max_depth: int option;
depth: int;
context: C.context;
- intros: string list
+ intros: string list;
+ case: int list
}
(* helpers ******************************************************************)
let before2, after2 = HEL.split_nth n l2 in
before1, before2, List.hd after1, List.hd after2
with Invalid_argument _ -> failwith "A2P.split2_last"
-
+
let string_of_head = function
| C.ASort _ -> "sort"
| C.AConst _ -> "const"
let add st entry intro =
{st with context = entry :: st.context; intros = intro :: st.intros}
+let push st = {st with case = 1 :: st.case}
+
+let inc st =
+ {st with case = match st.case with
+ | [] -> assert false
+ | hd :: tl -> succ hd :: tl
+ }
+
+let case st str =
+ let case = String.concat "." (List.rev_map string_of_int st.case) in
+ Printf.sprintf "case %s: %s" case str
+
let test_depth st =
try
let msg = Printf.sprintf "Depth %u: " st.depth in
| C.ARel _ -> true
| _ -> false
else false
-(*
-let get_ind_name uri tno xcno =
-try
- let ts = match E.get_obj Un.empty_ugraph uri with
- | C.InductiveDefinition (ts, _, _,_), _ -> ts
- | _ -> assert false
- in
- let tname, cs = match List.nth ts tno with
- | (name, _, _, cs) -> name, cs
- in
- match xcno with
- | None -> tname
- | Some cno -> fst (List.nth cs (pred cno))
-with Invalid_argument _ -> failwith "A2P.get_ind_name"
-*)
+
let get_inner_types st v =
try
let id = Ut.id_of_annterm v in
| _ :: tl -> aux tl
in
aux st.context
-
+
+let get_ind_names uri tno =
+try
+ let ts = match E.get_obj Un.empty_ugraph uri with
+ | C.InductiveDefinition (ts, _, _, _), _ -> ts
+ | _ -> assert false
+ in
+ match List.nth ts tno with
+ | (_, _, _, cs) -> List.map fst cs
+with Invalid_argument _ -> failwith "A2P.get_ind_names"
+
(* proof construction *******************************************************)
let unused_premise = "UNUSED"
match get_inner_types st v with
| None -> []
| Some (sty, ety) ->
- let e = Cn.mk_pattern 0 (T.mk_arel 1 "") in
+ let e = Cn.hole "" in
let csty, cety = cic sty, cic ety in
if Ut.alpha_equivalence csty cety then [] else
match name with
let proceed, dtext = test_depth st in
let script = if proceed then
let ty = get_type "TC2" st hd in
- let (classes, rc) as h = Cl.classify st.context ty in
+ let classes, rc = Cl.classify st.context ty in
let goal_arity = match get_inner_types st what with
| None -> 0
| Some (ity, _) -> snd (PEH.split_with_whd (st.context, cic ity))
in
- let argsno = List.length classes in
- let decurry = argsno - List.length tl in
+ let parsno, argsno = List.length classes, List.length tl in
+ let decurry = parsno - argsno in
let diff = goal_arity - decurry in
if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (cic hd)));
let rec mk_synth a n =
if n < 0 then a else mk_synth (I.S.add n a) (pred n)
in
let synth = mk_synth I.S.empty decurry in
- let text = "" (* Printf.sprintf "%u %s" argsno (Cl.to_string h) *) in
+ let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in
let script = List.rev (mk_arg st hd) @ convert st what in
match rc with
- | Some (i, j) ->
+ | Some (i, j, uri, tyno) ->
let classes, tl, _, where = split2_last classes tl in
let script = List.rev (mk_arg st where) @ script in
let synth = I.S.add 1 synth in
- let qs = proc_bkd_proofs (next st) synth classes tl in
+ let names = get_ind_names uri tyno in
+ let qs = proc_bkd_proofs (next st) synth names classes tl in
if is_rewrite_right hd then
script @ mk_rewrite st dtext where qs tl false
else if is_rewrite_left hd then
script @ mk_rewrite st dtext where qs tl true
else
- let predicate = List.nth tl (argsno - i) in
- let e = Cn.mk_pattern 0 (T.mk_arel 1 "") (* j predicate *) in
+ let predicate = List.nth tl (parsno - i) in
+ let e = Cn.mk_pattern j predicate in
let using = Some hd in
script @
[T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")]
| None ->
- let qs = proc_bkd_proofs (next st) synth classes tl in
+ let qs = proc_bkd_proofs (next st) synth [] classes tl in
let hd = mk_exp_args hd tl classes synth in
script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")]
else
| C.AAppl (_, hd :: tl) as what -> proc_appl st what hd tl
| what -> proc_other st what
-and proc_bkd_proofs st synth classes ts =
+and proc_bkd_proofs st synth names classes ts =
try
+ let get_note =
+ let names = ref (names, push st) in
+ fun f ->
+ match !names with
+ | [], st -> fun _ -> f st
+ | "" :: tl, st -> names := tl, st; fun _ -> f st
+ | hd :: tl, st ->
+ let note = case st hd in
+ names := tl, inc st;
+ fun b -> if b then T.Note note :: f st else f st
+ in
let _, dtext = test_depth st in
let aux (inv, _) v =
if I.overlaps synth inv then None else
- if I.S.is_empty inv then Some (proc_proof st v) else
- Some [T.Apply (v, dtext ^ "dependent")]
+ if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else
+ Some (fun _ -> [T.Apply (v, dtext ^ "dependent")])
in
- List.rev (T.list_map2_filter aux classes ts)
+ let ps = T.list_map2_filter aux classes ts in
+ let b = List.length ps > 1 in
+ List.rev_map (fun f -> f b) ps
+
with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s)
(* object costruction *******************************************************)
let ast = proc_proof st v in
let count = T.count_steps 0 ast in
let text = Printf.sprintf "tactics: %u" count in
- T.Theorem (s, t, text) :: ast @ [T.Qed ""]
+ T.Theorem (s, t, "") :: ast @ [T.Qed text]
| _ ->
failwith "not a theorem"
max_depth = depth;
depth = 0;
context = [];
- intros = []
+ intros = [];
+ case = []
} in
HLog.debug "Procedural: level 2 transformation";
let steps = proc_obj st aobj in
* http://cs.unibo.it/helm/.
*)
+module UM = UriManager
module C = Cic
module D = Deannotate
module I = CicInspect
type dependence = I.S.t * bool
-type conclusion = (int * int) option
+type conclusion = (int * int * UM.uri * int) option
(* debugging ****************************************************************)
let to_string (classes, rc) =
let linearize = String.concat " " (List.map string_of_entry classes) in
match rc with
- | None -> linearize
- | Some (i, j) -> Printf.sprintf "%s %u %u" linearize i j
+ | None -> linearize
+ | Some (i, j, _, _) -> Printf.sprintf "%s %u %u" linearize i j
let out_table b =
let map i (_, inverse) =
let inside i = i > 1 && i <= List.length vs in
match vs with
| v0 :: v1 :: _ ->
- let hd0, argsno0 = get_argsno v0 in
- let hd1, argsno1 = get_argsno v1 in
+ let hd0, a0 = get_argsno v0 in
+ let hd1, a1 = get_argsno v1 in
begin match hd0, hd1 with
- | C.Rel i, C.MutInd _ when inside i -> Some (i, argsno0)
- | _ -> None
+ | C.Rel i, C.MutInd (u, n, _) when inside i -> Some (i, a0, u, n)
+ | _ -> None
end
| _ -> None
in
filter [] (list_rev_map2 map l1 l2)
+let list_init f i =
+ let rec aux a j = if j < 0 then a else aux (f j :: a) (pred j) in
+ aux [] i
+
(****************************************************************************)
type name = string
let mk_note str = G.Comment (floc, G.Note (floc, str))
-let mk_nlnote str a =
- if str = "" then mk_note "" :: a else mk_note str :: mk_note "" :: a
+let mk_tacnote str a =
+ if str = "" then mk_note "" :: a else mk_note "" :: mk_note str :: a
+
+let mk_notenote str a =
+ if str = "" then a else mk_note str :: a
+
+let mk_thnote str a =
+ if str = "" then a else mk_note "" :: mk_note str :: a
let mk_theorem name t =
let obj = N.Theorem (`Theorem, name, t, None) in
(* rendering ****************************************************************)
let rec render_step sep a = function
- | Note s -> mk_note s :: a
- | Theorem (n, t, s) -> mk_theorem n t :: mk_note s :: a
- | Qed s -> mk_qed :: mk_nlnote s a
- | Id s -> mk_id sep :: mk_nlnote s a
- | Intros (c, ns, s) -> mk_intros c ns sep :: mk_nlnote s a
- | Cut (n, t, s) -> mk_cut n t sep :: mk_nlnote s a
- | LetIn (n, t, s) -> mk_letin n t sep :: mk_nlnote s a
- | Rewrite (b, t, w, e, s) -> mk_rewrite b t w e sep :: mk_nlnote s a
- | Elim (t, xu, e, s) -> mk_elim t xu e sep :: mk_nlnote s a
- | Apply (t, s) -> mk_apply t sep :: mk_nlnote s a
- | Change (t, _, w, e, s) -> mk_change t w e sep :: mk_nlnote s a
- | ClearBody (n, s) -> mk_clearbody n sep :: mk_nlnote s a
+ | Note s -> mk_notenote s a
+ | Theorem (n, t, s) -> mk_theorem n t :: mk_thnote s a
+ | Qed s -> mk_qed :: mk_tacnote s a
+ | Id s -> mk_id sep :: mk_tacnote s a
+ | Intros (c, ns, s) -> mk_intros c ns sep :: mk_tacnote s a
+ | Cut (n, t, s) -> mk_cut n t sep :: mk_tacnote s a
+ | LetIn (n, t, s) -> mk_letin n t sep :: mk_tacnote s a
+ | Rewrite (b, t, w, e, s) -> mk_rewrite b t w e sep :: mk_tacnote s a
+ | Elim (t, xu, e, s) -> mk_elim t xu e sep :: mk_tacnote s a
+ | Apply (t, s) -> mk_apply t sep :: mk_tacnote s a
+ | Change (t, _, w, e, s) -> mk_change t w e sep :: mk_tacnote s a
+ | ClearBody (n, s) -> mk_clearbody n sep :: mk_tacnote s a
| Branch ([], s) -> a
| Branch ([ps], s) -> render_steps sep a ps
| Branch (ps :: pss, s) ->
- let a = mk_ob :: mk_nlnote s a in
+ let a = mk_ob :: mk_tacnote s a in
let a = List.fold_left (render_steps mk_vb) a (List.rev pss) in
mk_punctation sep :: render_steps mk_cb a ps