TT ≟ (mk_binary_morphism1 ???
(λx:setoid1_of_setoid ?.λS:ext_powerclass_setoid ?. x ∈ S)
(prop21 ??? (mem_ext_powerclass_setoid_is_morph A))),
- M1 ≟ ?,
- M2 ≟ ?,
- M3 ≟ ?
+ XX ≟ (ext_powerclass_setoid A)
(*-------------------------------------*) ⊢
- fun21 M1 M2 M3 TT x S ≡ mem A SS x.
+ fun21 (setoid1_of_setoid A) XX CPROP TT x S
+ ≡ mem A SS x.
nlemma subseteq_is_morph: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) CPROP.
#A; @
fun21 (powerclass_setoid A) (powerclass_setoid A) (powerclass_setoid A) R B C
≡ intersect ? B C.
-ndefinition prop21_mem :
- ∀A,C.∀f:binary_morphism1 (setoid1_of_setoid A) (ext_powerclass_setoid A) C.
- ∀a,a':setoid1_of_setoid A.
- ∀b,b':ext_powerclass_setoid A.a = a' → b = b' → f a b = f a' b'.
-#A; #C; #f; #a; #a'; #b; #b'; #H1; #H2; napply prop21; nassumption;
-nqed.
-
-interpretation "prop21 mem" 'prop2 l r = (prop21_mem ??????? l r).
+interpretation "prop21 mem" 'prop2 l r = (prop21 (setoid1_of_setoid ?) (ext_powerclass_setoid ?) ? ???? l r).
+interpretation "prop21 ext" 'prop2 l r = (prop21 (ext_powerclass_setoid ?) (ext_powerclass_setoid ?) ? ???? l r).
nlemma intersect_is_ext_morph:
∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A).
intersect (carr A) BB CC.
(*
+alias symbol "hint_decl" = "hint_decl_Type2".
+unification hint 0 ≔
+ A : setoid, B,C : 𝛀^A ;
+ CC ≟ (ext_carr ? C),
+ BB ≟ (ext_carr ? B),
+ C1 ≟ (carr1 (powerclass_setoid (carr A))),
+ C2 ≟ (carr1 (ext_powerclass_setoid A))
+ ⊢
+ eq_rel1 C1 (eq1 (powerclass_setoid (carr A))) BB CC ≡
+ eq_rel1 C2 (eq1 (ext_powerclass_setoid A)) B C.
+
+unification hint 0 ≔
+ A, B : CPROP ⊢ iff A B ≡ eq_rel1 ? (eq1 CPROP) A B.
+*)
-
-nlemma test: ∀U.∀A,B:qpowerclass U. A ∩ B = A →
+nlemma test: ∀U.∀A,B:𝛀^U. A ∩ B = A →
∀x,y. x=y → x ∈ A → y ∈ A ∩ B.
- #U; #A; #B; #H; #x; #y; #K; #K2; napply (. #‡(?));
-##[ nchange with (A ∩ B = ?);
- napply (prop21 ??? (mk_binary_morphism1 … (λS,S'.S ∩ S') (prop21 … (intersect_ok' U))) A A B B ##);
- #H; napply H;
+ #U; #A; #B; #H; #x; #y; #K; #K2;
+napply (. (prop21 ??? ? ???? K^-1 (H^-1‡#)));
nassumption;
nqed.
-(*
-nlemma intersect_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) (qpowerclass_setoid A).
+
+nlemma intersect_ok: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A).
#A; @
[ #S; #S'; @
[ napply (S ∩ S')