bar … Heq2) #Hbar <Hbar in Heq1; #Heq1
]
]
]
- |* #Htl #Htab cases (Hind … Htab) #out * #t * #Ht #Hmemt
- %{out} %{t} % // %2 //
+ |* #Htl #Htab cases (Hind … Htab) #out * #lr0 * #t * * #Hlr #Ht #Hmemt
+ %{out} %{lr0} %{t} % [% // | %2 //]
]
]
]
is_config n (bar::state@[char]) →
nth prg ? t1 (niltape ?) = midtape ? [ ] bar table →
bar::table = table_TM n l h → *)
+
+definition deterministic_tuples ≝ λn,h,l.
+ ∀t1,t2,conf,out1,out2.
+ is_config n conf →
+ mem ? t1 l → mem ? t2 l →
+ tuple_encoding n h t1 = conf@out1 →
+ tuple_encoding n h t2 = conf@out2 → out1 = out2.
definition R_unistep ≝ λn,l,h.λt1,t2: Vector ? 3.
∀state,char,table.
bar::table = table_TM n l h →
(* obj *)
only_bits (list_of_tape ? (nth obj ? t1 (niltape ?))) →
+ (* deterministic tuples *)
+ deterministic_tuples n h l →
let conf ≝ (bar::state@[char]) in
(∃ll,lr.bar::table = ll@conf@lr) →
(*
(sem_exec_move …)))))
/2 by le_n,sym_not_eq/
#ta #tb #HR #state #char #table #Hta_cfg #Hcfg #Hta_prg #Htable
-#Hbits_obj #Htotaltable
+#Hbits_obj #Hdeterm #Hmatching
#nstate #nchar #m #t #Htuple #Hmatch
cases HR -HR #tc * whd in ⊢ (%→?);
>Hta_cfg #H cases (H ?? (refl ??)) -H
(* prg starts with a bar, so it's not empty *) #_
>Hta_prg #H lapply (H ??? (refl ??)) -H *
-[| cases Htotaltable #ll * #lr #H >H
+[| cases Hmatching #ll * #lr #H >H
#Hfalse @False_ind cases (Hfalse ll lr) #H1 @H1 //]
-* #ll * #lr * #Hintable -Htotaltable #Htc
+* #ll * #lr * #Hintable #Htc
* #td * whd in ⊢ (%→?); >Htc
>nth_change_vec_neq [|@sym_not_eq //] >(nth_change_vec ?????? lt_cfg)
#Htd lapply (Htd ? (refl ??)) -Htd
(* move cfg to R *)
* #te * whd in ⊢ (%→?); >Htd
>change_vec_commute [|@sym_not_eq //] >change_vec_change_vec
->nth_change_vec_neq [|@sym_not_eq //] >nth_change_vec //
+>nth_change_vec_neq [|@sym_not_eq //] >nth_change_vec [2:@leb_true_to_le %]
>Htable in Hintable; #Hintable #Hte
(* copy *)
-lapply (cfg_in_table_to_tuple ???? Hcfg ?? Hintable)
-* #newconfig * #m0 * #lr0 * * #Hlr destruct (Hlr) #Hnewcfg #Hm0
+lapply (table_to_list ???? Hcfg ?? Hintable) * #out * #lr0 * #t0
+* * #Hlr #Htuple_t0 #mem_t0
+cut (out = nstate@[nchar;m])
+ [@(Hdeterm … Hcfg mem_t0 Hmatch Htuple_t0 Htuple)] #Hout
+>(append_cons ? nchar) in Htuple; #Htuple
+lapply (tuple_to_config ?????? Hcfg … Htuple) #newconfig
cut (∃fo,so.state = fo::so ∧ |so| = n)
-[ @daemon ] * #fo * #so * #Hstate_exp #Hsolen
-cut (∃fn,sn,cn.newconfig = fn::sn@[cn] ∧ |sn| = n)
-[ @daemon ] * #fn * #sn * #cn * #Hnewstate_exp #Hsnlen
+ [ @daemon ] * #fo * #so * #Hstate_exp #Hsolen
+cut (∃fn,sn.nstate = fn::sn ∧ |sn| = n)
+ [ @daemon ] * #fn * #sn * #Hnewstate_exp #Hsnlen
+>Hstate_exp >Hout in Hlr; >Hnewstate_exp whd in ⊢ (???%→?); #Hlr
* #tf * * #_ >Hte >(nth_change_vec ?????? lt_prg)
>nth_change_vec_neq [|@sym_not_eq //] >(nth_change_vec ?????? lt_cfg)
->Hstate_exp >Hnewstate_exp
+>Hstate_exp >Hnewstate_exp >Hlr
whd in match (mk_tape ????); whd in match (tape_move ???);
#Htf cases (Htf ?????? (refl ??) (refl ??) ?) -Htf
[| whd in match (tail ??); >length_append >length_append
- >Hsolen >length_append >Hsnlen //]
+ >Hsolen >length_append >Hsnlen normalize //]
#rs1 * #rs2 whd in match (tail ??); * *
#Hrs1rs2 #Hrs1len
>change_vec_change_vec >change_vec_commute [|@sym_not_eq //]
>change_vec_change_vec >append_nil #Htf
(* exec_move *)
-cut ((sn@[cn])=rs1)
+>append_cons in Hrs1rs2; >associative_append #Hrs1rs2
+cut ((sn@[nchar])=rs1)
[@(append_l1_injective ?????? Hrs1rs2) >Hrs1len
>length_append >length_append normalize >Hsolen >Hsnlen % ] #Hrs1
-cut (m0::lr0=rs2) [@(append_l2_injective ?????? Hrs1rs2) >Hrs1 % ] #Hrs2
+cut (m::lr0=rs2) [@(append_l2_injective ?????? Hrs1rs2) >Hrs1 % ] #Hrs2
cut (∃ll1. ll@[bar] = bar::ll1)
[@daemon (* ll is at the begininng of a table *)] * #ll1 #Hll
whd in ⊢ (%→?); >Htf >nth_change_vec_neq [2:@eqb_false_to_not_eq %]
<Hrs2 >(append_cons … bar ll) >Hll >reverse_cons
#sem_exec_move
lapply
- (sem_exec_move ? m0 ?
- (([cn]@reverse FSUnialpha sn)
+ (sem_exec_move ? m ?
+ (([nchar]@reverse FSUnialpha sn)
@fn::reverse FSUnialpha (ll1@(fo::so)@[char])) lr0 … (refl ??) ????)
- [@Hm0
+ [@daemon
|@daemon (* OK *)
|@Hbits_obj
|whd in ⊢ (??%?); >associative_append >associative_append
- >associative_append %
+ >associative_append %
|#Htb >Htb @(eq_vec … (niltape ?)) (* tape by tape *) #i #lei2
cases (le_to_or_lt_eq … (le_S_S_to_le …lei2))
[#lei1 cases (le_to_or_lt_eq … (le_S_S_to_le …lei1))
[#lei0 lapply(le_n_O_to_eq … (le_S_S_to_le …lei0)) #eqi <eqi
(* obj tape *)
- >nth_change_vec [2:@leb_true_to_le %]
- (* dimostrare che la tabella e' univoca
- da cui m = m0 e nchar = cn *)
+ >nth_change_vec [2:@leb_true_to_le %] %
|(* cfg tape *) #eqi >eqi
>nth_change_vec_neq [2:@eqb_false_to_not_eq %]
- >nth_change_vec [2:@leb_true_to_le %]
+ >nth_change_vec [2:@leb_true_to_le %]
+ whd in ⊢ (??%?); cut (∀A.∀l:list A.[]@l = l) [//] #Hnil >Hnil
+ >reverse_append >reverse_single >reverse_reverse %
(* idem *)
]
|(* prg tape *) #eqi >eqi
>reverse_reverse >reverse_cons >reverse_reverse
>associative_append >associative_append >associative_append
>(append_cons ? bar ll) >Hll @eq_f @eq_f <Hstate_exp @eq_f
- >Hnewstate_exp %
+ >Hnewstate_exp >Hlr normalize >associative_append >associative_append %
]
]
-
-
qed.
-
-
- cut ((mk_tape FSUnialpha []
- (option_hd FSUnialpha
- (reverse FSUnialpha (m0::[]@reverse FSUnialpha (sn@[cn])@[fn; bar])))
- (tail FSUnialpha
- (reverse FSUnialpha (m0::[]@reverse FSUnialpha (sn@[cn])@[fn; bar])))) =
- midtape ? [ ] bar (fn::sn@[cn;m0]))
- [cut (reverse FSUnialpha (m0::[]@reverse FSUnialpha (sn@[cn])@[fn; bar]) =
- bar::fn::sn@[cn;m0])
- [>reverse_cons whd in ⊢ (??(??(??%)?)?); >reverse_append >reverse_reverse
- >append_cons in ⊢ (???%); % ] #Hrev >Hrev % ] #Hmk_tape >Hmk_tape -Hmk_tape
- >change_vec_commute
-
- >reverse_append >reverse_append
- check reverse_cons
- <reverse_cons >reverse_cons
- -Htg #Htg
-
->(change_vec_commute ????? cfg prg) [2:@eqb_false_to_not_eq %]
->nth_change_vec_neq [2:@eqb_false_to_not_eq %]
->nth_change_vec_neq [2:@eqb_false_to_not_eq %]
-lapply (append_l1_injective ?????? Hrs1rs2)
-[ >Hsnlen >Hrs1len >length_append >length_append >length_append >length_append
- normalize >Hsolen >Hsnlen % ]
-#Hrs1 <Hrs1 >reverse_append #Htg cases (Htg ?? (refl ??)) -Htg
-cases m0
- [#mv #_ #Htg #_
-
-
-
-
-
-[ *
-
- match_m cfg prg FSUnialpha 2 ·
- restart_tape cfg · copy prg cfg FSUnialpha 2 ·
- cfg_to_obj · tape_move_obj · restart_tape prg · obj_to_cfg.
-
definition tape_map ≝ λA,B:FinSet.λf:A→B.λt.
mk_tape B (map ?? f (left ? t))
(option_map ?? f (current ? t))
(map ?? f (right ? t)).
-
+
+(* da spostare *)
+lemma map_reverse: ∀A,B,f,l.
+ map ?? f (reverse A l) = reverse B (map ?? f l).
+#A #B #f #l elim l //
+#a #l1 #Hind >reverse_cons >reverse_cons <map_append @eq_f2 //
+qed.
+
lemma map_list_of_tape: ∀A,B,f,t.
list_of_tape B (tape_map ?? f t) = map ?? f (list_of_tape A t).
-#A #B #f * // normalize // #ls #c #rs <map_append %
+#A #B #f * //
+ [#a #l normalize >rev_append_def >rev_append_def >append_nil
+ >append_nil <map_append <map_reverse @eq_f2 //
+ |#rs #a #ls normalize >rev_append_def >rev_append_def
+ >append_nil >append_nil <map_append normalize
+ @eq_f2 //
+ ]
qed.
lemma low_char_current : ∀t.
lapply(H (bits_of_state ? (nhalt M) (cstate ?? c))
(low_char (current ? (ctape ?? c)))
(tail ? (table_TM ? (graph_enum ?? (ntrans M)) (nhalt M)))
- ??????)
+ ???????)
[<Htable
lapply(list_to_table … (nhalt M) …Hingraph) * #ll * #lr #Htable1 %{ll}
%{(((bits_of_state ? (nhalt M) qout)@[low_char cout;low_mv m])@lr)}
>Htable1 @eq_f <associative_append @eq_f2 // >Htup
whd in ⊢ (??%?); @eq_f >associative_append %
+|#tx #ty #conf #outx #outy #isconf #memx #memy #tuplex #tupley
+ @(deterministic M … (refl ??) memx memy isconf tuplex tupley)
|>Ht1 >obj_low_tapes >map_list_of_tape elim (list_of_tape ??)
[#b @False_ind | #b #tl #Hind #a * [#Ha >Ha //| @Hind]]
|@sym_eq @Htable