and lift_term k = function
| C.ASort _ as t -> t
| C.AImplicit _ as t -> t
- | C.ARel (id, rid, m, b) as t -> if m < k then t else C.ARel (id, rid, m + n, b)
+ | C.ARel (id, rid, m, b) as t ->
+ if m < k then t else
+ if m + n > 0 then C.ARel (id, rid, m + n, b) else
+ assert false
| C.AConst (id, uri, xnss) -> C.AConst (id, uri, List.map (lift_xns k) xnss)
| C.AVar (id, uri, xnss) -> C.AVar (id, uri, List.map (lift_xns k) xnss)
| C.AMutInd (id, uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (lift_xns k) xnss)
in
ann_term c
-let rec add_abst n t =
- if n <= 0 then t else
- let t = C.ALambda ("", C.Name "foo", C.AImplicit ("", None), lift 0 1 t) in
- add_abst (pred n) t
+let clear_absts m =
+ let rec aux k n = function
+ | C.ALambda (id, s, v, t) when k > 0 ->
+ C.ALambda (id, s, v, aux (pred k) n t)
+ | C.ALambda (_, _, _, t) when n > 0 ->
+ aux 0 (pred n) (lift 1 (-1) t)
+ | t when n > 0 -> assert false
+ | t -> t
+ in
+ aux m
let mk_ind context id uri tyno outty arg cases =
-try
+try
+ let sort_disp = 0 in
let is_recursive = function
| C.MutInd (u, no, _) -> UM.eq u uri && no = tyno
| _ -> false
| _ -> assert false
in
let lps, rps = T.list_split lpsno ps in
+ let rpsno = List.length rps in
let eliminator = get_default_eliminator context uri tyno inty in
let eliminator = fake_annotate context eliminator in
- let arg_ref = T.mk_arel 0 "foo" in
- let body = C.AMutCase (id, uri, tyno, outty, arg_ref, cases) in
- let predicate = add_abst (succ (List.length rps)) body in
+ let predicate = clear_absts rpsno (1 - sort_disp) outty in
let map2 case (_, cty) =
let map (h, case, k) premise =
if h > 0 then pred h, lift k 1 case, k else
Some (C.AAppl (id, args))
with Invalid_argument _ -> failwith "PCn.mk_ind"
-let apply_substs substs =
- let length = List.length substs in
- let rec apply_xns k (uri, t) = uri, apply_term k t
- and apply_ms k = function
- | None -> None
- | Some t -> Some (apply_term k t)
- and apply_fix len k (id, name, i, ty, bo) =
- id, name, i, apply_term k ty, apply_term (k + len) bo
- and apply_cofix len k (id, name, ty, bo) =
- id, name, apply_term k ty, apply_term (k + len) bo
- and apply_term k = function
- | C.ASort _ as t -> t
- | C.AImplicit _ as t -> t
- | C.ARel (id, rid, m, b) as t ->
- if m < k || m >= length + k then t
- else lift 1 k (List.nth substs (m - k))
- | C.AConst (id, uri, xnss) -> C.AConst (id, uri, List.map (apply_xns k) xnss)
- | C.AVar (id, uri, xnss) -> C.AVar (id, uri, List.map (apply_xns k) xnss)
- | C.AMutInd (id, uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (apply_xns k) xnss)
- | C.AMutConstruct (id, uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (apply_xns k) xnss)
- | C.AMeta (id, i, mss) -> C.AMeta(id, i, List.map (apply_ms k) mss)
- | C.AAppl (id, ts) -> C.AAppl (id, List.map (apply_term k) ts)
- | C.ACast (id, te, ty) -> C.ACast (id, apply_term k te, apply_term k ty)
- | C.AMutCase (id, sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, apply_term k outty, apply_term k t, List.map (apply_term k) pl)
- | C.AProd (id, n, s, t) -> C.AProd (id, n, apply_term k s, apply_term (succ k) t)
- | C.ALambda (id, n, s, t) -> C.ALambda (id, n, apply_term k s, apply_term (succ k) t)
- | C.ALetIn (id, n, s, t) -> C.ALetIn (id, n, apply_term k s, apply_term (succ k) t)
- | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (apply_fix (List.length fl) k) fl)
- | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (apply_cofix (List.length fl) k) fl)
- in
- apply_term 1
+let hole id = C.AImplicit (id, Some `Hole)
-let hole = C.AImplicit ("", Some `Hole)
+let meta id = C.AImplicit (id, None)
-let mk_pattern rps predicate = hole
-(* let rec clear_absts n = function
- | C.ALambda (_, _, _, t) when n > 0 -> clear_absts (pred n) t
-(* | t when n > 0 -> assert false *)
- | t -> t
+let anon = C.Anonymous
+
+let generalize n =
+ let is_meta =
+ let map b = function
+ | C.AImplicit (_, None) when b -> b
+ | _ -> false
+ in
+ List.fold_left map true
+ in
+ let rec gen_fix len k (id, name, i, ty, bo) =
+ id, name, i, gen_term k ty, gen_term (k + len) bo
+ and gen_cofix len k (id, name, ty, bo) =
+ id, name, gen_term k ty, gen_term (k + len) bo
+ and gen_term k = function
+ | C.ASort (id, _)
+ | C.AImplicit (id, _)
+ | C.AConst (id, _, _)
+ | C.AVar (id, _, _)
+ | C.AMutInd (id, _, _, _)
+ | C.AMutConstruct (id, _, _, _, _)
+ | C.AMeta (id, _, _) -> meta id
+ | C.ARel (id, _, m, _) ->
+ if m = succ (n - k) then hole id else meta id
+ | C.AAppl (id, ts) ->
+ let ts = List.map (gen_term k) ts in
+ if is_meta ts then meta id else C.AAppl (id, ts)
+ | C.ACast (id, te, ty) ->
+ let te, ty = gen_term k te, gen_term k ty in
+ if is_meta [te; ty] then meta id else C.ACast (id, te, ty)
+ | C.AMutCase (id, sp, i, outty, t, pl) ->
+ let outty, t, pl = gen_term k outty, gen_term k t, List.map (gen_term k) pl in
+ if is_meta (outty :: t :: pl) then meta id else hole id (* C.AMutCase (id, sp, i, outty, t, pl) *)
+ | C.AProd (id, _, s, t) ->
+ let s, t = gen_term k s, gen_term (succ k) t in
+ if is_meta [s; t] then meta id else C.AProd (id, anon, s, t)
+ | C.ALambda (id, _, s, t) ->
+ let s, t = gen_term k s, gen_term (succ k) t in
+ if is_meta [s; t] then meta id else C.ALambda (id, anon, s, t)
+ | C.ALetIn (id, _, s, t) ->
+ let s, t = gen_term k s, gen_term (succ k) t in
+ if is_meta [s; t] then meta id else C.ALetIn (id, anon, s, t)
+ | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (gen_fix (List.length fl) k) fl)
+ | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (gen_cofix (List.length fl) k) fl)
in
- let substs = hole :: List.rev rps in
- let body = clear_absts (succ (List.length rps)) predicate in
- if M.is_appl true (cic body) then apply_substs substs body else hole
-*)
+ gen_term 0
+
+let mk_pattern rps predicate =
+ let sort_disp = 0 in
+ let rpsno = List.length rps in
+ let body = generalize (rpsno + sort_disp) predicate in
+ clear_absts 0 (rpsno + sort_disp) body