lattices, Definizione 0.9 *)
(* USARE L'ESISTENZIALE DEBOLE *)
+definition if_then_else ≝ λT:Type.λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f].
+notation > "'if' term 19 e 'then' term 19 t 'else' term 90 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }.
+notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }.
+interpretation "Formula if_then_else" 'if_then_else e t f = (if_then_else ? e t f).
notation > "hvbox(a break ≤ b)" non associative with precedence 45 for @{oa_leq $a $b}.
notation > "a >< b" non associative with precedence 45 for @{oa_overlap $a $b}.
oa_zero_bot: ∀p:oa_P.𝟘 ≤ p;
oa_one_top: ∀p:oa_P.p ≤ 𝟙;
oa_overlap_preserves_meet_: ∀p,q:oa_P.p >< q →
- p >< (⋀ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q });
+ p >< (⋀ { x ∈ BOOL | if x then p else q(*match x with [ true ⇒ p | false ⇒ q ]*) | IF_THEN_ELSE_p oa_P p q });
oa_join_split: ∀I:SET.∀p.∀q:I ⇒_2 oa_P.p >< (⋁ q) = (∃i:I.p >< (q i));
(*oa_base : setoid;
1) enum non e' il nome giusto perche' non e' suriettiva
interpretation "o-algebra meet" 'oa_meet f =
(fun12 ?? (oa_meet ??) f).
interpretation "o-algebra meet with explicit function" 'oa_meet_mk f =
- (fun12 ?? (oa_meet ??) (mk_unary_morphism ?? f ?)).
+ (fun12 ?? (oa_meet ??) (mk_unary_morphism1 ?? f ?)).
notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)"
non associative with precedence 50 for @{ 'oa_join $p }.
(fun21 ??? (binary_join ?) a b).
lemma oa_overlap_preservers_meet: ∀O:OAlgebra.∀p,q:O.p >< q → p >< (p ∧ q).
-(* next change to avoid universe inconsistency *)
-change in ⊢ (?→%→%→?) with (Type1_OF_OAlgebra O);
-intros; lapply (oa_overlap_preserves_meet_ O p q f);
-lapply (prop21 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?);
-[3: apply (if ?? (Hletin1)); apply Hletin;|skip] apply refl1;
+intros; lapply (oa_overlap_preserves_meet_ O p q f) as H; clear f;
+(** screenshot "screenoa". *)
+assumption;
qed.
notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)"
(fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)).
record ORelation (P,Q : OAlgebra) : Type2 ≝ {
- or_f_ : carr2 (P ⇒_2 Q);
- or_f_minus_star_ : carr2(P ⇒_2 Q);
- or_f_star_ : carr2(Q ⇒_2 P);
- or_f_minus_ : carr2(Q ⇒_2 P);
+ or_f_ : P ⇒_2 Q;
+ or_f_minus_star_ : P ⇒_2 Q;
+ or_f_star_ : Q ⇒_2 P;
+ or_f_minus_ : Q ⇒_2 P;
or_prop1_ : ∀p,q. (or_f_ p ≤ q) = (p ≤ or_f_star_ q);
or_prop2_ : ∀p,q. (or_f_minus_ p ≤ q) = (p ≤ or_f_minus_star_ q);
or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q)
∀P,Q.ORelation_setoid P Q → ORelation P Q ≝ λP,Q,x.x.
coercion ORelation_of_ORelation_setoid.
-definition or_f_minus_star:
- ∀P,Q:OAlgebra.(ORelation_setoid P Q) ⇒_2 (P ⇒_2 Q).
+definition or_f_minus_star: ∀P,Q:OAlgebra.(ORelation_setoid P Q) ⇒_2 (P ⇒_2 Q).
intros; constructor 1;
[ apply or_f_minus_star_;
| intros; cases e; assumption]
qed.
definition ORelation_composition : ∀P,Q,R.
- binary_morphism2 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R).
+ (ORelation_setoid P Q) × (ORelation_setoid Q R) ⇒_2 (ORelation_setoid P R).
intros;
constructor 1;
[ intros (F G);
prefer coercion Type_OF_objs2.
-(* alias symbol "eq" = "setoid1 eq". *)
-
(* qui la notazione non va *)
lemma leq_to_eq_join: ∀S:OA.∀p,q:S. p ≤ q → q = (binary_join ? p q).
intros;
record powerset_carrier (A: objs1 SET) : Type1 ≝ { mem_operator: A ⇒_1 CPROP }.
interpretation "powerset low" 'powerset A = (powerset_carrier A).
notation "hvbox(a break ∈. b)" non associative with precedence 45 for @{ 'mem_low $a $b }.
-interpretation "memlow" 'mem_low a S = (mem_operator ? S a).
+interpretation "memlow" 'mem_low a S = (fun11 ?? (mem_operator ? S) a).
definition subseteq_operator: ∀A: objs1 SET. Ω^A → Ω^A → CProp0 ≝
λA:objs1 SET.λU,V.∀a:A. a ∈. U → a ∈. V.
[ apply (. (#‡(e w)^-1)); apply x;
| apply (. (#‡e w)); apply x]]
qed.
+
+notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (⋃) \below (\emsp) term 90 p)"
+non associative with precedence 50 for @{ 'bigcup $p }.
+notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (⋃) \below (ident i ∈ I) break term 90 p)"
+non associative with precedence 50 for @{ 'bigcup_mk (λ${ident i}:$I.$p) }.
+notation > "hovbox(⋃ f)" non associative with precedence 60 for @{ 'bigcup $f }.
+
+notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (⋂) \below (\emsp) term 90 p)"
+non associative with precedence 50 for @{ 'bigcap $p }.
+notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (⋂) \below (ident i ∈ I) break term 90 p)"
+non associative with precedence 50 for @{ 'bigcap_mk (λ${ident i}:$I.$p) }.
+notation > "hovbox(⋂ f)" non associative with precedence 60 for @{ 'bigcap $f }.
+
+interpretation "bigcup" 'bigcup f = (fun12 ?? (big_union ??) f).
+interpretation "bigcap" 'bigcap f = (fun12 ?? (big_intersects ??) f).
+interpretation "bigcup mk" 'bigcup_mk f = (fun12 ?? (big_union ??) (mk_unary_morphism2 ?? f ?)).
+interpretation "bigcap mk" 'bigcap_mk f = (fun12 ?? (big_intersects ??) (mk_unary_morphism2 ?? f ?)).