(* aritmetic operators *)
-interpretation "natural plus" 'plus x y = (cic:/Coq/Init/Peano/plus.con x y).
-interpretation "real plus" 'plus x y = (cic:/Coq/Reals/Rdefinitions/Rplus.con x y).
-interpretation "binary integer plus" 'plus x y = (cic:/Coq/ZArith/BinInt/Zplus.con x y).
-interpretation "binary positive plus" 'plus x y = (cic:/Coq/NArith/BinPos/Pplus.con x y).
-interpretation "natural minus" 'minus x y = (cic:/Coq/Init/Peano/minus.con x y).
-interpretation "real minus" 'minus x y = (cic:/Coq/Reals/Rdefinitions/Rminus.con x y).
-interpretation "binary integer minus" 'minus x y = (cic:/Coq/ZArith/BinInt/Zminus.con x y).
-interpretation "binary positive minus" 'minus x y = (cic:/Coq/NArith/BinPos/Pminus.con x y).
-interpretation "natural times" 'times x y = (cic:/Coq/Init/Peano/mult.con x y).
-interpretation "real times" 'times x y = (cic:/Coq/Reals/Rdefinitions/Rmult.con x y).
-interpretation "binary positive times" 'times x y = (cic:/Coq/NArith/BinPos/Pmult.con x y).
-interpretation "binary integer times" 'times x y = (cic:/Coq/ZArith/BinInt/Zmult.con x y).
-interpretation "real power" 'power x y = (cic:/Coq/Reals/Rfunctions/pow.con x y).
-interpretation "integer power" 'power x y = (cic:/Coq/ZArith/Zpower/Zpower.con x y).
-interpretation "real divide" 'divide x y = (cic:/Coq/Reals/Rdefinitions/Rdiv.con x y).
-interpretation "real unary minus" 'uminus x = (cic:/Coq/Reals/Rdefinitions/Ropp.con x).
-interpretation "binary integer negative sign" 'uminus x = (cic:/Coq/ZArith/BinInt/Z.ind#xpointer(1/1/3) x).
-interpretation "binary integer unary minus" 'uminus x = (cic:/Coq/ZArith/BinInt/Zopp.con x).
+interpretation "Coq's natural plus" 'plus x y = (cic:/Coq/Init/Peano/plus.con x y).
+interpretation "Coq's real plus" 'plus x y = (cic:/Coq/Reals/Rdefinitions/Rplus.con x y).
+interpretation "Coq's binary integer plus" 'plus x y = (cic:/Coq/ZArith/BinInt/Zplus.con x y).
+interpretation "Coq's binary positive plus" 'plus x y = (cic:/Coq/NArith/BinPos/Pplus.con x y).
+interpretation "Coq's natural minus" 'minus x y = (cic:/Coq/Init/Peano/minus.con x y).
+interpretation "Coq's real minus" 'minus x y = (cic:/Coq/Reals/Rdefinitions/Rminus.con x y).
+interpretation "Coq's binary integer minus" 'minus x y = (cic:/Coq/ZArith/BinInt/Zminus.con x y).
+interpretation "Coq's binary positive minus" 'minus x y = (cic:/Coq/NArith/BinPos/Pminus.con x y).
+interpretation "Coq's natural times" 'times x y = (cic:/Coq/Init/Peano/mult.con x y).
+interpretation "Coq's real times" 'times x y = (cic:/Coq/Reals/Rdefinitions/Rmult.con x y).
+interpretation "Coq's binary positive times" 'times x y = (cic:/Coq/NArith/BinPos/Pmult.con x y).
+interpretation "Coq's binary integer times" 'times x y = (cic:/Coq/ZArith/BinInt/Zmult.con x y).
+interpretation "Coq's real power" 'power x y = (cic:/Coq/Reals/Rfunctions/pow.con x y).
+interpretation "Coq's integer power" 'power x y = (cic:/Coq/ZArith/Zpower/Zpower.con x y).
+interpretation "Coq's real divide" 'divide x y = (cic:/Coq/Reals/Rdefinitions/Rdiv.con x y).
+interpretation "Coq's real unary minus" 'uminus x = (cic:/Coq/Reals/Rdefinitions/Ropp.con x).
+interpretation "Coq's binary integer negative sign" 'uminus x = (cic:/Coq/ZArith/BinInt/Z.ind#xpointer(1/1/3) x).
+interpretation "Coq's binary integer unary minus" 'uminus x = (cic:/Coq/ZArith/BinInt/Zopp.con x).
(* logical operators *)
-interpretation "logical and" 'and x y = (cic:/Coq/Init/Logic/and.ind#xpointer(1/1) x y).
-interpretation "logical or" 'or x y = (cic:/Coq/Init/Logic/or.ind#xpointer(1/1) x y).
-interpretation "logical not" 'not x = (cic:/Coq/Init/Logic/not.con x).
-interpretation "exists" 'exists x y = (cic:/Coq/Init/Logic/ex.ind#xpointer(1/1) x y).
+interpretation "Coq's logical and" 'and x y = (cic:/Coq/Init/Logic/and.ind#xpointer(1/1) x y).
+interpretation "Coq's logical or" 'or x y = (cic:/Coq/Init/Logic/or.ind#xpointer(1/1) x y).
+interpretation "Coq's logical not" 'not x = (cic:/Coq/Init/Logic/not.con x).
+interpretation "Coq's exists" 'exists x y = (cic:/Coq/Init/Logic/ex.ind#xpointer(1/1) x y).
(* relational operators *)
-interpretation "natural 'less or equal to'" 'leq x y = (cic:/Coq/Init/Peano/le.ind#xpointer(1/1) x y).
-interpretation "real 'less or equal to'" 'leq x y = (cic:/Coq/Reals/Rdefinitions/Rle.con x y).
-interpretation "natural 'greater or equal to'" 'geq x y = (cic:/Coq/Init/Peano/ge.con x y).
-interpretation "real 'greater or equal to'" 'geq x y = (cic:/Coq/Reals/Rdefinitions/Rge.con x y).
-interpretation "natural 'less than'" 'lt x y = (cic:/Coq/Init/Peano/lt.con x y).
-interpretation "real 'less than'" 'lt x y = (cic:/Coq/Reals/Rdefinitions/Rlt.con x y).
-interpretation "natural 'greater than'" 'gt x y = (cic:/Coq/Init/Peano/gt.con x y).
-interpretation "real 'greater than'" 'gt x y = (cic:/Coq/Reals/Rdefinitions/Rgt.con x y).
-
-interpretation "leibnitz's equality" 'eq x y = (cic:/Coq/Init/Logic/eq.ind#xpointer(1/1) _ x y).
-interpretation "not equal to (leibnitz)" 'neq x y = (cic:/Coq/Init/Logic/not.con (cic:/Coq/Init/Logic/eq.ind#xpointer(1/1) _ x y)).
+interpretation "Coq's natural 'less or equal to'" 'leq x y = (cic:/Coq/Init/Peano/le.ind#xpointer(1/1) x y).
+interpretation "Coq's real 'less or equal to'" 'leq x y = (cic:/Coq/Reals/Rdefinitions/Rle.con x y).
+interpretation "Coq's natural 'greater or equal to'" 'geq x y = (cic:/Coq/Init/Peano/ge.con x y).
+interpretation "Coq's real 'greater or equal to'" 'geq x y = (cic:/Coq/Reals/Rdefinitions/Rge.con x y).
+interpretation "Coq's natural 'less than'" 'lt x y = (cic:/Coq/Init/Peano/lt.con x y).
+interpretation "Coq's real 'less than'" 'lt x y = (cic:/Coq/Reals/Rdefinitions/Rlt.con x y).
+interpretation "Coq's natural 'greater than'" 'gt x y = (cic:/Coq/Init/Peano/gt.con x y).
+interpretation "Coq's real 'greater than'" 'gt x y = (cic:/Coq/Reals/Rdefinitions/Rgt.con x y).
+
+interpretation "Coq's leibnitz's equality" 'eq x y = (cic:/Coq/Init/Logic/eq.ind#xpointer(1/1) _ x y).
+interpretation "Coq's not equal to (leibnitz)" 'neq x y = (cic:/Coq/Init/Logic/not.con (cic:/Coq/Init/Logic/eq.ind#xpointer(1/1) _ x y)).