ml_props:> is_mlattice R ml_carr
}.
-axiom meq_joinl: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δx y ≈ δz y.
+lemma eq_to_zero: ∀R.∀ml:mlattice R.∀x,y:ml.x ≈ y → δ x y ≈ 0.
+intros (R ml x y H); intro H1; apply H; clear H;
+apply (ml_prop1 ?? ml); split [apply mpositive] apply ap_symmetric;
+assumption;
+qed.
+
+lemma meq_joinl: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δx y ≈ δz y.
+intros (R ml x y z); apply le_le_eq;
+[ apply (le_transitive ???? (mtineq ???y z));
+ apply (le_rewl ??? (0+δz y) (eq_to_zero ???? H));
+ apply (le_rewl ??? (δz y) (zero_neutral ??)); apply le_reflexive;
+| apply (le_transitive ???? (mtineq ???y x));
+ apply (le_rewl ??? (0+δx y) (eq_to_zero ??z x H));
+ apply (le_rewl ??? (δx y) (zero_neutral ??)); apply le_reflexive;]
+qed.
lemma meq_joinr: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z.
intros; apply (eq_trans ???? (msymmetric ??y x));
apply (eq_trans ????? (msymmetric ??z y)); apply meq_joinl; assumption;
-qed.
-
-(*
-lemma foo: ∀R.∀ml:mlattice R.∀x,y,z:ml. δx y ≈ δ(y∨x) (y∨z).
-intros; apply le_le_eq; [
- apply (le_rewr ???? (meq_joinl ????? (join_comm ???)));
- apply (le_rewr ???? (meq_joinr ????? (join_comm ???)));
-*)
+qed.
(* 3.11 *)
lemma le_mtri:
∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z.
intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq]
-apply (le_transitive ????? (ml_prop2 ?? ml (y∧x) ??));
+apply (le_transitive ????? (ml_prop2 ?? ml (y) ??));
(* auto type. assert failure *)
+whd;