(* *)
(**************************************************************************)
-include "basic_2/notation/relations/topiso_2.ma".
-include "basic_2/syntax/term_simple.ma".
+include "basic_2/notation/relations/topiso_4.ma".
+include "basic_2/syntax/item_sd.ma".
+include "basic_2/syntax/term.ma".
(* SAME TOP TERM STRUCTURE **************************************************)
-inductive tsts: relation term ≝
- | tsts_atom: ∀I. tsts (⓪{I}) (⓪{I})
- | tsts_pair: ∀I,V1,V2,T1,T2. tsts (②{I}V1.T1) (②{I}V2.T2)
+(* Basic_2A1: includes: tsts_atom *)
+inductive tsts (h) (o): relation term ≝
+| tsts_sort: ∀s1,s2,d. deg h o s1 d → deg h o s2 d → tsts h o (⋆s1) (⋆s2)
+| tsts_lref: ∀i. tsts h o (#i) (#i)
+| tsts_gref: ∀l. tsts h o (§l) (§l)
+| tsts_pair: ∀I,V1,V2,T1,T2. tsts h o (②{I}V1.T1) (②{I}V2.T2)
.
-interpretation "same top structure (term)" 'TopIso T1 T2 = (tsts T1 T2).
+interpretation "same top structure (term)" 'TopIso h o T1 T2 = (tsts h o T1 T2).
(* Basic inversion lemmas ***************************************************)
-fact tsts_inv_atom1_aux: ∀T1,T2. T1 ≂ T2 → ∀I. T1 = ⓪{I} → T2 = ⓪{I}.
-#T1 #T2 * -T1 -T2 //
-#J #V1 #V2 #T1 #T2 #I #H destruct
+fact tsts_inv_sort1_aux: ∀h,o,X,Y. X ⩳[h, o] Y → ∀s1. X = ⋆s1 →
+ ∃∃s2,d. deg h o s1 d & deg h o s2 d & Y = ⋆s2.
+#h #o #X #Y * -X -Y
+[ #s1 #s2 #d #Hs1 #Hs2 #s #H destruct /2 width=5 by ex3_2_intro/
+| #i #s #H destruct
+| #l #s #H destruct
+| #I #V1 #V2 #T1 #T2 #s #H destruct
+]
qed-.
-(* Basic_1: was: iso_gen_sort iso_gen_lref *)
-lemma tsts_inv_atom1: ∀I,T2. ⓪{I} ≂ T2 → T2 = ⓪{I}.
-/2 width=3 by tsts_inv_atom1_aux/ qed-.
+(* Basic_1: was just: iso_gen_sort *)
+lemma tsts_inv_sort1: ∀h,o,Y,s1. ⋆s1 ⩳[h, o] Y →
+ ∃∃s2,d. deg h o s1 d & deg h o s2 d & Y = ⋆s2.
+/2 width=3 by tsts_inv_sort1_aux/ qed-.
-fact tsts_inv_pair1_aux: ∀T1,T2. T1 ≂ T2 → ∀I,W1,U1. T1 = ②{I}W1.U1 →
- ∃∃W2,U2. T2 = ②{I}W2. U2.
-#T1 #T2 * -T1 -T2
-[ #J #I #W1 #U1 #H destruct
-| #J #V1 #V2 #T1 #T2 #I #W1 #U1 #H destruct /2 width=3 by ex1_2_intro/
+fact tsts_inv_lref1_aux: ∀h,o,X,Y. X ⩳[h, o] Y → ∀i. X = #i → Y = #i.
+#h #o #X #Y * -X -Y //
+[ #s1 #s2 #d #_ #_ #j #H destruct
+| #I #V1 #V2 #T1 #T2 #j #H destruct
]
qed-.
-(* Basic_1: was: iso_gen_head *)
-lemma tsts_inv_pair1: ∀I,W1,U1,T2. ②{I}W1.U1 ≂ T2 →
- ∃∃W2,U2. T2 = ②{I}W2. U2.
-/2 width=5 by tsts_inv_pair1_aux/ qed-.
+(* Basic_1: was: iso_gen_lref *)
+lemma tsts_inv_lref1: ∀h,o,Y,i. #i ⩳[h, o] Y → Y = #i.
+/2 width=5 by tsts_inv_lref1_aux/ qed-.
-fact tsts_inv_atom2_aux: ∀T1,T2. T1 ≂ T2 → ∀I. T2 = ⓪{I} → T1 = ⓪{I}.
-#T1 #T2 * -T1 -T2 //
-#J #V1 #V2 #T1 #T2 #I #H destruct
+fact tsts_inv_gref1_aux: ∀h,o,X,Y. X ⩳[h, o] Y → ∀l. X = §l → Y = §l.
+#h #o #X #Y * -X -Y //
+[ #s1 #s2 #d #_ #_ #k #H destruct
+| #I #V1 #V2 #T1 #T2 #k #H destruct
+]
qed-.
-lemma tsts_inv_atom2: ∀I,T1. T1 ≂ ⓪{I} → T1 = ⓪{I}.
-/2 width=3 by tsts_inv_atom2_aux/ qed-.
-
-fact tsts_inv_pair2_aux: ∀T1,T2. T1 ≂ T2 → ∀I,W2,U2. T2 = ②{I}W2.U2 →
- ∃∃W1,U1. T1 = ②{I}W1.U1.
-#T1 #T2 * -T1 -T2
-[ #J #I #W2 #U2 #H destruct
-| #J #V1 #V2 #T1 #T2 #I #W2 #U2 #H destruct /2 width=3 by ex1_2_intro/
+lemma tsts_inv_gref1: ∀h,o,Y,l. §l ⩳[h, o] Y → Y = §l.
+/2 width=5 by tsts_inv_gref1_aux/ qed-.
+
+fact tsts_inv_pair1_aux: ∀h,o,T1,T2. T1 ⩳[h, o] T2 →
+ ∀I,W1,U1. T1 = ②{I}W1.U1 →
+ ∃∃W2,U2. T2 = ②{I}W2.U2.
+#h #o #T1 #T2 * -T1 -T2
+[ #s1 #s2 #d #_ #_ #J #W1 #U1 #H destruct
+| #i #J #W1 #U1 #H destruct
+| #l #J #W1 #U1 #H destruct
+| #I #V1 #V2 #T1 #T2 #J #W1 #U1 #H destruct /2 width=3 by ex1_2_intro/
]
qed-.
-lemma tsts_inv_pair2: ∀I,T1,W2,U2. T1 ≂ ②{I}W2.U2 →
- ∃∃W1,U1. T1 = ②{I}W1.U1.
-/2 width=5 by tsts_inv_pair2_aux/ qed-.
+(* Basic_1: was: iso_gen_head *)
+lemma tsts_inv_pair1: ∀h,o,J,W1,U1,T2. ②{J}W1.U1 ⩳[h, o] T2 →
+ ∃∃W2,U2. T2 = ②{J}W2. U2.
+/2 width=7 by tsts_inv_pair1_aux/ qed-.
+
+(* Advanced inversion lemmas ************************************************)
+
+lemma tsts_inv_sort1_deg: ∀h,o,Y,s1. ⋆s1 ⩳[h, o] Y → ∀d. deg h o s1 d →
+ ∃∃s2. deg h o s2 d & Y = ⋆s2.
+#h #o #Y #s1 #H #d #Hs1 elim (tsts_inv_sort1 … H) -H
+#s2 #x #Hx <(deg_mono h o … Hx … Hs1) -s1 -d /2 width=3 by ex2_intro/
+qed-.
+
+lemma tsts_inv_sort_deg: ∀h,o,s1,s2. ⋆s1 ⩳[h, o] ⋆s2 →
+ ∀d1,d2. deg h o s1 d1 → deg h o s2 d2 →
+ d1 = d2.
+#h #o #s1 #y #H #d1 #d2 #Hs1 #Hy
+elim (tsts_inv_sort1_deg … H … Hs1) -s1 #s2 #Hs2 #H destruct
+<(deg_mono h o … Hy … Hs2) -s2 -d1 //
+qed-.
+
+lemma tsts_inv_pair: ∀h,o,I1,I2,V1,V2,T1,T2. ②{I1}V1.T1 ⩳[h, o] ②{I2}V2.T2 →
+ I1 = I2.
+#h #o #I1 #I2 #V1 #V2 #T1 #T2 #H elim (tsts_inv_pair1 … H) -H
+#V0 #T0 #H destruct //
+qed-.
(* Basic properties *********************************************************)
(* Basic_1: was: iso_refl *)
-lemma tsts_refl: reflexive … tsts.
-#T elim T -T //
+lemma tsts_refl: ∀h,o. reflexive … (tsts h o).
+#h #o * //
+* /2 width=1 by tsts_lref, tsts_gref/
+#s elim (deg_total h o s) /2 width=3 by tsts_sort/
qed.
-lemma tsts_sym: symmetric … tsts.
-#T1 #T2 #H elim H -T1 -T2 //
+lemma tsts_sym: ∀h,o. symmetric … (tsts h o).
+#h #o #T1 #T2 * -T1 -T2 /2 width=3 by tsts_sort/
qed-.
-lemma tsts_dec: ∀T1,T2. Decidable (T1 ≂ T2).
-* #I1 [2: #V1 #T1 ] * #I2 [2,4: #V2 #T2 ]
-[ elim (eq_item2_dec I1 I2) #HI12
- [ destruct /2 width=1 by tsts_pair, or_introl/
- | @or_intror #H
- elim (tsts_inv_pair1 … H) -H #V #T #H destruct /2 width=1 by/
- ]
-| @or_intror #H
- lapply (tsts_inv_atom1 … H) -H #H destruct
-| @or_intror #H
- lapply (tsts_inv_atom2 … H) -H #H destruct
-| elim (eq_item0_dec I1 I2) #HI12
- [ destruct /2 width=1 by or_introl/
- | @or_intror #H
- lapply (tsts_inv_atom2 … H) -H #H destruct /2 width=1 by/
- ]
+lemma tsts_dec: ∀h,o,T1,T2. Decidable (T1 ⩳[h, o] T2).
+#h #o * [ * #s1 | #I1 #V1 #T1 ] * [1,3,5,7: * #s2 |*: #I2 #V2 #T2 ]
+[ elim (deg_total h o s1) #d1 #H1
+ elim (deg_total h o s2) #d2 #H2
+ elim (eq_nat_dec d1 d2) #Hd12 destruct /3 width=3 by tsts_sort, or_introl/
+ @or_intror #H
+ lapply (tsts_inv_sort_deg … H … H1 H2) -H -H1 -H2 /2 width=1 by/
+|2,3,13:
+ @or_intror #H
+ elim (tsts_inv_sort1 … H) -H #x1 #x2 #_ #_ #H destruct
+|4,6,14:
+ @or_intror #H
+ lapply (tsts_inv_lref1 … H) -H #H destruct
+|5:
+ elim (eq_nat_dec s1 s2) #Hs12 destruct /2 width=1 by or_introl/
+ @or_intror #H
+ lapply (tsts_inv_lref1 … H) -H #H destruct /2 width=1 by/
+|7,8,15:
+ @or_intror #H
+ lapply (tsts_inv_gref1 … H) -H #H destruct
+|9:
+ elim (eq_nat_dec s1 s2) #Hs12 destruct /2 width=1 by or_introl/
+ @or_intror #H
+ lapply (tsts_inv_gref1 … H) -H #H destruct /2 width=1 by/
+|10,11,12:
+ @or_intror #H
+ elim (tsts_inv_pair1 … H) -H #X1 #X2 #H destruct
+|16:
+ elim (eq_item2_dec I1 I2) #HI12 destruct
+ [ /3 width=1 by tsts_pair, or_introl/ ]
+ @or_intror #H
+ lapply (tsts_inv_pair … H) -H /2 width=1 by/
]
-qed.
-
-lemma simple_tsts_repl_dx: ∀T1,T2. T1 ≂ T2 → 𝐒⦃T1⦄ → 𝐒⦃T2⦄.
-#T1 #T2 * -T1 -T2 //
-#I #V1 #V2 #T1 #T2 #H
-elim (simple_inv_pair … H) -H #J #H destruct //
qed-.
-lemma simple_tsts_repl_sn: ∀T1,T2. T1 ≂ T2 → 𝐒⦃T2⦄ → 𝐒⦃T1⦄.
-/3 width=3 by simple_tsts_repl_dx, tsts_sym/ qed-.
+(* Basic_2A1: removed theorems 4:
+ tsts_inv_atom1 tsts_inv_atom2
+*)