\ /
V_______________________________________________________________ *)
-include "arithmetics/nat.ma".
+include "basics/types.ma".
+include "arithmetics/div_and_mod.ma".
-let rec bigop' (n:nat) (filter: nat → bool) (A:Type[0]) (f: nat → A)
- (nil: A) (op: A → A → A) ≝
+definition sameF_upto: nat → ∀A.relation(nat→A) ≝
+λk.λA.λf,g.∀i. i < k → f i = g i.
+
+definition sameF_p: nat → (nat → bool) →∀A.relation(nat→A) ≝
+λk,p,A,f,g.∀i. i < k → p i = true → f i = g i.
+
+lemma sameF_upto_le: ∀A,f,g,n,m.
+ n ≤m → sameF_upto m A f g → sameF_upto n A f g.
+#A #f #g #n #m #lenm #samef #i #ltin @samef /2/
+qed.
+
+lemma sameF_p_le: ∀A,p,f,g,n,m.
+ n ≤m → sameF_p m p A f g → sameF_p n p A f g.
+#A #p #f #g #n #m #lenm #samef #i #ltin #pi @samef /2/
+qed.
+
+(*
+definition sumF ≝ λA.λf,g:nat → A.λn,i.
+if_then_else ? (leb n i) (g (i-n)) (f i).
+
+lemma sumF_unfold: ∀A,f,g,n,i.
+sumF A f g n i = if_then_else ? (leb n i) (g (i-n)) (f i).
+// qed. *)
+
+definition prodF ≝
+ λA,B.λf:nat→A.λg:nat→B.λm,x.〈 f(div x m), g(mod x m) 〉.
+
+(* bigop *)
+let rec bigop (n:nat) (p:nat → bool) (B:Type[0])
+ (nil: B) (op: B → B → B) (f: nat → B) ≝
match n with
[ O ⇒ nil
| S k ⇒
- match filter k with
- [true ⇒ op (f k) (bigop' k filter A f nil op)
- |false ⇒ bigop' k filter A f nil op]
+ match p k with
+ [true ⇒ op (f k) (bigop k p B nil op f)
+ |false ⇒ bigop k p B nil op f]
].
+
+notation "\big [ op , nil ]_{ ident i < n | p } f"
+ with precedence 80
+for @{'bigop $n $op $nil (λ${ident i}. $p) (λ${ident i}. $f)}.
-record range (A:Type[0]): Type[0] ≝
- {h:nat→A; upto:nat; filter:nat→bool}.
+notation "\big [ op , nil ]_{ ident i < n } f"
+ with precedence 80
+for @{'bigop $n $op $nil (λ${ident i}.true) (λ${ident i}. $f)}.
-definition same_upto: nat → ∀A.relation (range A) ≝
-λk.λA.λI,J.
- ∀i. i < k →
- ((filter A I i) = (filter A J i) ∧
- ((filter A I i) = true → (h A I i) = (h A J i))).
-
-definition same: ∀A.relation (range A) ≝
-λA.λI,J. (upto A I = upto A J) ∧ same_upto (upto A I) A I J.
+interpretation "bigop" 'bigop n op nil p f = (bigop n p ? nil op f).
-definition pad: ∀A.nat→range A→range A ≝
- λA.λk.λI.mk_range A (h A I) k
- (λi.if_then_else ? (leb (upto A I) i) false (filter A I i)).
+notation "\big [ op , nil ]_{ ident j ∈ [a,b[ | p } f"
+ with precedence 80
+for @{'bigop ($b-$a) $op $nil (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a)))
+ (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}.
-definition same1: ∀A.relation (range A) ≝
-λA.λI,J.
- let maxIJ ≝ (max (upto A I) (upto A J)) in
- same_upto maxIJ A (pad A maxIJ I) (pad A maxIJ J).
-
-(*
-definition same: ∀A.relation (range A) ≝
-λA.λI,J.
- ∀i. i < max (upto A I) (upto A J) →
- ((filter A I i) = (filter A J i) ∧
- ((filter A I i) = true → (h A I i) = (h A J i))). *)
-
-definition bigop: ∀A,B:Type[0].(range A)→B→(B→B→B)→(A→B)→B ≝
- λA,B.λI.λnil.λop.λf.
- bigop' (upto A I) (filter A I) B (λx.f(h A I x)) nil op.
-
-theorem same_bigop: ∀A,B.∀I,J:range A. ∀nil.∀op.∀f.
- same A I J → bigop A B I nil op f = bigop A B J nil op f.
-#A #B #I #J #nil #op #f * #equp normalize <equp #same
-@(le_gen ? (upto A I)) #i (elim i) // #i #Hind #lti
-(lapply (same i lti)) * #eqfilter
-(lapply (Hind (transitive_le … (le_n_Sn i) (lti)))) #eqbigop
-normalize <eqfilter (cases (filter A I i)) normalize //
-#H (lapply (H (refl ??))) // qed.
-
-theorem pad_bigog: ∀A,B.∀I:range A. ∀nil.∀op.∀f.∀k.
- upto A I ≤ k → bigop A B I nil op f = bigop A B (pad A k I) nil op f.
-#A #B #I #nil #op #f #k #lek (elim lek)
-[@same_bigop % // #i #lti % // normalize
- >(not_le_to_leb_false …) // @lt_to_not_le //
-|#n #leup #Hind normalize <Hind >(le_to_leb_true … leup) normalize //
-] qed.
-
-theorem iter_p_gen_false: \forall A:Type. \forall g: nat \to A. \forall baseA:A.
-\forall plusA: A \to A \to A. \forall n.
-iter_p_gen n (\lambda x.false) A g baseA plusA = baseA.
-intros.
-elim n
-[ reflexivity
-| simplify.
- assumption
-]
+notation "\big [ op , nil ]_{ ident j ∈ [a,b[ } f"
+ with precedence 80
+for @{'bigop ($b-$a) $op $nil (λ${ident j}.((λ${ident j}.$true) (${ident j}+$a)))
+ (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}.
+
+(* notation "\big [ op , nil ]_{( term 50) a ≤ ident j < b | p } f"
+ with precedence 80
+for @{\big[$op,$nil]_{${ident j} < ($b-$a) | ((λ${ident j}.$p) (${ident j}+$a))}((λ${ident j}.$f)(${ident j}+$a))}.
+*)
+
+interpretation "bigop" 'bigop n op nil p f = (bigop n p ? nil op f).
+
+lemma bigop_Strue: ∀k,p,B,nil,op.∀f:nat→B. p k = true →
+ \big[op,nil]_{i < S k | p i}(f i) =
+ op (f k) (\big[op,nil]_{i < k | p i}(f i)).
+#k #p #B #nil #op #f #H normalize >H // qed.
+
+lemma bigop_Sfalse: ∀k,p,B,nil,op.∀f:nat→B. p k = false →
+ \big[op,nil]_{ i < S k | p i}(f i) =
+ \big[op,nil]_{i < k | p i}(f i).
+#k #p #B #nil #op #f #H normalize >H // qed.
+
+lemma same_bigop : ∀k,p1,p2,B,nil,op.∀f,g:nat→B.
+ sameF_upto k bool p1 p2 → sameF_p k p1 B f g →
+ \big[op,nil]_{i < k | p1 i}(f i) =
+ \big[op,nil]_{i < k | p2 i}(g i).
+#k #p1 #p2 #B #nil #op #f #g (elim k) //
+#n #Hind #samep #samef normalize >Hind /2/
+<(samep … (le_n …)) cases(true_or_false (p1 n)) #H1 >H1
+normalize // <(samef … (le_n …) H1) //
qed.
-theorem iter_p_gen_plusA: \forall A:Type. \forall n,k:nat.\forall p:nat \to bool.
-\forall g: nat \to A. \forall baseA:A. \forall plusA: A \to A \to A.
-(symmetric A plusA) \to (\forall a:A. (plusA a baseA) = a) \to (associative A plusA)
-\to
-iter_p_gen (k + n) p A g baseA plusA
-= (plusA (iter_p_gen k (\lambda x.p (x+n)) A (\lambda x.g (x+n)) baseA plusA)
- (iter_p_gen n p A g baseA plusA)).
-intros.
-
-elim k
-[ simplify.
- rewrite > H in \vdash (? ? ? %).
- rewrite > (H1 ?).
- reflexivity
-| apply (bool_elim ? (p (n1+n)))
- [ intro.
- rewrite > (true_to_iter_p_gen_Sn ? ? ? ? ? ? H4).
- rewrite > (true_to_iter_p_gen_Sn n1 (\lambda x.p (x+n)) ? ? ? ? H4).
- rewrite > (H2 (g (n1 + n)) ? ?).
- rewrite < H3.
- reflexivity
- | intro.
- rewrite > (false_to_iter_p_gen_Sn ? ? ? ? ? ? H4).
- rewrite > (false_to_iter_p_gen_Sn n1 (\lambda x.p (x+n)) ? ? ? ? H4).
- assumption
+theorem pad_bigop: ∀k,n,p,B,nil,op.∀f:nat→B. n ≤ k →
+\big[op,nil]_{i < n | p i}(f i)
+ = \big[op,nil]_{i < k | if_then_else ? (leb n i) false (p i)}(f i).
+#k #n #p #B #nil #op #f #lenk (elim lenk)
+ [@same_bigop #i #lti // >(not_le_to_leb_false …) /2/
+ |#j #leup #Hind >bigop_Sfalse >(le_to_leb_true … leup) //
+ ] qed.
+
+record Aop (A:Type[0]) (nil:A) : Type[0] ≝
+ {op :2> A → A → A;
+ nill:∀a. op nil a = a;
+ nilr:∀a. op a nil = a;
+ assoc: ∀a,b,c.op a (op b c) = op (op a b) c
+ }.
+
+theorem bigop_sum: ∀k1,k2,p1,p2,B.∀nil.∀op:Aop B nil.∀f,g:nat→B.
+op (\big[op,nil]_{i<k1|p1 i}(f i)) \big[op,nil]_{i<k2|p2 i}(g i) =
+ \big[op,nil]_{i<k1+k2|if_then_else ? (leb k2 i) (p1 (i-k2)) (p2 i)}
+ (if_then_else ? (leb k2 i) (f (i-k2)) (g i)).
+#k1 #k2 #p1 #p2 #B #nil #op #f #g (elim k1)
+ [normalize >nill @same_bigop #i #lti
+ >(lt_to_leb_false … lti) normalize /2/
+ |#i #Hind normalize <minus_plus_m_m (cases (p1 i))
+ >(le_to_leb_true … (le_plus_n …)) normalize <Hind //
+ <assoc //
]
-]
qed.
-theorem false_to_eq_iter_p_gen: \forall A:Type. \forall n,m:nat.\forall p:nat \to bool.
-\forall g: nat \to A. \forall baseA:A. \forall plusA: A \to A \to A.
-n \le m \to (\forall i:nat. n \le i \to i < m \to p i = false)
-\to iter_p_gen m p A g baseA plusA = iter_p_gen n p A g baseA plusA.
-intros 8.
-elim H
-[ reflexivity
-| simplify.
- rewrite > H3
- [ simplify.
- apply H2.
- intros.
- apply H3
- [ apply H4
- | apply le_S.
- assumption
- ]
- | assumption
- |apply le_n
- ]
-]
+lemma plus_minus1: ∀a,b,c. c ≤ b → a + (b -c) = a + b -c.
+#a #b #c #lecb @sym_eq @plus_to_minus >(commutative_plus c)
+>associative_plus <plus_minus_m_m //
qed.
-(* a therem slightly more general than the previous one *)
-theorem or_false_eq_baseA_to_eq_iter_p_gen: \forall A:Type. \forall n,m:nat.\forall p:nat \to bool.
-\forall g: nat \to A. \forall baseA:A. \forall plusA: A \to A \to A.
-(\forall a. plusA baseA a = a) \to
-n \le m \to (\forall i:nat. n \le i \to i < m \to p i = false \lor g i = baseA)
-\to iter_p_gen m p A g baseA plusA = iter_p_gen n p A g baseA plusA.
-intros 9.
-elim H1
-[reflexivity
-|apply (bool_elim ? (p n1));intro
- [elim (H4 n1)
- [apply False_ind.
- apply not_eq_true_false.
- rewrite < H5.
- rewrite < H6.
- reflexivity
- |rewrite > true_to_iter_p_gen_Sn
- [rewrite > H6.
- rewrite > H.
- apply H3.intros.
- apply H4
- [assumption
- |apply le_S.assumption
- ]
- |assumption
- ]
- |assumption
- |apply le_n
- ]
- |rewrite > false_to_iter_p_gen_Sn
- [apply H3.intros.
- apply H4
- [assumption
- |apply le_S.assumption
- ]
- |assumption
- ]
- ]
-]
+theorem bigop_I: ∀n,p,B.∀nil.∀op:Aop B nil.∀f:nat→B.
+\big[op,nil]_{i∈[0,n[ |p i}(f i) = \big[op,nil]_{i < n|p i}(f i).
+#n #p #B #nil #op #f <minus_n_O @same_bigop //
qed.
-
-theorem iter_p_gen2 :
-\forall n,m:nat.
-\forall p1,p2:nat \to bool.
-\forall A:Type.
-\forall g: nat \to nat \to A.
-\forall baseA: A.
-\forall plusA: A \to A \to A.
-(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a)
-\to
-iter_p_gen (n*m)
- (\lambda x.andb (p1 (div x m)) (p2 (mod x m)))
- A
- (\lambda x.g (div x m) (mod x m))
- baseA
- plusA =
-iter_p_gen n p1 A
- (\lambda x.iter_p_gen m p2 A (g x) baseA plusA)
- baseA plusA.
-intros.
-elim n
-[ simplify.
- reflexivity
-| apply (bool_elim ? (p1 n1))
- [ intro.
- rewrite > (true_to_iter_p_gen_Sn ? ? ? ? ? ? H4).
- simplify in \vdash (? ? (? % ? ? ? ? ?) ?).
- rewrite > iter_p_gen_plusA
- [ rewrite < H3.
- apply eq_f2
- [ apply eq_iter_p_gen
- [ intros.
- rewrite > sym_plus.
- rewrite > (div_plus_times ? ? ? H5).
- rewrite > (mod_plus_times ? ? ? H5).
- rewrite > H4.
- simplify.
- reflexivity
- | intros.
- rewrite > sym_plus.
- rewrite > (div_plus_times ? ? ? H5).
- rewrite > (mod_plus_times ? ? ? H5).
- reflexivity.
- ]
- | reflexivity
- ]
- | assumption
- | assumption
- | assumption
- ]
- | intro.
- rewrite > (false_to_iter_p_gen_Sn ? ? ? ? ? ? H4).
- simplify in \vdash (? ? (? % ? ? ? ? ?) ?).
- rewrite > iter_p_gen_plusA
- [ rewrite > H3.
- apply (trans_eq ? ? (plusA baseA
- (iter_p_gen n1 p1 A (\lambda x:nat.iter_p_gen m p2 A (g x) baseA plusA) baseA plusA )))
- [ apply eq_f2
- [ rewrite > (eq_iter_p_gen ? (\lambda x.false) A ? (\lambda x:nat.g ((x+n1*m)/m) ((x+n1*m)\mod m)))
- [ apply iter_p_gen_false
- | intros.
- rewrite > sym_plus.
- rewrite > (div_plus_times ? ? ? H5).
- rewrite > (mod_plus_times ? ? ? H5).
- rewrite > H4.
- simplify.reflexivity
- | intros.reflexivity.
- ]
- | reflexivity
- ]
- | rewrite < H.
- rewrite > H2.
- reflexivity.
- ]
- | assumption
- | assumption
- | assumption
- ]
+
+theorem bigop_sumI: ∀a,b,c,p,B.∀nil.∀op:Aop B nil.∀f:nat→B.
+a ≤ b → b ≤ c →
+\big[op,nil]_{i∈[a,c[ |p i}(f i) =
+ op (\big[op,nil]_{i ∈ [b,c[ |p i}(f i))
+ \big[op,nil]_{i ∈ [a,b[ |p i}(f i).
+#a #b # c #p #B #nil #op #f #leab #lebc
+>(plus_minus_m_m (c-a) (b-a)) in ⊢ (??%?) /2/
+>minus_minus >(commutative_plus a) <plus_minus_m_m //
+>bigop_sum (cut (∀i. b -a ≤ i → i+a = i-(b-a)+b))
+ [#i #lei >plus_minus // <plus_minus1
+ [@eq_f @sym_eq @plus_to_minus /2/ | /2/]]
+#H @same_bigop #i #ltic @leb_elim normalize // #lei <H //
+qed.
+
+theorem bigop_prod: ∀k1,k2,p1,p2,B.∀nil.∀op:Aop B nil.∀f: nat →nat → B.
+\big[op,nil]_{x<k1|p1 x}(\big[op,nil]_{i<k2|p2 x i}(f x i)) =
+ \big[op,nil]_{i<k1*k2|andb (p1 (div i k2)) (p2 (div i k2) (i \mod k2))}
+ (f (div i k2) (i \mod k2)).
+#k1 #k2 #p1 #p2 #B #nil #op #f (elim k1) //
+#n #Hind cases(true_or_false (p1 n)) #Hp1
+ [>bigop_Strue // >Hind >bigop_sum @same_bigop
+ #i #lti @leb_elim // #lei cut (i = n*k2+(i-n*k2)) /2/
+ #eqi [|#H] (>eqi in ⊢ (???%))
+ >div_plus_times /2/ >Hp1 >(mod_plus_times …) /2/
+ |>bigop_Sfalse // >Hind >(pad_bigop (S n*k2)) // @same_bigop
+ #i #lti @leb_elim // #lei cut (i = n*k2+(i-n*k2)) /2/
+ #eqi >eqi in ⊢ (???%) >div_plus_times /2/
]
-]
qed.
-theorem iter_p_gen2':
-\forall n,m:nat.
-\forall p1: nat \to bool.
-\forall p2: nat \to nat \to bool.
-\forall A:Type.
-\forall g: nat \to nat \to A.
-\forall baseA: A.
-\forall plusA: A \to A \to A.
-(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a)
-\to
-iter_p_gen (n*m)
- (\lambda x.andb (p1 (div x m)) (p2 (div x m)(mod x m)))
- A
- (\lambda x.g (div x m) (mod x m))
- baseA
- plusA =
-iter_p_gen n p1 A
- (\lambda x.iter_p_gen m (p2 x) A (g x) baseA plusA)
- baseA plusA.
-intros.
-elim n
-[ simplify.
- reflexivity
-| apply (bool_elim ? (p1 n1))
- [ intro.
- rewrite > (true_to_iter_p_gen_Sn ? ? ? ? ? ? H4).
- simplify in \vdash (? ? (? % ? ? ? ? ?) ?).
- rewrite > iter_p_gen_plusA
- [ rewrite < H3.
- apply eq_f2
- [ apply eq_iter_p_gen
- [ intros.
- rewrite > sym_plus.
- rewrite > (div_plus_times ? ? ? H5).
- rewrite > (mod_plus_times ? ? ? H5).
- rewrite > H4.
- simplify.
- reflexivity
- | intros.
- rewrite > sym_plus.
- rewrite > (div_plus_times ? ? ? H5).
- rewrite > (mod_plus_times ? ? ? H5).
- reflexivity.
- ]
- | reflexivity
- ]
- | assumption
- | assumption
- | assumption
- ]
- | intro.
- rewrite > (false_to_iter_p_gen_Sn ? ? ? ? ? ? H4).
- simplify in \vdash (? ? (? % ? ? ? ? ?) ?).
- rewrite > iter_p_gen_plusA
- [ rewrite > H3.
- apply (trans_eq ? ? (plusA baseA
- (iter_p_gen n1 p1 A (\lambda x:nat.iter_p_gen m (p2 x) A (g x) baseA plusA) baseA plusA )))
- [ apply eq_f2
- [ rewrite > (eq_iter_p_gen ? (\lambda x.false) A ? (\lambda x:nat.g ((x+n1*m)/m) ((x+n1*m)\mod m)))
- [ apply iter_p_gen_false
- | intros.
- rewrite > sym_plus.
- rewrite > (div_plus_times ? ? ? H5).
- rewrite > (mod_plus_times ? ? ? H5).
- rewrite > H4.
- simplify.reflexivity
- | intros.reflexivity.
- ]
- | reflexivity
- ]
- | rewrite < H.
- rewrite > H2.
- reflexivity.
+record ACop (A:Type[0]) (nil:A) : Type[0] ≝
+ {aop :> Aop A nil;
+ comm: ∀a,b.aop a b = aop b a
+ }.
+
+lemma bigop_diff: ∀p,B.∀nil.∀op:ACop B nil.∀f:nat → B.∀i,n.
+ i < n → p i = true →
+ \big[op,nil]_{x<n|p x}(f x)=
+ op (f i) (\big[op,nil]_{x<n|andb(notb(eqb i x))(p x)}(f x)).
+#p #B #nil #op #f #i #n (elim n)
+ [#ltO @False_ind /2/
+ |#n #Hind #lein #pi cases (le_to_or_lt_eq … (le_S_S_to_le …lein)) #Hi
+ [cut (andb(notb(eqb i n))(p n) = (p n))
+ [>(not_eq_to_eqb_false … (lt_to_not_eq … Hi)) //] #Hcut
+ cases (true_or_false (p n)) #pn
+ [>bigop_Strue // >bigop_Strue //
+ >assoc >(comm ?? op (f i) (f n)) <assoc >Hind //
+ |>bigop_Sfalse // >bigop_Sfalse // >Hind //
]
- | assumption
- | assumption
- | assumption
- ]
- ]
-]
+ |<Hi >bigop_Strue // @eq_f >bigop_Sfalse
+ [@same_bigop // #k #ltki >not_eq_to_eqb_false /2/
+ |>eq_to_eqb_true //
+ ]
+ ]
+ ]
qed.
-lemma iter_p_gen_gi:
-\forall A:Type.
-\forall g: nat \to A.
-\forall baseA:A.
-\forall plusA: A \to A \to A.
-\forall n,i:nat.
-\forall p:nat \to bool.
-(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a)
- \to
+(* range *)
+record range (A:Type[0]): Type[0] ≝
+ {enum:nat→A; upto:nat; filter:nat→bool}.
-i < n \to p i = true \to
-(iter_p_gen n p A g baseA plusA) =
-(plusA (g i) (iter_p_gen n (\lambda x:nat. andb (p x) (notb (eqb x i))) A g baseA plusA)).
-intros 5.
-elim n
-[ apply False_ind.
- apply (not_le_Sn_O i).
- assumption
-| apply (bool_elim ? (p n1));intro
- [ elim (le_to_or_lt_eq i n1)
- [ rewrite > true_to_iter_p_gen_Sn
- [ rewrite > true_to_iter_p_gen_Sn
- [ rewrite < (H2 (g i) ? ?).
- rewrite > (H1 (g i) (g n1)).
- rewrite > (H2 (g n1) ? ?).
- apply eq_f2
- [ reflexivity
- | apply H
- [ assumption
- | assumption
- | assumption
- | assumption
- | assumption
- ]
- ]
- | rewrite > H6.simplify.
- change with (notb (eqb n1 i) = notb false).
- apply eq_f.
- apply not_eq_to_eqb_false.
- unfold Not.intro.
- apply (lt_to_not_eq ? ? H7).
- apply sym_eq.assumption
- ]
- | assumption
- ]
- | rewrite > true_to_iter_p_gen_Sn
- [ rewrite > H7.
- apply eq_f2
- [ reflexivity
- | rewrite > false_to_iter_p_gen_Sn
- [ apply eq_iter_p_gen
- [ intros.
- elim (p x)
- [ simplify.
- change with (notb false = notb (eqb x n1)).
- apply eq_f.
- apply sym_eq.
- apply not_eq_to_eqb_false.
- apply (lt_to_not_eq ? ? H8)
- | reflexivity
- ]
- | intros.
- reflexivity
- ]
- | rewrite > H6.
- rewrite > (eq_to_eqb_true ? ? (refl_eq ? n1)).
- reflexivity
- ]
- ]
- | assumption
- ]
- | apply le_S_S_to_le.
- assumption
- ]
- | rewrite > false_to_iter_p_gen_Sn
- [ elim (le_to_or_lt_eq i n1)
- [ rewrite > false_to_iter_p_gen_Sn
- [ apply H
- [ assumption
- | assumption
- | assumption
- | assumption
- | assumption
- ]
- | rewrite > H6.reflexivity
- ]
- | apply False_ind.
- apply not_eq_true_false.
- rewrite < H5.
- rewrite > H7.
- assumption
- | apply le_S_S_to_le.
- assumption
- ]
- | assumption
- ]
- ]
-]
+definition sub_hk: (nat→nat)→(nat→nat)→∀A:Type[0].relation (range A) ≝
+λh,k,A,I,J.∀i.i<(upto A I) → (filter A I i)=true →
+ (h i < upto A J
+ ∧ filter A J (h i) = true
+ ∧ k (h i) = i).
+
+definition iso: ∀A:Type[0].relation (range A) ≝
+ λA,I,J.∃h,k.
+ (∀i. i < (upto A I) → (filter A I i) = true →
+ enum A I i = enum A J (h i)) ∧
+ sub_hk h k A I J ∧ sub_hk k h A J I.
+
+lemma sub_hkO: ∀h,k,A,I,J. upto A I = 0 → sub_hk h k A I J.
+#h #k #A #I #J #up0 #i #lti >up0 @False_ind /2/
qed.
-(* invariance under permutation; single sum *)
-theorem eq_iter_p_gen_gh:
-\forall A:Type.
-\forall baseA: A.
-\forall plusA: A \to A \to A.
-(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) \to
-\forall g: nat \to A.
-\forall h,h1: nat \to nat.
-\forall n,n1:nat.
-\forall p1,p2:nat \to bool.
-(\forall i. i < n \to p1 i = true \to p2 (h i) = true) \to
-(\forall i. i < n \to p1 i = true \to h1 (h i) = i) \to
-(\forall i. i < n \to p1 i = true \to h i < n1) \to
-(\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to
-(\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to
-(\forall j. j < n1 \to p2 j = true \to h1 j < n) \to
-
-iter_p_gen n p1 A (\lambda x.g(h x)) baseA plusA =
-iter_p_gen n1 p2 A g baseA plusA.
-intros 10.
-elim n
-[ generalize in match H8.
- elim n1
- [ reflexivity
- | apply (bool_elim ? (p2 n2));intro
- [ apply False_ind.
- apply (not_le_Sn_O (h1 n2)).
- apply H10
- [ apply le_n
- | assumption
- ]
- | rewrite > false_to_iter_p_gen_Sn
- [ apply H9.
- intros.
- apply H10
- [ apply le_S.
- apply H12
- | assumption
- ]
- | assumption
- ]
- ]
- ]
-| apply (bool_elim ? (p1 n1));intro
- [ rewrite > true_to_iter_p_gen_Sn
- [ rewrite > (iter_p_gen_gi A g baseA plusA n2 (h n1))
- [ apply eq_f2
- [ reflexivity
- | apply H3
- [ intros.
- rewrite > H4
- [ simplify.
- change with ((\not eqb (h i) (h n1))= \not false).
- apply eq_f.
- apply not_eq_to_eqb_false.
- unfold Not.
- intro.
- apply (lt_to_not_eq ? ? H11).
- rewrite < H5
- [ rewrite < (H5 n1)
- [ apply eq_f.
- assumption
- | apply le_n
- | assumption
- ]
- | apply le_S.
- assumption
- | assumption
- ]
- | apply le_S.assumption
- | assumption
- ]
- | intros.
- apply H5
- [ apply le_S.
- assumption
- | assumption
- ]
- | intros.
- apply H6
- [ apply le_S.assumption
- | assumption
- ]
- | intros.
- apply H7
- [ assumption
- | generalize in match H12.
- elim (p2 j)
- [ reflexivity
- | assumption
- ]
- ]
- | intros.
- apply H8
- [ assumption
- | generalize in match H12.
- elim (p2 j)
- [ reflexivity
- | assumption
- ]
- ]
- | intros.
- elim (le_to_or_lt_eq (h1 j) n1)
- [ assumption
- | generalize in match H12.
- elim (p2 j)
- [ simplify in H13.
- absurd (j = (h n1))
- [ rewrite < H13.
- rewrite > H8
- [ reflexivity
- | assumption
- | apply andb_true_true; [2: apply H12]
- ]
- | apply eqb_false_to_not_eq.
- generalize in match H14.
- elim (eqb j (h n1))
- [ apply sym_eq.assumption
- | reflexivity
- ]
- ]
- | simplify in H14.
- apply False_ind.
- apply not_eq_true_false.
- apply sym_eq.assumption
- ]
- | apply le_S_S_to_le.
- apply H9
- [ assumption
- | generalize in match H12.
- elim (p2 j)
- [ reflexivity
- | assumption
- ]
- ]
- ]
- ]
- ]
- | assumption
- | assumption
- | assumption
- | apply H6
- [ apply le_n
- | assumption
- ]
- | apply H4
- [ apply le_n
- | assumption
- ]
- ]
- | assumption
- ]
- | rewrite > false_to_iter_p_gen_Sn
- [ apply H3
- [ intros.
- apply H4[apply le_S.assumption|assumption]
- | intros.
- apply H5[apply le_S.assumption|assumption]
- | intros.
- apply H6[apply le_S.assumption|assumption]
- | intros.
- apply H7[assumption|assumption]
- | intros.
- apply H8[assumption|assumption]
- | intros.
- elim (le_to_or_lt_eq (h1 j) n1)
- [ assumption
- | absurd (j = (h n1))
- [ rewrite < H13.
- rewrite > H8
- [ reflexivity
- | assumption
- | assumption
- ]
- | unfold Not.intro.
- apply not_eq_true_false.
- rewrite < H10.
- rewrite < H13.
- rewrite > H7
- [ reflexivity
- | assumption
- | assumption
- ]
- ]
- | apply le_S_S_to_le.
- apply H9
- [ assumption
- | assumption
- ]
- ]
- ]
- | assumption
- ]
- ]
-]
+lemma sub0_to_false: ∀h,k,A,I,J. upto A I = 0 → sub_hk h k A J I →
+ ∀i. i < upto A J → filter A J i = false.
+#h #k #A #I #J #up0 #sub #i #lti cases(true_or_false (filter A J i)) //
+#ptrue (cases (sub i lti ptrue)) * #hi @False_ind /2/
qed.
-theorem eq_iter_p_gen_pred:
-\forall A:Type.
-\forall baseA: A.
-\forall plusA: A \to A \to A.
-\forall n,p,g.
-p O = true \to
-(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) \to
-iter_p_gen (S n) (\lambda i.p (pred i)) A (\lambda i.g(pred i)) baseA plusA =
-plusA (iter_p_gen n p A g baseA plusA) (g O).
-intros.
-elim n
- [rewrite > true_to_iter_p_gen_Sn
- [simplify.apply H1
- |assumption
+lemma sub_lt: ∀A,e,p,n,m. n ≤ m →
+ sub_hk (λx.x) (λx.x) A (mk_range A e n p) (mk_range A e m p).
+#A #e #f #n #m #lenm #i #lti #fi % // % /2/
+qed.
+
+theorem transitive_sub: ∀h1,k1,h2,k2,A,I,J,K.
+ sub_hk h1 k1 A I J → sub_hk h2 k2 A J K →
+ sub_hk (λx.h2(h1 x)) (λx.k1(k2 x)) A I K.
+#h1 #k1 #h2 #k2 #A #I #J #K #sub1 #sub2 #i #lti #fi
+cases(sub1 i lti fi) * #lth1i #fh1i #ei
+cases(sub2 (h1 i) lth1i fh1i) * #H1 #H2 #H3 % // % //
+qed.
+
+theorem bigop_iso: ∀n1,n2,p1,p2,B.∀nil.∀op:ACop B nil.∀f1,f2.
+ iso B (mk_range B f1 n1 p1) (mk_range B f2 n2 p2) →
+ \big[op,nil]_{i<n1|p1 i}(f1 i) = \big[op,nil]_{i<n2|p2 i}(f2 i).
+#n1 #n2 #p1 #p2 #B #nil #op #f1 #f2 * #h * #k * * #same
+@(le_gen ? n1) #i (generalize in match p2) (elim i)
+ [(elim n2) // #m #Hind #p2 #_ #sub1 #sub2
+ >bigop_Sfalse
+ [@(Hind ? (le_O_n ?)) [/2/ | @(transitive_sub … (sub_lt …) sub2) //]
+ |@(sub0_to_false … sub2) //
]
- |apply (bool_elim ? (p n1));intro
- [rewrite > true_to_iter_p_gen_Sn
- [rewrite > true_to_iter_p_gen_Sn in ⊢ (? ? ? %)
- [rewrite > H2 in ⊢ (? ? ? %).
- apply eq_f.assumption
- |assumption
- ]
- |assumption
+ |#n #Hind #p2 #ltn #sub1 #sub2 (cut (n ≤n1)) [/2/] #len
+ cases(true_or_false (p1 n)) #p1n
+ [>bigop_Strue // (cases (sub1 n (le_n …) p1n)) * #hn #p2hn #eqn
+ >(bigop_diff … (h n) n2) // >same //
+ @eq_f @(Hind ? len)
+ [#i #ltin #p1i (cases (sub1 i (le_S … ltin) p1i)) *
+ #h1i #p2h1i #eqi % // % // >not_eq_to_eqb_false normalize //
+ @(not_to_not ??? (lt_to_not_eq ? ? ltin)) //
+ |#j #ltj #p2j (cases (sub2 j ltj (andb_true_r …p2j))) *
+ #ltkj #p1kj #eqj % // % //
+ (cases (le_to_or_lt_eq …(le_S_S_to_le …ltkj))) //
+ #eqkj @False_ind generalize in match p2j @eqb_elim
+ normalize /2/
]
- |rewrite > false_to_iter_p_gen_Sn
- [rewrite > false_to_iter_p_gen_Sn in ⊢ (? ? ? %);assumption
- |assumption
+ |>bigop_Sfalse // @(Hind ? len)
+ [@(transitive_sub … (sub_lt …) sub1) //
+ |#i #lti #p2i cases(sub2 i lti p2i) * #ltki #p1ki #eqi
+ % // % // cases(le_to_or_lt_eq …(le_S_S_to_le …ltki)) //
+ #eqki @False_ind /2/
]
]
]
qed.
+
+(* Sigma e Pi - da generalizzare *)
+notation "Σ_{ ident i < n | p } f"
+ with precedence 80
+for @{'bigop $n plus 0 (λ${ident i}.p) (λ${ident i}. $f)}.
+
+notation "Σ_{ ident i < n } f"
+ with precedence 80
+for @{'bigop $n plus 0 (λ${ident i}.true) (λ${ident i}. $f)}.
+
+notation "Σ_{ ident j ∈ [a,b[ } f"
+ with precedence 80
+for @{'bigop ($b-$a) plus 0 (λ${ident j}.((λ${ident j}.true) (${ident j}+$a)))
+ (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}.
+
+notation "Σ_{ ident j ∈ [a,b[ | p } f"
+ with precedence 80
+for @{'bigop ($b-$a) plus 0 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a)))
+ (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}.
+
+notation "Π_{ ident i < n | p} f"
+ with precedence 80
+for @{'bigop $n times 1 (λ${ident i}.$p) (λ${ident i}. $f)}.
+
+notation "Π_{ ident i < n } f"
+ with precedence 80
+for @{'bigop $n times 1 (λ${ident i}.true) (λ${ident i}. $f)}.
+
+notation "Π_{ ident j ∈ [a,b[ } f"
+ with precedence 80
+for @{'bigop ($b-$a) times 1 (λ${ident j}.((λ${ident j}.true) (${ident j}+$a)))
+ (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}.
+
+notation "Π_{ ident j ∈ [a,b[ | p } f"
+ with precedence 80
+for @{'bigop ($b-$a) times 1 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a)))
+ (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}.
+
+(*
definition p_ord_times \def
\lambda p,m,x.
]
qed.
-(* old version - proved without theorem iter_p_gen_knm
-theorem iter_p_gen_2_eq:
-\forall A:Type.
-\forall baseA: A.
-\forall plusA: A \to A \to A.
-(symmetric A plusA) \to
-(associative A plusA) \to
-(\forall a:A.(plusA a baseA) = a)\to
-\forall g: nat \to nat \to A.
-\forall h11,h12,h21,h22: nat \to nat \to nat.
-\forall n1,m1,n2,m2.
-\forall p11,p21:nat \to bool.
-\forall p12,p22:nat \to nat \to bool.
-(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to
-p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true
-\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j
-\land h11 i j < n1 \land h12 i j < m1) \to
-(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to
-p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true
-\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j
-\land (h21 i j) < n2 \land (h22 i j) < m2) \to
-iter_p_gen n1 p11 A
- (\lambda x:nat .iter_p_gen m1 (p12 x) A (\lambda y. g x y) baseA plusA)
- baseA plusA =
-iter_p_gen n2 p21 A
- (\lambda x:nat .iter_p_gen m2 (p22 x) A (\lambda y. g (h11 x y) (h12 x y)) baseA plusA )
- baseA plusA.
-intros.
-rewrite < (iter_p_gen2' ? ? ? ? ? ? ? ? H H1 H2).
-rewrite < (iter_p_gen2' ? ? ? ? ? ? ? ? H H1 H2).
-apply sym_eq.
-letin h := (\lambda x.(h11 (x/m2) (x\mod m2))*m1 + (h12 (x/m2) (x\mod m2))).
-letin h1 := (\lambda x.(h21 (x/m1) (x\mod m1))*m2 + (h22 (x/m1) (x\mod m1))).
-apply (trans_eq ? ?
- (iter_p_gen (n2*m2) (\lambda x:nat.p21 (x/m2)\land p22 (x/m2) (x\mod m2)) A
- (\lambda x:nat.g ((h x)/m1) ((h x)\mod m1)) baseA plusA ))
- [clear h.clear h1.
- apply eq_iter_p_gen1
- [intros.reflexivity
- |intros.
- cut (O < m2)
- [cut (x/m2 < n2)
- [cut (x \mod m2 < m2)
- [elim (and_true ? ? H6).
- elim (H3 ? ? Hcut1 Hcut2 H7 H8).
- elim H9.clear H9.
- elim H11.clear H11.
- elim H9.clear H9.
- elim H11.clear H11.
- apply eq_f2
- [apply sym_eq.
- apply div_plus_times.
- assumption
- | apply sym_eq.
- apply mod_plus_times.
- assumption
- ]
- |apply lt_mod_m_m.
- assumption
- ]
- |apply (lt_times_n_to_lt m2)
- [assumption
- |apply (le_to_lt_to_lt ? x)
- [apply (eq_plus_to_le ? ? (x \mod m2)).
- apply div_mod.
- assumption
- |assumption
- ]
- ]
- ]
- |apply not_le_to_lt.unfold.intro.
- generalize in match H5.
- apply (le_n_O_elim ? H7).
- rewrite < times_n_O.
- apply le_to_not_lt.
- apply le_O_n
- ]
- ]
- |apply (eq_iter_p_gen_gh ? ? ? H H1 H2 ? h h1);intros
- [cut (O < m2)
- [cut (i/m2 < n2)
- [cut (i \mod m2 < m2)
- [elim (and_true ? ? H6).
- elim (H3 ? ? Hcut1 Hcut2 H7 H8).
- elim H9.clear H9.
- elim H11.clear H11.
- elim H9.clear H9.
- elim H11.clear H11.
- cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))/m1 =
- h11 (i/m2) (i\mod m2))
- [cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))\mod m1 =
- h12 (i/m2) (i\mod m2))
- [rewrite > Hcut3.
- rewrite > Hcut4.
- rewrite > H9.
- rewrite > H15.
- reflexivity
- |apply mod_plus_times.
- assumption
- ]
- |apply div_plus_times.
- assumption
- ]
- |apply lt_mod_m_m.
- assumption
- ]
- |apply (lt_times_n_to_lt m2)
- [assumption
- |apply (le_to_lt_to_lt ? i)
- [apply (eq_plus_to_le ? ? (i \mod m2)).
- apply div_mod.
- assumption
- |assumption
- ]
- ]
- ]
- |apply not_le_to_lt.unfold.intro.
- generalize in match H5.
- apply (le_n_O_elim ? H7).
- rewrite < times_n_O.
- apply le_to_not_lt.
- apply le_O_n
- ]
- |cut (O < m2)
- [cut (i/m2 < n2)
- [cut (i \mod m2 < m2)
- [elim (and_true ? ? H6).
- elim (H3 ? ? Hcut1 Hcut2 H7 H8).
- elim H9.clear H9.
- elim H11.clear H11.
- elim H9.clear H9.
- elim H11.clear H11.
- cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))/m1 =
- h11 (i/m2) (i\mod m2))
- [cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))\mod m1 =
- h12 (i/m2) (i\mod m2))
- [rewrite > Hcut3.
- rewrite > Hcut4.
- rewrite > H13.
- rewrite > H14.
- apply sym_eq.
- apply div_mod.
- assumption
- |apply mod_plus_times.
- assumption
- ]
- |apply div_plus_times.
- assumption
- ]
- |apply lt_mod_m_m.
- assumption
- ]
- |apply (lt_times_n_to_lt m2)
- [assumption
- |apply (le_to_lt_to_lt ? i)
- [apply (eq_plus_to_le ? ? (i \mod m2)).
- apply div_mod.
- assumption
- |assumption
- ]
- ]
- ]
- |apply not_le_to_lt.unfold.intro.
- generalize in match H5.
- apply (le_n_O_elim ? H7).
- rewrite < times_n_O.
- apply le_to_not_lt.
- apply le_O_n
- ]
- |cut (O < m2)
- [cut (i/m2 < n2)
- [cut (i \mod m2 < m2)
- [elim (and_true ? ? H6).
- elim (H3 ? ? Hcut1 Hcut2 H7 H8).
- elim H9.clear H9.
- elim H11.clear H11.
- elim H9.clear H9.
- elim H11.clear H11.
- apply lt_times_plus_times
- [assumption|assumption]
- |apply lt_mod_m_m.
- assumption
- ]
- |apply (lt_times_n_to_lt m2)
- [assumption
- |apply (le_to_lt_to_lt ? i)
- [apply (eq_plus_to_le ? ? (i \mod m2)).
- apply div_mod.
- assumption
- |assumption
- ]
- ]
- ]
- |apply not_le_to_lt.unfold.intro.
- generalize in match H5.
- apply (le_n_O_elim ? H7).
- rewrite < times_n_O.
- apply le_to_not_lt.
- apply le_O_n
- ]
- |cut (O < m1)
- [cut (j/m1 < n1)
- [cut (j \mod m1 < m1)
- [elim (and_true ? ? H6).
- elim (H4 ? ? Hcut1 Hcut2 H7 H8).
- elim H9.clear H9.
- elim H11.clear H11.
- elim H9.clear H9.
- elim H11.clear H11.
- cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))/m2 =
- h21 (j/m1) (j\mod m1))
- [cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))\mod m2 =
- h22 (j/m1) (j\mod m1))
- [rewrite > Hcut3.
- rewrite > Hcut4.
- rewrite > H9.
- rewrite > H15.
- reflexivity
- |apply mod_plus_times.
- assumption
- ]
- |apply div_plus_times.
- assumption
- ]
- |apply lt_mod_m_m.
- assumption
- ]
- |apply (lt_times_n_to_lt m1)
- [assumption
- |apply (le_to_lt_to_lt ? j)
- [apply (eq_plus_to_le ? ? (j \mod m1)).
- apply div_mod.
- assumption
- |assumption
- ]
- ]
- ]
- |apply not_le_to_lt.unfold.intro.
- generalize in match H5.
- apply (le_n_O_elim ? H7).
- rewrite < times_n_O.
- apply le_to_not_lt.
- apply le_O_n
- ]
- |cut (O < m1)
- [cut (j/m1 < n1)
- [cut (j \mod m1 < m1)
- [elim (and_true ? ? H6).
- elim (H4 ? ? Hcut1 Hcut2 H7 H8).
- elim H9.clear H9.
- elim H11.clear H11.
- elim H9.clear H9.
- elim H11.clear H11.
- cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))/m2 =
- h21 (j/m1) (j\mod m1))
- [cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))\mod m2 =
- h22 (j/m1) (j\mod m1))
- [rewrite > Hcut3.
- rewrite > Hcut4.
- rewrite > H13.
- rewrite > H14.
- apply sym_eq.
- apply div_mod.
- assumption
- |apply mod_plus_times.
- assumption
- ]
- |apply div_plus_times.
- assumption
- ]
- |apply lt_mod_m_m.
- assumption
- ]
- |apply (lt_times_n_to_lt m1)
- [assumption
- |apply (le_to_lt_to_lt ? j)
- [apply (eq_plus_to_le ? ? (j \mod m1)).
- apply div_mod.
- assumption
- |assumption
- ]
- ]
- ]
- |apply not_le_to_lt.unfold.intro.
- generalize in match H5.
- apply (le_n_O_elim ? H7).
- rewrite < times_n_O.
- apply le_to_not_lt.
- apply le_O_n
- ]
- |cut (O < m1)
- [cut (j/m1 < n1)
- [cut (j \mod m1 < m1)
- [elim (and_true ? ? H6).
- elim (H4 ? ? Hcut1 Hcut2 H7 H8).
- elim H9.clear H9.
- elim H11.clear H11.
- elim H9.clear H9.
- elim H11.clear H11.
- apply (lt_times_plus_times ? ? ? m2)
- [assumption|assumption]
- |apply lt_mod_m_m.
- assumption
- ]
- |apply (lt_times_n_to_lt m1)
- [assumption
- |apply (le_to_lt_to_lt ? j)
- [apply (eq_plus_to_le ? ? (j \mod m1)).
- apply div_mod.
- assumption
- |assumption
- ]
- ]
- ]
- |apply not_le_to_lt.unfold.intro.
- generalize in match H5.
- apply (le_n_O_elim ? H7).
- rewrite < times_n_O.
- apply le_to_not_lt.
- apply le_O_n
- ]
- ]
- ]
-qed.*)
-
-
theorem iter_p_gen_2_eq:
\forall A:Type.
\forall baseA: A.
|assumption
]
]
-qed.
\ No newline at end of file
+qed. *)
\ No newline at end of file