type w = t list
type eqclass = w list
+type dir = Le | Ge
+
let rules =
- [ [I;I], [I];
- [C;C], [C];
- [M;M], [];
- [M;C], [I;M];
- [C;M], [M;I];
-(*
-axiom leq_refl: ∀A. A ⊆ A.
-axiom leq_antisym: ∀A,B. A ⊆ B → B ⊆ A → A=B.
-axiom leq_tran: ∀A,B,C. A ⊆ B → B ⊆ C → A ⊆ C.
-
-axiom i_contrattivita: ∀A. i A ⊆ A.
-axiom i_idempotenza: ∀A. i (i A) = i A.
-axiom i_monotonia: ∀A,B. A ⊆ B → i A ⊆ i B.
-axiom c_espansivita: ∀A. A ⊆ c A.
-axiom c_idempotenza: ∀A. c (c A) = c A.
-axiom c_monotonia: ∀A,B. A ⊆ B → c A ⊆ c B.
-axiom m_antimonotonia: ∀A,B. A ⊆ B → m B ⊆ m A.
-axiom m_saturazione: ∀A. A ⊆ m (m A).
-axiom m_puntofisso: ∀A. m A = m (m (m A)).
-axiom th1: ∀A. c (m A) ⊆ m (i A).
-axiom th2: ∀A. i (m A) ⊆ m (c A).
-lemma l1: ∀A,B. i A ⊆ B → i A ⊆ i B.
-lemma l2: ∀A,B. A ⊆ c B → c A ⊆ c B.
-*)
+ [ [I], Le, [];
+ [C], Ge, [];
+ [I;I], Ge, [I];
+ [C;C], Le, [C];
+ [I], Le, [I];
+ [I], Ge, [I];
+ [C], Le, [C];
+ [C], Ge, [C];
+ [C;M], Le, [M;I];
+ [C;M;I], Le, [M;I]; (* ??? *)
+ [I;M], Le, [M;C];
+ [I;M;C], Ge, [I;M]; (* ??? *)
+ [M;M;M], Ge, [M];
+ [M;M], Ge, [];
+ [M], Le, [M];
+ [M], Ge, [M];
]
;;
-let print_w w =
+let swap = function Le -> Ge | Ge -> Le;;
+
+let rec new_dir dir =
+ function
+ [] -> dir
+ | M::tl -> new_dir (swap dir) tl
+ | (C|I)::tl -> new_dir dir tl
+;;
+
+let string_of_dir = function Le -> "<=" | Ge -> ">=";;
+
+let string_of_w w =
String.concat ""
(List.map (function I -> "i" | C -> "c" | M -> "-") w)
;;
-let print_eqclass eqc =
+let string_of_eqclass eqc =
let eqc = List.sort compare eqc in
- prerr_endline (String.concat "=" (List.map print_w eqc))
+ String.concat "=" (List.map string_of_w eqc)
;;
-let print = List.iter print_eqclass;;
+let print = List.iter (fun eqc -> prerr_endline (string_of_eqclass eqc));;
exception NoMatch;;
-let apply_rule_at_beginning (lhs,rhs) l =
- let rec aux =
+let (@@) l1 ll2 = List.map (function l2 -> l1 @ l2) ll2;;
+
+let uniq l =
+ let rec aux l =
function
- [],l -> l
- | x::lhs,x'::l when x = x' -> aux (lhs,l)
- | _,_ -> raise NoMatch
+ [] -> l
+ | he::tl -> aux (if List.mem he l then l else he::l) tl
in
- rhs @ aux (lhs,l)
+ aux [] l
;;
-let (@@) l1 ll2 = List.map (function l2 -> l1 @ l2) ll2
+let rec apply_rule_at_beginning (lhs,dir',rhs) (w,dir) =
+ if dir <> dir' then
+ raise NoMatch
+ else
+ let rec aux =
+ function
+ [],w -> w
+ | x::lhs,x'::w when x = x' -> aux (lhs,w)
+ | _,_ -> raise NoMatch
+ in
+ rhs @@ apply_rules (aux (lhs,w),new_dir dir lhs)
+and apply_rules (w,_ as w_and_dir) =
+ if w = [] then [[]]
+ else
+ let rec aux =
+ function
+ [] -> []
+ | rule::tl ->
+ (try apply_rule_at_beginning rule w_and_dir
+ with NoMatch -> [])
+ @
+ aux tl
+ in
+ aux rules
;;
-let rec apply_rule rule w =
- (try
- [apply_rule_at_beginning rule w]
- with
- NoMatch -> []) @
- match w with
- [] -> []
- | he::tl -> [he] @@ apply_rule rule tl
+let apply_rules (w,dir as w_and_dir) =
+ List.map (fun w' -> w,dir,w')
+ (uniq (apply_rules w_and_dir))
;;
-let uniq =
- let rec aux l =
- function
- [] -> l
- | he::tl -> aux (if List.mem he l then l else he::l) tl
- in
- aux []
+let step (l : w list) =
+ uniq
+ (List.flatten
+ (List.map
+ (function w -> List.map (fun x -> x@w) [[I];[C];[M];[]])
+ l))
;;
-let apply_rules w =
- let rec aux =
- function
- [] -> [w]
- | rule::rules -> apply_rule rule w @ aux rules
- in
- uniq (aux rules)
+let classify (l : w list) =
+ List.flatten (List.map (fun x -> apply_rules (x,Le) @ apply_rules (x,Ge)) l)
;;
+let print_graph =
+ List.iter
+ (function (w,dir,w') ->
+ prerr_endline (string_of_w w ^ string_of_dir dir ^ string_of_w w'))
+;;
+
+print_graph (classify (step (step (step [[]]))));;
+
+(*
+ let ns = ref [] in
+ List.iter (function eqc -> ns := eqc::!ns) s;
+ List.iter
+ (function eqc ->
+ List.iter
+ (function x ->
+ let eqc = simplify ([x] @@ eqc) in
+ if not (List.exists (fun eqc' -> eqc === eqc') !ns) then
+ ns := eqc::!ns
+ ) [I;C;M]
+ ) s;
+ combine_classes !ns
+;;
+
+
+
let subseteq l1 l2 =
List.for_all (fun x -> List.mem x l2) l1
;;
prerr_endline ("Numero di classi trovate: " ^ string_of_int (List.length classes));
print classes
;;
+*)