let fresh_binder =
let counter = ref ~-1 in
- fun () ->
- incr counter;
- "elim" ^ string_of_int !counter
+ function
+ | true ->
+ incr counter;
+ Cic.Name ("elim" ^ string_of_int !counter)
+ | _ -> Cic.Anonymous
(** verifies if a given uri occurs in a term in target position *)
let rec recursive uri = function
| Cic.Prod (_, _, target) -> recursive uri target
- | Cic.MutInd (uri', _, _)
- | Cic.Appl [ Cic.MutInd (uri', _, _); _ ] -> UriManager.eq uri uri'
+ | Cic.MutInd (uri', _, _) -> UriManager.eq uri uri'
+ | Cic.Appl args -> List.exists (recursive uri) args
| _ -> false
let unfold_appl = function
| Cic.Appl ((Cic.Appl args) :: tl) -> Cic.Appl (args @ tl)
| t -> t
+let rec split l n =
+ match (l,n) with
+ (l,0) -> ([], l)
+ | (he::tl, n) -> let (l1,l2) = split tl (n-1) in (he::l1,l2)
+ | (_,_) -> assert false
+
(** build elimination principle part related to a single constructor
- * @param strip number of Prod to ignore in this constructor (i.e. number of
- * inductive parameters) *)
-let rec delta (uri, typeno, subst) strip consno t p args =
+ * @param paramsno number of Prod to ignore in this constructor (i.e. number of
+ * inductive parameters)
+ * @param dependent true if we are in the dependent case (i.e. sort <> Prop) *)
+let rec delta (uri, typeno, subst) dependent paramsno consno t p args =
assert (subst = []);
match t with
- | Cic.MutInd (uri', typeno', subst')
- | Cic.Appl (Cic.MutInd (uri', typeno', subst') :: _) when
- UriManager.eq uri uri' && typeno = typeno' && subst = subst' ->
- (match args with
- | [] -> assert false
- | [arg] -> unfold_appl (Cic.Appl [p; arg])
- | _ -> unfold_appl (Cic.Appl [p; unfold_appl (Cic.Appl args)]))
-(*
- | Cic.Appl (Cic.MutInd (uri', typeno', subst') :: _) when
+ | Cic.MutInd (uri', typeno', subst') ->
+ if dependent then
+ (match args with
+ | [] -> assert false
+ | [arg] -> unfold_appl (Cic.Appl [p; arg])
+ | _ -> unfold_appl (Cic.Appl [p; unfold_appl (Cic.Appl args)]))
+ else
+ p
+ | Cic.Appl (Cic.MutInd (uri', typeno', subst') :: tl) when
UriManager.eq uri uri' && typeno = typeno' && subst = subst' ->
- Cic.Appl (Cic.Rel p_rel :: args)
-*)
- | Cic.Prod (binder, src, tgt) when strip = 0 ->
+ let (lparams, rparams) = split tl paramsno in
+ if dependent then
+ (match args with
+ | [] -> assert false
+ | [arg] -> unfold_appl (Cic.Appl (p :: rparams @ [arg]))
+ | _ ->
+ unfold_appl (Cic.Appl (p ::
+ rparams @ [unfold_appl (Cic.Appl args)])))
+ else (* non dependent *)
+ (match rparams with
+ | [] -> p
+ | _ -> Cic.Appl (p :: rparams))
+ | Cic.Prod (binder, src, tgt) ->
if recursive uri src then
let args = List.map (CicSubstitution.lift 2) args in
let phi =
- (delta (uri, typeno, subst) strip consno src
+ (delta (uri, typeno, subst) dependent paramsno consno src
(CicSubstitution.lift 1 p) [Cic.Rel 1])
in
- Cic.Prod (Cic.Name (fresh_binder ()), src,
+ Cic.Prod (fresh_binder dependent, src,
Cic.Prod (Cic.Anonymous, phi,
- delta (uri, typeno, subst) strip consno tgt
+ delta (uri, typeno, subst) dependent paramsno consno tgt
(CicSubstitution.lift 2 p) (args @ [Cic.Rel 2])))
else (* non recursive *)
let args = List.map (CicSubstitution.lift 1) args in
- Cic.Prod (Cic.Name (fresh_binder ()), src,
- delta (uri, typeno, subst) strip consno tgt (CicSubstitution.lift 1 p)
- (args @ [Cic.Rel 1]))
- | Cic.Prod (_, _, tgt) (* when strip > 0 *) ->
- (* after stripping the parameters we lift of 1 since P has been inserted
- * in the way *)
- let tgt =
- if strip = 1 then CicSubstitution.lift consno tgt else tgt
- in
- delta (uri, typeno, subst) (strip - 1) consno tgt p args
+ Cic.Prod (fresh_binder dependent, src,
+ delta (uri, typeno, subst) dependent paramsno consno tgt
+ (CicSubstitution.lift 1 p) (args @ [Cic.Rel 1]))
| _ -> assert false
+let rec strip_left_params consno leftno = function
+ | t when leftno = 0 -> t (* no need to lift, the term is (hopefully) closed *)
+ | Cic.Prod (_, _, tgt) (* when leftno > 0 *) ->
+ (* after stripping the parameters we lift of consno. consno is 1 based so,
+ * the first constructor will be lifted by 1 (for P), the second by 2 (1
+ * for P and 1 for the 1st constructor), and so on *)
+ if leftno = 1 then
+ CicSubstitution.lift consno tgt
+ else
+ strip_left_params consno (leftno - 1) tgt
+ | _ -> assert false
+
+let delta (ury, typeno, subst) dependent paramsno consno t p args =
+ let t = strip_left_params consno paramsno t in
+ delta (ury, typeno, subst) dependent paramsno consno t p args
+
let rec add_params indno ty eliminator =
if indno = 0 then
eliminator
| 0 -> []
| n -> Cic.Rel (n+consno) :: mk_rels consno (n-1)
+let rec strip_pi = function
+ | Cic.Prod (_, _, tgt) -> strip_pi tgt
+ | t -> t
+
+let rec count_pi = function
+ | Cic.Prod (_, _, tgt) -> count_pi tgt + 1
+ | t -> 0
+
+let rec type_of_p dependent leftno indty = function
+ | Cic.Prod (n, src, tgt) when leftno = 0 ->
+ Cic.Prod (n, src, type_of_p dependent leftno indty tgt)
+ | Cic.Prod (_, _, tgt) -> type_of_p dependent (leftno - 1) indty tgt
+ | t ->
+ if dependent then
+ Cic.Prod (Cic.Anonymous, indty,
+ Cic.Sort (Cic.Type (CicUniv.fresh ())))
+ else
+ Cic.Sort (Cic.Type (CicUniv.fresh ()))
+
+let rec add_right_pi dependent strip liftno rightno indty = function
+ | Cic.Prod (_, src, tgt) when strip = 0 ->
+ Cic.Prod (fresh_binder true,
+ CicSubstitution.lift liftno src,
+ add_right_pi dependent strip liftno rightno indty tgt)
+ | Cic.Prod (_, _, tgt) ->
+ add_right_pi dependent (strip - 1) liftno rightno indty tgt
+ | t ->
+ if dependent then
+ Cic.Prod (fresh_binder dependent,
+ CicSubstitution.lift_from (rightno + 1) liftno indty,
+ Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 0 (rightno + 1)))
+ else
+ Cic.Prod (Cic.Anonymous,
+ CicSubstitution.lift_from (rightno + 1) liftno indty,
+ if rightno = 0 then
+ Cic.Rel (1 + liftno + rightno)
+ else
+ Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 1 rightno))
+
let elim_of uri typeno =
let (obj, univ) = (CicEnvironment.get_obj uri CicUniv.empty_ugraph) in
let subst = [] in
match obj with
- | Cic.InductiveDefinition (indTypes, params, indno) ->
+ | Cic.InductiveDefinition (indTypes, params, leftno) ->
let (name, inductive, ty, constructors) =
try
List.nth indTypes typeno
with Failure _ -> assert false
in
+ let paramsno = count_pi ty in (* number of (left or right) parameters *)
+ let dependent = (strip_pi ty <> Cic.Sort Cic.Prop) in
let conslen = List.length constructors in
let consno = ref (conslen + 1) in
let indty =
let indty = Cic.MutInd (uri, typeno, subst) in
- if indno = 0 then
+ if leftno = 0 then
indty
else
- Cic.Appl (indty :: mk_rels 0 indno)
+ Cic.Appl (indty :: mk_rels 0 paramsno)
in
let mk_constructor consno =
let constructor = Cic.MutConstruct (uri, typeno, consno, subst) in
- if indno = 0 then
+ if leftno = 0 then
constructor
else
- Cic.Appl (constructor :: mk_rels consno indno)
+ Cic.Appl (constructor :: mk_rels consno leftno)
in
let eliminator =
- Cic.Prod (Cic.Name "P",
- (Cic.Prod (Cic.Anonymous,
- indty,
- (* Cic.MutInd (uri, typeno, subst), *)
- Cic.Sort (Cic.Type (CicUniv.fresh ())))),
+ let p_ty = type_of_p dependent leftno indty ty in
+ let final_ty =
+ add_right_pi dependent leftno (conslen + 1) (paramsno - leftno)
+ indty ty
+ in
+ Cic.Prod (Cic.Name "P", p_ty,
(List.fold_right
(fun (_, constructor) acc ->
decr consno;
let p = Cic.Rel !consno in
Cic.Prod (Cic.Anonymous,
- (delta (uri, typeno, subst) indno !consno constructor p
- [mk_constructor !consno]),
- acc)) (* lift acc? see assumption above on delta *)
+ (delta (uri, typeno, subst) dependent leftno !consno
+ constructor p [mk_constructor !consno]),
+ acc))
constructors
- (Cic.Prod (Cic.Name (fresh_binder ()),
- CicSubstitution.lift (conslen + 1) indty
- (* Cic.MutInd (uri, typeno, subst) *),
- Cic.Appl [Cic.Rel (2 + conslen); Cic.Rel 1]))))
+ final_ty))
in
- add_params indno ty eliminator
+ add_params leftno ty eliminator
| _ -> assert false