val mtime_of_source_object: source_object -> float option
val mtime_of_target_object: target_object -> float option
val is_readonly_buri_of: options -> source_object -> bool
- val dotdothack: source_object -> source_object
end
module Make = functor (F:Format) -> struct
make_aux root opts [] [] deps
else
make_aux root opts [] []
- (purge_unwanted_roots (List.map F.dotdothack targets) deps)
+ (purge_unwanted_roots targets deps)
in
HLog.debug ("Leaving directory '"^root^"'");
Sys.chdir old_root;
val mtime_of_source_object: source_object -> float option
val mtime_of_target_object: target_object -> float option
val is_readonly_buri_of: options -> source_object -> bool
- val dotdothack: source_object -> source_object
end
module Make :
(* This file was automatically generated: do not edit *********************)
-include "LambdaDelta-1/aprem/defs.ma".
+include "LambdaDelta-1/aprem/fwd.ma".
include "LambdaDelta-1/leq/defs.ma".
(b1: A).(aprem i a b1)))))))) (\lambda (h1: nat).(\lambda (h2: nat).(\lambda
(n1: nat).(\lambda (n2: nat).(\lambda (k: nat).(\lambda (_: (eq A (aplus g
(ASort h1 n1) k) (aplus g (ASort h2 n2) k))).(\lambda (i: nat).(\lambda (b2:
-A).(\lambda (H1: (aprem i (ASort h2 n2) b2)).(let H2 \def (match H1 in aprem
-return (\lambda (n: nat).(\lambda (a: A).(\lambda (a0: A).(\lambda (_: (aprem
-n a a0)).((eq nat n i) \to ((eq A a (ASort h2 n2)) \to ((eq A a0 b2) \to (ex2
-A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem i (ASort h1 n1)
-b1)))))))))) with [(aprem_zero a0 a3) \Rightarrow (\lambda (H2: (eq nat O
-i)).(\lambda (H3: (eq A (AHead a0 a3) (ASort h2 n2))).(\lambda (H4: (eq A a0
-b2)).(eq_ind nat O (\lambda (n: nat).((eq A (AHead a0 a3) (ASort h2 n2)) \to
-((eq A a0 b2) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1:
-A).(aprem n (ASort h1 n1) b1)))))) (\lambda (H5: (eq A (AHead a0 a3) (ASort
-h2 n2))).(let H6 \def (eq_ind A (AHead a0 a3) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _
-_) \Rightarrow True])) I (ASort h2 n2) H5) in (False_ind ((eq A a0 b2) \to
-(ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem O (ASort h1
-n1) b1)))) H6))) i H2 H3 H4)))) | (aprem_succ a0 a i0 H2 a3) \Rightarrow
-(\lambda (H3: (eq nat (S i0) i)).(\lambda (H4: (eq A (AHead a3 a0) (ASort h2
-n2))).(\lambda (H5: (eq A a b2)).(eq_ind nat (S i0) (\lambda (n: nat).((eq A
-(AHead a3 a0) (ASort h2 n2)) \to ((eq A a b2) \to ((aprem i0 a0 a) \to (ex2 A
-(\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem n (ASort h1 n1)
-b1))))))) (\lambda (H6: (eq A (AHead a3 a0) (ASort h2 n2))).(let H7 \def
-(eq_ind A (AHead a3 a0) (\lambda (e: A).(match e in A return (\lambda (_:
-A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow
-True])) I (ASort h2 n2) H6) in (False_ind ((eq A a b2) \to ((aprem i0 a0 a)
-\to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem (S i0)
-(ASort h1 n1) b1))))) H7))) i H3 H4 H5 H2))))]) in (H2 (refl_equal nat i)
-(refl_equal A (ASort h2 n2)) (refl_equal A b2)))))))))))) (\lambda (a0:
-A).(\lambda (a3: A).(\lambda (H0: (leq g a0 a3)).(\lambda (_: ((\forall (i:
-nat).(\forall (b2: A).((aprem i a3 b2) \to (ex2 A (\lambda (b1: A).(leq g b1
-b2)) (\lambda (b1: A).(aprem i a0 b1)))))))).(\lambda (a4: A).(\lambda (a5:
-A).(\lambda (_: (leq g a4 a5)).(\lambda (H3: ((\forall (i: nat).(\forall (b2:
-A).((aprem i a5 b2) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1:
-A).(aprem i a4 b1)))))))).(\lambda (i: nat).(\lambda (b2: A).(\lambda (H4:
-(aprem i (AHead a3 a5) b2)).(nat_ind (\lambda (n: nat).((aprem n (AHead a3
-a5) b2) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem n
-(AHead a0 a4) b1))))) (\lambda (H5: (aprem O (AHead a3 a5) b2)).(let H6 \def
-(match H5 in aprem return (\lambda (n: nat).(\lambda (a: A).(\lambda (a6:
-A).(\lambda (_: (aprem n a a6)).((eq nat n O) \to ((eq A a (AHead a3 a5)) \to
-((eq A a6 b2) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1:
-A).(aprem O (AHead a0 a4) b1)))))))))) with [(aprem_zero a6 a7) \Rightarrow
-(\lambda (_: (eq nat O O)).(\lambda (H7: (eq A (AHead a6 a7) (AHead a3
-a5))).(\lambda (H8: (eq A a6 b2)).((let H9 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a7 |
-(AHead _ a) \Rightarrow a])) (AHead a6 a7) (AHead a3 a5) H7) in ((let H10
-\def (f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A)
-with [(ASort _ _) \Rightarrow a6 | (AHead a _) \Rightarrow a])) (AHead a6 a7)
-(AHead a3 a5) H7) in (eq_ind A a3 (\lambda (a: A).((eq A a7 a5) \to ((eq A a
-b2) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem O
-(AHead a0 a4) b1)))))) (\lambda (H11: (eq A a7 a5)).(eq_ind A a5 (\lambda (_:
-A).((eq A a3 b2) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1:
-A).(aprem O (AHead a0 a4) b1))))) (\lambda (H12: (eq A a3 b2)).(eq_ind A b2
-(\lambda (_: A).(ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1:
-A).(aprem O (AHead a0 a4) b1)))) (eq_ind A a3 (\lambda (a: A).(ex2 A (\lambda
-(b1: A).(leq g b1 a)) (\lambda (b1: A).(aprem O (AHead a0 a4) b1))))
+A).(\lambda (H1: (aprem i (ASort h2 n2) b2)).(let H_x \def (aprem_gen_sort b2
+i h2 n2 H1) in (let H2 \def H_x in (False_ind (ex2 A (\lambda (b1: A).(leq g
+b1 b2)) (\lambda (b1: A).(aprem i (ASort h1 n1) b1))) H2)))))))))))) (\lambda
+(a0: A).(\lambda (a3: A).(\lambda (H0: (leq g a0 a3)).(\lambda (_: ((\forall
+(i: nat).(\forall (b2: A).((aprem i a3 b2) \to (ex2 A (\lambda (b1: A).(leq g
+b1 b2)) (\lambda (b1: A).(aprem i a0 b1)))))))).(\lambda (a4: A).(\lambda
+(a5: A).(\lambda (_: (leq g a4 a5)).(\lambda (H3: ((\forall (i: nat).(\forall
+(b2: A).((aprem i a5 b2) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda
+(b1: A).(aprem i a4 b1)))))))).(\lambda (i: nat).(\lambda (b2: A).(\lambda
+(H4: (aprem i (AHead a3 a5) b2)).(nat_ind (\lambda (n: nat).((aprem n (AHead
+a3 a5) b2) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem
+n (AHead a0 a4) b1))))) (\lambda (H5: (aprem O (AHead a3 a5) b2)).(let H_y
+\def (aprem_gen_head_O a3 a5 b2 H5) in (eq_ind_r A a3 (\lambda (a: A).(ex2 A
+(\lambda (b1: A).(leq g b1 a)) (\lambda (b1: A).(aprem O (AHead a0 a4) b1))))
(ex_intro2 A (\lambda (b1: A).(leq g b1 a3)) (\lambda (b1: A).(aprem O (AHead
-a0 a4) b1)) a0 H0 (aprem_zero a0 a4)) b2 H12) a3 (sym_eq A a3 b2 H12))) a7
-(sym_eq A a7 a5 H11))) a6 (sym_eq A a6 a3 H10))) H9)) H8)))) | (aprem_succ a6
-a i0 H6 a7) \Rightarrow (\lambda (H7: (eq nat (S i0) O)).(\lambda (H8: (eq A
-(AHead a7 a6) (AHead a3 a5))).(\lambda (H9: (eq A a b2)).((let H10 \def
-(eq_ind nat (S i0) (\lambda (e: nat).(match e in nat return (\lambda (_:
-nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow True])) I O H7) in
-(False_ind ((eq A (AHead a7 a6) (AHead a3 a5)) \to ((eq A a b2) \to ((aprem
-i0 a6 a) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem O
-(AHead a0 a4) b1)))))) H10)) H8 H9 H6))))]) in (H6 (refl_equal nat O)
-(refl_equal A (AHead a3 a5)) (refl_equal A b2)))) (\lambda (i0: nat).(\lambda
+a0 a4) b1)) a0 H0 (aprem_zero a0 a4)) b2 H_y))) (\lambda (i0: nat).(\lambda
(_: (((aprem i0 (AHead a3 a5) b2) \to (ex2 A (\lambda (b1: A).(leq g b1 b2))
(\lambda (b1: A).(aprem i0 (AHead a0 a4) b1)))))).(\lambda (H5: (aprem (S i0)
-(AHead a3 a5) b2)).(let H6 \def (match H5 in aprem return (\lambda (n:
-nat).(\lambda (a: A).(\lambda (a6: A).(\lambda (_: (aprem n a a6)).((eq nat n
-(S i0)) \to ((eq A a (AHead a3 a5)) \to ((eq A a6 b2) \to (ex2 A (\lambda
-(b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem (S i0) (AHead a0 a4)
-b1)))))))))) with [(aprem_zero a6 a7) \Rightarrow (\lambda (H6: (eq nat O (S
-i0))).(\lambda (H7: (eq A (AHead a6 a7) (AHead a3 a5))).(\lambda (H8: (eq A
-a6 b2)).((let H9 \def (eq_ind nat O (\lambda (e: nat).(match e in nat return
-(\lambda (_: nat).Prop) with [O \Rightarrow True | (S _) \Rightarrow False]))
-I (S i0) H6) in (False_ind ((eq A (AHead a6 a7) (AHead a3 a5)) \to ((eq A a6
-b2) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem (S i0)
-(AHead a0 a4) b1))))) H9)) H7 H8)))) | (aprem_succ a6 a i1 H6 a7) \Rightarrow
-(\lambda (H7: (eq nat (S i1) (S i0))).(\lambda (H8: (eq A (AHead a7 a6)
-(AHead a3 a5))).(\lambda (H9: (eq A a b2)).((let H10 \def (f_equal nat nat
-(\lambda (e: nat).(match e in nat return (\lambda (_: nat).nat) with [O
-\Rightarrow i1 | (S n) \Rightarrow n])) (S i1) (S i0) H7) in (eq_ind nat i0
-(\lambda (n: nat).((eq A (AHead a7 a6) (AHead a3 a5)) \to ((eq A a b2) \to
-((aprem n a6 a) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1:
-A).(aprem (S i0) (AHead a0 a4) b1))))))) (\lambda (H11: (eq A (AHead a7 a6)
-(AHead a3 a5))).(let H12 \def (f_equal A A (\lambda (e: A).(match e in A
-return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a6 | (AHead _ a8)
-\Rightarrow a8])) (AHead a7 a6) (AHead a3 a5) H11) in ((let H13 \def (f_equal
-A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
-\Rightarrow a7 | (AHead a8 _) \Rightarrow a8])) (AHead a7 a6) (AHead a3 a5)
-H11) in (eq_ind A a3 (\lambda (_: A).((eq A a6 a5) \to ((eq A a b2) \to
-((aprem i0 a6 a) \to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1:
-A).(aprem (S i0) (AHead a0 a4) b1))))))) (\lambda (H14: (eq A a6 a5)).(eq_ind
-A a5 (\lambda (a8: A).((eq A a b2) \to ((aprem i0 a8 a) \to (ex2 A (\lambda
-(b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem (S i0) (AHead a0 a4) b1))))))
-(\lambda (H15: (eq A a b2)).(eq_ind A b2 (\lambda (a8: A).((aprem i0 a5 a8)
-\to (ex2 A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem (S i0)
-(AHead a0 a4) b1))))) (\lambda (H16: (aprem i0 a5 b2)).(let H_x \def (H3 i0
-b2 H16) in (let H17 \def H_x in (ex2_ind A (\lambda (b1: A).(leq g b1 b2))
-(\lambda (b1: A).(aprem i0 a4 b1)) (ex2 A (\lambda (b1: A).(leq g b1 b2))
-(\lambda (b1: A).(aprem (S i0) (AHead a0 a4) b1))) (\lambda (x: A).(\lambda
-(H18: (leq g x b2)).(\lambda (H19: (aprem i0 a4 x)).(ex_intro2 A (\lambda
-(b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem (S i0) (AHead a0 a4) b1)) x
-H18 (aprem_succ a4 x i0 H19 a0))))) H17)))) a (sym_eq A a b2 H15))) a6
-(sym_eq A a6 a5 H14))) a7 (sym_eq A a7 a3 H13))) H12))) i1 (sym_eq nat i1 i0
-H10))) H8 H9 H6))))]) in (H6 (refl_equal nat (S i0)) (refl_equal A (AHead a3
-a5)) (refl_equal A b2)))))) i H4)))))))))))) a1 a2 H)))).
+(AHead a3 a5) b2)).(let H_y \def (aprem_gen_head_S a3 a5 b2 i0 H5) in (let
+H_x \def (H3 i0 b2 H_y) in (let H6 \def H_x in (ex2_ind A (\lambda (b1:
+A).(leq g b1 b2)) (\lambda (b1: A).(aprem i0 a4 b1)) (ex2 A (\lambda (b1:
+A).(leq g b1 b2)) (\lambda (b1: A).(aprem (S i0) (AHead a0 a4) b1))) (\lambda
+(x: A).(\lambda (H7: (leq g x b2)).(\lambda (H8: (aprem i0 a4 x)).(ex_intro2
+A (\lambda (b1: A).(leq g b1 b2)) (\lambda (b1: A).(aprem (S i0) (AHead a0
+a4) b1)) x H7 (aprem_succ a4 x i0 H8 a0))))) H6))))))) i H4)))))))))))) a1 a2
+H)))).
theorem aprem_asucc:
\forall (g: G).(\forall (a1: A).(\forall (a2: A).(\forall (i: nat).((aprem i
include "LambdaDelta-1/aprem/props.ma".
-include "LambdaDelta-1/aprem/fwd.ma".
-
theorem arity_aprem:
\forall (g: G).(\forall (c: C).(\forall (t: T).(\forall (a: A).((arity g c t
a) \to (\forall (i: nat).(\forall (b: A).((aprem i a b) \to (ex2_3 C T nat
(asucc g x0))).(\lambda (H11: (arity g (CHead c0 (Bind Abst) u) t x1)).(let
H12 \def (eq_ind A a1 (\lambda (a0: A).(leq g a0 a2)) H3 (AHead x0 x1) H9) in
(let H13 \def (eq_ind A a1 (\lambda (a0: A).(arity g c0 (THead (Bind Abst) u
-t) a0)) H7 (AHead x0 x1) H9) in (let H_x \def (leq_gen_head g x0 x1 a2 H12)
-in (let H14 \def H_x in (ex3_2_ind A A (\lambda (a3: A).(\lambda (a4: A).(eq
-A a2 (AHead a3 a4)))) (\lambda (a3: A).(\lambda (_: A).(leq g x0 a3)))
-(\lambda (_: A).(\lambda (a4: A).(leq g x1 a4))) (ex3_2 A A (\lambda (a3:
+t) a0)) H7 (AHead x0 x1) H9) in (let H_x \def (leq_gen_head1 g x0 x1 a2 H12)
+in (let H14 \def H_x in (ex3_2_ind A A (\lambda (a3: A).(\lambda (_: A).(leq
+g x0 a3))) (\lambda (_: A).(\lambda (a4: A).(leq g x1 a4))) (\lambda (a3:
+A).(\lambda (a4: A).(eq A a2 (AHead a3 a4)))) (ex3_2 A A (\lambda (a3:
A).(\lambda (a4: A).(eq A a2 (AHead a3 a4)))) (\lambda (a3: A).(\lambda (_:
A).(arity g c0 u (asucc g a3)))) (\lambda (_: A).(\lambda (a4: A).(arity g
(CHead c0 (Bind Abst) u) t a4)))) (\lambda (x2: A).(\lambda (x3: A).(\lambda
-(H15: (eq A a2 (AHead x2 x3))).(\lambda (H16: (leq g x0 x2)).(\lambda (H17:
-(leq g x1 x3)).(eq_ind_r A (AHead x2 x3) (\lambda (a0: A).(ex3_2 A A (\lambda
+(H15: (leq g x0 x2)).(\lambda (H16: (leq g x1 x3)).(\lambda (H17: (eq A a2
+(AHead x2 x3))).(let H18 \def (f_equal A A (\lambda (e: A).e) a2 (AHead x2
+x3) H17) in (eq_ind_r A (AHead x2 x3) (\lambda (a0: A).(ex3_2 A A (\lambda
(a3: A).(\lambda (a4: A).(eq A a0 (AHead a3 a4)))) (\lambda (a3: A).(\lambda
(_: A).(arity g c0 u (asucc g a3)))) (\lambda (_: A).(\lambda (a4: A).(arity
g (CHead c0 (Bind Abst) u) t a4))))) (ex3_2_intro A A (\lambda (a3:
A).(\lambda (_: A).(arity g c0 u (asucc g a3)))) (\lambda (_: A).(\lambda
(a4: A).(arity g (CHead c0 (Bind Abst) u) t a4))) x2 x3 (refl_equal A (AHead
x2 x3)) (arity_repl g c0 u (asucc g x0) H10 (asucc g x2) (asucc_repl g x0 x2
-H16)) (arity_repl g (CHead c0 (Bind Abst) u) t x1 H11 x3 H17)) a2 H15))))))
+H15)) (arity_repl g (CHead c0 (Bind Abst) u) t x1 H11 x3 H16)) a2 H18)))))))
H14)))))))))) H8))))))))))))) c y a H0))) H)))))).
theorem arity_gen_appl:
(a1: A).(arity g (CSort O) (TSort O) a1)) (\lambda (a1: A).(arity g (CSort O)
(TSort O) (AHead a1 a))) P (\lambda (x: A).(\lambda (_: (arity g (CSort O)
(TSort O) x)).(\lambda (H2: (arity g (CSort O) (TSort O) (AHead x a))).(let
-H3 \def (match (arity_gen_sort g (CSort O) O (AHead x a) H2) in leq return
-(\lambda (a0: A).(\lambda (a1: A).(\lambda (_: (leq ? a0 a1)).((eq A a0
-(AHead x a)) \to ((eq A a1 (ASort O O)) \to P))))) with [(leq_sort h1 h2 n1
-n2 k H3) \Rightarrow (\lambda (H4: (eq A (ASort h1 n1) (AHead x a))).(\lambda
-(H5: (eq A (ASort h2 n2) (ASort O O))).((let H6 \def (eq_ind A (ASort h1 n1)
-(\lambda (e: A).(match e in A return (\lambda (_: A).Prop) with [(ASort _ _)
-\Rightarrow True | (AHead _ _) \Rightarrow False])) I (AHead x a) H4) in
-(False_ind ((eq A (ASort h2 n2) (ASort O O)) \to ((eq A (aplus g (ASort h1
-n1) k) (aplus g (ASort h2 n2) k)) \to P)) H6)) H5 H3))) | (leq_head a1 a2 H3
-a3 a4 H4) \Rightarrow (\lambda (H5: (eq A (AHead a1 a3) (AHead x
-a))).(\lambda (H6: (eq A (AHead a2 a4) (ASort O O))).((let H7 \def (f_equal A
-A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
-\Rightarrow a3 | (AHead _ a0) \Rightarrow a0])) (AHead a1 a3) (AHead x a) H5)
-in ((let H8 \def (f_equal A A (\lambda (e: A).(match e in A return (\lambda
-(_: A).A) with [(ASort _ _) \Rightarrow a1 | (AHead a0 _) \Rightarrow a0]))
-(AHead a1 a3) (AHead x a) H5) in (eq_ind A x (\lambda (a0: A).((eq A a3 a)
-\to ((eq A (AHead a2 a4) (ASort O O)) \to ((leq g a0 a2) \to ((leq g a3 a4)
-\to P))))) (\lambda (H9: (eq A a3 a)).(eq_ind A a (\lambda (a0: A).((eq A
-(AHead a2 a4) (ASort O O)) \to ((leq g x a2) \to ((leq g a0 a4) \to P))))
-(\lambda (H10: (eq A (AHead a2 a4) (ASort O O))).(let H11 \def (eq_ind A
-(AHead a2 a4) (\lambda (e: A).(match e in A return (\lambda (_: A).Prop) with
-[(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow True])) I (ASort O
-O) H10) in (False_ind ((leq g x a2) \to ((leq g a a4) \to P)) H11))) a3
-(sym_eq A a3 a H9))) a1 (sym_eq A a1 x H8))) H7)) H6 H3 H4)))]) in (H3
-(refl_equal A (AHead x a)) (refl_equal A (ASort O O))))))) H0))))).
+H_x \def (leq_gen_head1 g x a (ASort O O) (arity_gen_sort g (CSort O) O
+(AHead x a) H2)) in (let H3 \def H_x in (ex3_2_ind A A (\lambda (a3:
+A).(\lambda (_: A).(leq g x a3))) (\lambda (_: A).(\lambda (a4: A).(leq g a
+a4))) (\lambda (a3: A).(\lambda (a4: A).(eq A (ASort O O) (AHead a3 a4)))) P
+(\lambda (x0: A).(\lambda (x1: A).(\lambda (_: (leq g x x0)).(\lambda (_:
+(leq g a x1)).(\lambda (H6: (eq A (ASort O O) (AHead x0 x1))).(let H7 \def
+(eq_ind A (ASort O O) (\lambda (ee: A).(match ee in A return (\lambda (_:
+A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _) \Rightarrow
+False])) I (AHead x0 x1) H6) in (False_ind P H7))))))) H3)))))) H0))))).
(\lambda (H0: (leq g (asucc g (ASort O n0)) (asucc g (ASort n1
n2)))).(nat_ind (\lambda (n3: nat).((leq g (asucc g (ASort O n0)) (asucc g
(ASort n3 n2))) \to (leq g (ASort O n0) (ASort n3 n2)))) (\lambda (H1: (leq g
-(asucc g (ASort O n0)) (asucc g (ASort O n2)))).(let H2 \def (match H1 in leq
-return (\lambda (a: A).(\lambda (a0: A).(\lambda (_: (leq ? a a0)).((eq A a
-(ASort O (next g n0))) \to ((eq A a0 (ASort O (next g n2))) \to (leq g (ASort
-O n0) (ASort O n2))))))) with [(leq_sort h1 h2 n3 n4 k H2) \Rightarrow
-(\lambda (H3: (eq A (ASort h1 n3) (ASort O (next g n0)))).(\lambda (H4: (eq A
-(ASort h2 n4) (ASort O (next g n2)))).((let H5 \def (f_equal A nat (\lambda
-(e: A).(match e in A return (\lambda (_: A).nat) with [(ASort _ n5)
-\Rightarrow n5 | (AHead _ _) \Rightarrow n3])) (ASort h1 n3) (ASort O (next g
-n0)) H3) in ((let H6 \def (f_equal A nat (\lambda (e: A).(match e in A return
-(\lambda (_: A).nat) with [(ASort n5 _) \Rightarrow n5 | (AHead _ _)
-\Rightarrow h1])) (ASort h1 n3) (ASort O (next g n0)) H3) in (eq_ind nat O
-(\lambda (n5: nat).((eq nat n3 (next g n0)) \to ((eq A (ASort h2 n4) (ASort O
-(next g n2))) \to ((eq A (aplus g (ASort n5 n3) k) (aplus g (ASort h2 n4) k))
-\to (leq g (ASort O n0) (ASort O n2)))))) (\lambda (H7: (eq nat n3 (next g
-n0))).(eq_ind nat (next g n0) (\lambda (n5: nat).((eq A (ASort h2 n4) (ASort
-O (next g n2))) \to ((eq A (aplus g (ASort O n5) k) (aplus g (ASort h2 n4)
-k)) \to (leq g (ASort O n0) (ASort O n2))))) (\lambda (H8: (eq A (ASort h2
-n4) (ASort O (next g n2)))).(let H9 \def (f_equal A nat (\lambda (e:
-A).(match e in A return (\lambda (_: A).nat) with [(ASort _ n5) \Rightarrow
-n5 | (AHead _ _) \Rightarrow n4])) (ASort h2 n4) (ASort O (next g n2)) H8) in
-((let H10 \def (f_equal A nat (\lambda (e: A).(match e in A return (\lambda
-(_: A).nat) with [(ASort n5 _) \Rightarrow n5 | (AHead _ _) \Rightarrow h2]))
-(ASort h2 n4) (ASort O (next g n2)) H8) in (eq_ind nat O (\lambda (n5:
-nat).((eq nat n4 (next g n2)) \to ((eq A (aplus g (ASort O (next g n0)) k)
-(aplus g (ASort n5 n4) k)) \to (leq g (ASort O n0) (ASort O n2))))) (\lambda
-(H11: (eq nat n4 (next g n2))).(eq_ind nat (next g n2) (\lambda (n5:
-nat).((eq A (aplus g (ASort O (next g n0)) k) (aplus g (ASort O n5) k)) \to
-(leq g (ASort O n0) (ASort O n2)))) (\lambda (H12: (eq A (aplus g (ASort O
-(next g n0)) k) (aplus g (ASort O (next g n2)) k))).(let H13 \def (eq_ind_r A
-(aplus g (ASort O (next g n0)) k) (\lambda (a: A).(eq A a (aplus g (ASort O
-(next g n2)) k))) H12 (aplus g (ASort O n0) (S k)) (aplus_sort_O_S_simpl g n0
-k)) in (let H14 \def (eq_ind_r A (aplus g (ASort O (next g n2)) k) (\lambda
-(a: A).(eq A (aplus g (ASort O n0) (S k)) a)) H13 (aplus g (ASort O n2) (S
-k)) (aplus_sort_O_S_simpl g n2 k)) in (leq_sort g O O n0 n2 (S k) H14)))) n4
-(sym_eq nat n4 (next g n2) H11))) h2 (sym_eq nat h2 O H10))) H9))) n3 (sym_eq
-nat n3 (next g n0) H7))) h1 (sym_eq nat h1 O H6))) H5)) H4 H2))) | (leq_head
-a0 a3 H2 a4 a5 H3) \Rightarrow (\lambda (H4: (eq A (AHead a0 a4) (ASort O
-(next g n0)))).(\lambda (H5: (eq A (AHead a3 a5) (ASort O (next g
-n2)))).((let H6 \def (eq_ind A (AHead a0 a4) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _
-_) \Rightarrow True])) I (ASort O (next g n0)) H4) in (False_ind ((eq A
-(AHead a3 a5) (ASort O (next g n2))) \to ((leq g a0 a3) \to ((leq g a4 a5)
-\to (leq g (ASort O n0) (ASort O n2))))) H6)) H5 H2 H3)))]) in (H2
-(refl_equal A (ASort O (next g n0))) (refl_equal A (ASort O (next g n2))))))
-(\lambda (n3: nat).(\lambda (_: (((leq g (asucc g (ASort O n0)) (asucc g
-(ASort n3 n2))) \to (leq g (ASort O n0) (ASort n3 n2))))).(\lambda (H1: (leq
-g (asucc g (ASort O n0)) (asucc g (ASort (S n3) n2)))).(let H2 \def (match H1
-in leq return (\lambda (a: A).(\lambda (a0: A).(\lambda (_: (leq ? a
-a0)).((eq A a (ASort O (next g n0))) \to ((eq A a0 (ASort n3 n2)) \to (leq g
-(ASort O n0) (ASort (S n3) n2))))))) with [(leq_sort h1 h2 n4 n5 k H2)
-\Rightarrow (\lambda (H3: (eq A (ASort h1 n4) (ASort O (next g
-n0)))).(\lambda (H4: (eq A (ASort h2 n5) (ASort n3 n2))).((let H5 \def
+(asucc g (ASort O n0)) (asucc g (ASort O n2)))).(let H_x \def (leq_gen_sort1
+g O (next g n0) (ASort O (next g n2)) H1) in (let H2 \def H_x in (ex2_3_ind
+nat nat nat (\lambda (n3: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A
+(aplus g (ASort O (next g n0)) k) (aplus g (ASort h2 n3) k))))) (\lambda (n3:
+nat).(\lambda (h2: nat).(\lambda (_: nat).(eq A (ASort O (next g n2)) (ASort
+h2 n3))))) (leq g (ASort O n0) (ASort O n2)) (\lambda (x0: nat).(\lambda (x1:
+nat).(\lambda (x2: nat).(\lambda (H3: (eq A (aplus g (ASort O (next g n0))
+x2) (aplus g (ASort x1 x0) x2))).(\lambda (H4: (eq A (ASort O (next g n2))
+(ASort x1 x0))).(let H5 \def (f_equal A nat (\lambda (e: A).(match e in A
+return (\lambda (_: A).nat) with [(ASort n3 _) \Rightarrow n3 | (AHead _ _)
+\Rightarrow O])) (ASort O (next g n2)) (ASort x1 x0) H4) in ((let H6 \def
(f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with
-[(ASort _ n6) \Rightarrow n6 | (AHead _ _) \Rightarrow n4])) (ASort h1 n4)
-(ASort O (next g n0)) H3) in ((let H6 \def (f_equal A nat (\lambda (e:
-A).(match e in A return (\lambda (_: A).nat) with [(ASort n6 _) \Rightarrow
-n6 | (AHead _ _) \Rightarrow h1])) (ASort h1 n4) (ASort O (next g n0)) H3) in
-(eq_ind nat O (\lambda (n6: nat).((eq nat n4 (next g n0)) \to ((eq A (ASort
-h2 n5) (ASort n3 n2)) \to ((eq A (aplus g (ASort n6 n4) k) (aplus g (ASort h2
-n5) k)) \to (leq g (ASort O n0) (ASort (S n3) n2)))))) (\lambda (H7: (eq nat
-n4 (next g n0))).(eq_ind nat (next g n0) (\lambda (n6: nat).((eq A (ASort h2
-n5) (ASort n3 n2)) \to ((eq A (aplus g (ASort O n6) k) (aplus g (ASort h2 n5)
-k)) \to (leq g (ASort O n0) (ASort (S n3) n2))))) (\lambda (H8: (eq A (ASort
-h2 n5) (ASort n3 n2))).(let H9 \def (f_equal A nat (\lambda (e: A).(match e
-in A return (\lambda (_: A).nat) with [(ASort _ n6) \Rightarrow n6 | (AHead _
-_) \Rightarrow n5])) (ASort h2 n5) (ASort n3 n2) H8) in ((let H10 \def
-(f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with
-[(ASort n6 _) \Rightarrow n6 | (AHead _ _) \Rightarrow h2])) (ASort h2 n5)
-(ASort n3 n2) H8) in (eq_ind nat n3 (\lambda (n6: nat).((eq nat n5 n2) \to
-((eq A (aplus g (ASort O (next g n0)) k) (aplus g (ASort n6 n5) k)) \to (leq
-g (ASort O n0) (ASort (S n3) n2))))) (\lambda (H11: (eq nat n5 n2)).(eq_ind
-nat n2 (\lambda (n6: nat).((eq A (aplus g (ASort O (next g n0)) k) (aplus g
-(ASort n3 n6) k)) \to (leq g (ASort O n0) (ASort (S n3) n2)))) (\lambda (H12:
-(eq A (aplus g (ASort O (next g n0)) k) (aplus g (ASort n3 n2) k))).(let H13
-\def (eq_ind_r A (aplus g (ASort O (next g n0)) k) (\lambda (a: A).(eq A a
-(aplus g (ASort n3 n2) k))) H12 (aplus g (ASort O n0) (S k))
-(aplus_sort_O_S_simpl g n0 k)) in (let H14 \def (eq_ind_r A (aplus g (ASort
-n3 n2) k) (\lambda (a: A).(eq A (aplus g (ASort O n0) (S k)) a)) H13 (aplus g
-(ASort (S n3) n2) (S k)) (aplus_sort_S_S_simpl g n2 n3 k)) in (leq_sort g O
-(S n3) n0 n2 (S k) H14)))) n5 (sym_eq nat n5 n2 H11))) h2 (sym_eq nat h2 n3
-H10))) H9))) n4 (sym_eq nat n4 (next g n0) H7))) h1 (sym_eq nat h1 O H6)))
-H5)) H4 H2))) | (leq_head a0 a3 H2 a4 a5 H3) \Rightarrow (\lambda (H4: (eq A
-(AHead a0 a4) (ASort O (next g n0)))).(\lambda (H5: (eq A (AHead a3 a5)
-(ASort n3 n2))).((let H6 \def (eq_ind A (AHead a0 a4) (\lambda (e: A).(match
-e in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow False |
-(AHead _ _) \Rightarrow True])) I (ASort O (next g n0)) H4) in (False_ind
-((eq A (AHead a3 a5) (ASort n3 n2)) \to ((leq g a0 a3) \to ((leq g a4 a5) \to
-(leq g (ASort O n0) (ASort (S n3) n2))))) H6)) H5 H2 H3)))]) in (H2
-(refl_equal A (ASort O (next g n0))) (refl_equal A (ASort n3 n2))))))) n1
-H0)) (\lambda (n3: nat).(\lambda (IHn: (((leq g (asucc g (ASort n3 n0))
-(asucc g (ASort n1 n2))) \to (leq g (ASort n3 n0) (ASort n1 n2))))).(\lambda
-(H0: (leq g (asucc g (ASort (S n3) n0)) (asucc g (ASort n1 n2)))).(nat_ind
-(\lambda (n4: nat).((leq g (asucc g (ASort (S n3) n0)) (asucc g (ASort n4
-n2))) \to ((((leq g (asucc g (ASort n3 n0)) (asucc g (ASort n4 n2))) \to (leq
-g (ASort n3 n0) (ASort n4 n2)))) \to (leq g (ASort (S n3) n0) (ASort n4
-n2))))) (\lambda (H1: (leq g (asucc g (ASort (S n3) n0)) (asucc g (ASort O
+[(ASort _ n3) \Rightarrow n3 | (AHead _ _) \Rightarrow ((match g with [(mk_G
+next _) \Rightarrow next]) n2)])) (ASort O (next g n2)) (ASort x1 x0) H4) in
+(\lambda (H7: (eq nat O x1)).(let H8 \def (eq_ind_r nat x1 (\lambda (n3:
+nat).(eq A (aplus g (ASort O (next g n0)) x2) (aplus g (ASort n3 x0) x2))) H3
+O H7) in (let H9 \def (eq_ind_r nat x0 (\lambda (n3: nat).(eq A (aplus g
+(ASort O (next g n0)) x2) (aplus g (ASort O n3) x2))) H8 (next g n2) H6) in
+(let H10 \def (eq_ind_r A (aplus g (ASort O (next g n0)) x2) (\lambda (a:
+A).(eq A a (aplus g (ASort O (next g n2)) x2))) H9 (aplus g (ASort O n0) (S
+x2)) (aplus_sort_O_S_simpl g n0 x2)) in (let H11 \def (eq_ind_r A (aplus g
+(ASort O (next g n2)) x2) (\lambda (a: A).(eq A (aplus g (ASort O n0) (S x2))
+a)) H10 (aplus g (ASort O n2) (S x2)) (aplus_sort_O_S_simpl g n2 x2)) in
+(leq_sort g O O n0 n2 (S x2) H11))))))) H5))))))) H2)))) (\lambda (n3:
+nat).(\lambda (_: (((leq g (asucc g (ASort O n0)) (asucc g (ASort n3 n2)))
+\to (leq g (ASort O n0) (ASort n3 n2))))).(\lambda (H1: (leq g (asucc g
+(ASort O n0)) (asucc g (ASort (S n3) n2)))).(let H_x \def (leq_gen_sort1 g O
+(next g n0) (ASort n3 n2) H1) in (let H2 \def H_x in (ex2_3_ind nat nat nat
+(\lambda (n4: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort
+O (next g n0)) k) (aplus g (ASort h2 n4) k))))) (\lambda (n4: nat).(\lambda
+(h2: nat).(\lambda (_: nat).(eq A (ASort n3 n2) (ASort h2 n4))))) (leq g
+(ASort O n0) (ASort (S n3) n2)) (\lambda (x0: nat).(\lambda (x1:
+nat).(\lambda (x2: nat).(\lambda (H3: (eq A (aplus g (ASort O (next g n0))
+x2) (aplus g (ASort x1 x0) x2))).(\lambda (H4: (eq A (ASort n3 n2) (ASort x1
+x0))).(let H5 \def (f_equal A nat (\lambda (e: A).(match e in A return
+(\lambda (_: A).nat) with [(ASort n4 _) \Rightarrow n4 | (AHead _ _)
+\Rightarrow n3])) (ASort n3 n2) (ASort x1 x0) H4) in ((let H6 \def (f_equal A
+nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with [(ASort _
+n4) \Rightarrow n4 | (AHead _ _) \Rightarrow n2])) (ASort n3 n2) (ASort x1
+x0) H4) in (\lambda (H7: (eq nat n3 x1)).(let H8 \def (eq_ind_r nat x1
+(\lambda (n4: nat).(eq A (aplus g (ASort O (next g n0)) x2) (aplus g (ASort
+n4 x0) x2))) H3 n3 H7) in (let H9 \def (eq_ind_r nat x0 (\lambda (n4:
+nat).(eq A (aplus g (ASort O (next g n0)) x2) (aplus g (ASort n3 n4) x2))) H8
+n2 H6) in (let H10 \def (eq_ind_r A (aplus g (ASort O (next g n0)) x2)
+(\lambda (a: A).(eq A a (aplus g (ASort n3 n2) x2))) H9 (aplus g (ASort O n0)
+(S x2)) (aplus_sort_O_S_simpl g n0 x2)) in (let H11 \def (eq_ind_r A (aplus g
+(ASort n3 n2) x2) (\lambda (a: A).(eq A (aplus g (ASort O n0) (S x2)) a)) H10
+(aplus g (ASort (S n3) n2) (S x2)) (aplus_sort_S_S_simpl g n2 n3 x2)) in
+(leq_sort g O (S n3) n0 n2 (S x2) H11))))))) H5))))))) H2)))))) n1 H0))
+(\lambda (n3: nat).(\lambda (IHn: (((leq g (asucc g (ASort n3 n0)) (asucc g
+(ASort n1 n2))) \to (leq g (ASort n3 n0) (ASort n1 n2))))).(\lambda (H0: (leq
+g (asucc g (ASort (S n3) n0)) (asucc g (ASort n1 n2)))).(nat_ind (\lambda
+(n4: nat).((leq g (asucc g (ASort (S n3) n0)) (asucc g (ASort n4 n2))) \to
+((((leq g (asucc g (ASort n3 n0)) (asucc g (ASort n4 n2))) \to (leq g (ASort
+n3 n0) (ASort n4 n2)))) \to (leq g (ASort (S n3) n0) (ASort n4 n2)))))
+(\lambda (H1: (leq g (asucc g (ASort (S n3) n0)) (asucc g (ASort O
n2)))).(\lambda (_: (((leq g (asucc g (ASort n3 n0)) (asucc g (ASort O n2)))
-\to (leq g (ASort n3 n0) (ASort O n2))))).(let H2 \def (match H1 in leq
-return (\lambda (a: A).(\lambda (a0: A).(\lambda (_: (leq ? a a0)).((eq A a
-(ASort n3 n0)) \to ((eq A a0 (ASort O (next g n2))) \to (leq g (ASort (S n3)
-n0) (ASort O n2))))))) with [(leq_sort h1 h2 n4 n5 k H2) \Rightarrow (\lambda
-(H3: (eq A (ASort h1 n4) (ASort n3 n0))).(\lambda (H4: (eq A (ASort h2 n5)
-(ASort O (next g n2)))).((let H5 \def (f_equal A nat (\lambda (e: A).(match e
-in A return (\lambda (_: A).nat) with [(ASort _ n6) \Rightarrow n6 | (AHead _
-_) \Rightarrow n4])) (ASort h1 n4) (ASort n3 n0) H3) in ((let H6 \def
+\to (leq g (ASort n3 n0) (ASort O n2))))).(let H_x \def (leq_gen_sort1 g n3
+n0 (ASort O (next g n2)) H1) in (let H2 \def H_x in (ex2_3_ind nat nat nat
+(\lambda (n4: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort
+n3 n0) k) (aplus g (ASort h2 n4) k))))) (\lambda (n4: nat).(\lambda (h2:
+nat).(\lambda (_: nat).(eq A (ASort O (next g n2)) (ASort h2 n4))))) (leq g
+(ASort (S n3) n0) (ASort O n2)) (\lambda (x0: nat).(\lambda (x1:
+nat).(\lambda (x2: nat).(\lambda (H3: (eq A (aplus g (ASort n3 n0) x2) (aplus
+g (ASort x1 x0) x2))).(\lambda (H4: (eq A (ASort O (next g n2)) (ASort x1
+x0))).(let H5 \def (f_equal A nat (\lambda (e: A).(match e in A return
+(\lambda (_: A).nat) with [(ASort n4 _) \Rightarrow n4 | (AHead _ _)
+\Rightarrow O])) (ASort O (next g n2)) (ASort x1 x0) H4) in ((let H6 \def
(f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with
-[(ASort n6 _) \Rightarrow n6 | (AHead _ _) \Rightarrow h1])) (ASort h1 n4)
-(ASort n3 n0) H3) in (eq_ind nat n3 (\lambda (n6: nat).((eq nat n4 n0) \to
-((eq A (ASort h2 n5) (ASort O (next g n2))) \to ((eq A (aplus g (ASort n6 n4)
-k) (aplus g (ASort h2 n5) k)) \to (leq g (ASort (S n3) n0) (ASort O n2))))))
-(\lambda (H7: (eq nat n4 n0)).(eq_ind nat n0 (\lambda (n6: nat).((eq A (ASort
-h2 n5) (ASort O (next g n2))) \to ((eq A (aplus g (ASort n3 n6) k) (aplus g
-(ASort h2 n5) k)) \to (leq g (ASort (S n3) n0) (ASort O n2))))) (\lambda (H8:
-(eq A (ASort h2 n5) (ASort O (next g n2)))).(let H9 \def (f_equal A nat
-(\lambda (e: A).(match e in A return (\lambda (_: A).nat) with [(ASort _ n6)
-\Rightarrow n6 | (AHead _ _) \Rightarrow n5])) (ASort h2 n5) (ASort O (next g
-n2)) H8) in ((let H10 \def (f_equal A nat (\lambda (e: A).(match e in A
-return (\lambda (_: A).nat) with [(ASort n6 _) \Rightarrow n6 | (AHead _ _)
-\Rightarrow h2])) (ASort h2 n5) (ASort O (next g n2)) H8) in (eq_ind nat O
-(\lambda (n6: nat).((eq nat n5 (next g n2)) \to ((eq A (aplus g (ASort n3 n0)
-k) (aplus g (ASort n6 n5) k)) \to (leq g (ASort (S n3) n0) (ASort O n2)))))
-(\lambda (H11: (eq nat n5 (next g n2))).(eq_ind nat (next g n2) (\lambda (n6:
-nat).((eq A (aplus g (ASort n3 n0) k) (aplus g (ASort O n6) k)) \to (leq g
-(ASort (S n3) n0) (ASort O n2)))) (\lambda (H12: (eq A (aplus g (ASort n3 n0)
-k) (aplus g (ASort O (next g n2)) k))).(let H13 \def (eq_ind_r A (aplus g
-(ASort n3 n0) k) (\lambda (a: A).(eq A a (aplus g (ASort O (next g n2)) k)))
-H12 (aplus g (ASort (S n3) n0) (S k)) (aplus_sort_S_S_simpl g n0 n3 k)) in
-(let H14 \def (eq_ind_r A (aplus g (ASort O (next g n2)) k) (\lambda (a:
-A).(eq A (aplus g (ASort (S n3) n0) (S k)) a)) H13 (aplus g (ASort O n2) (S
-k)) (aplus_sort_O_S_simpl g n2 k)) in (leq_sort g (S n3) O n0 n2 (S k)
-H14)))) n5 (sym_eq nat n5 (next g n2) H11))) h2 (sym_eq nat h2 O H10))) H9)))
-n4 (sym_eq nat n4 n0 H7))) h1 (sym_eq nat h1 n3 H6))) H5)) H4 H2))) |
-(leq_head a0 a3 H2 a4 a5 H3) \Rightarrow (\lambda (H4: (eq A (AHead a0 a4)
-(ASort n3 n0))).(\lambda (H5: (eq A (AHead a3 a5) (ASort O (next g
-n2)))).((let H6 \def (eq_ind A (AHead a0 a4) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _
-_) \Rightarrow True])) I (ASort n3 n0) H4) in (False_ind ((eq A (AHead a3 a5)
-(ASort O (next g n2))) \to ((leq g a0 a3) \to ((leq g a4 a5) \to (leq g
-(ASort (S n3) n0) (ASort O n2))))) H6)) H5 H2 H3)))]) in (H2 (refl_equal A
-(ASort n3 n0)) (refl_equal A (ASort O (next g n2))))))) (\lambda (n4:
+[(ASort _ n4) \Rightarrow n4 | (AHead _ _) \Rightarrow ((match g with [(mk_G
+next _) \Rightarrow next]) n2)])) (ASort O (next g n2)) (ASort x1 x0) H4) in
+(\lambda (H7: (eq nat O x1)).(let H8 \def (eq_ind_r nat x1 (\lambda (n4:
+nat).(eq A (aplus g (ASort n3 n0) x2) (aplus g (ASort n4 x0) x2))) H3 O H7)
+in (let H9 \def (eq_ind_r nat x0 (\lambda (n4: nat).(eq A (aplus g (ASort n3
+n0) x2) (aplus g (ASort O n4) x2))) H8 (next g n2) H6) in (let H10 \def
+(eq_ind_r A (aplus g (ASort n3 n0) x2) (\lambda (a: A).(eq A a (aplus g
+(ASort O (next g n2)) x2))) H9 (aplus g (ASort (S n3) n0) (S x2))
+(aplus_sort_S_S_simpl g n0 n3 x2)) in (let H11 \def (eq_ind_r A (aplus g
+(ASort O (next g n2)) x2) (\lambda (a: A).(eq A (aplus g (ASort (S n3) n0) (S
+x2)) a)) H10 (aplus g (ASort O n2) (S x2)) (aplus_sort_O_S_simpl g n2 x2)) in
+(leq_sort g (S n3) O n0 n2 (S x2) H11))))))) H5))))))) H2))))) (\lambda (n4:
nat).(\lambda (_: (((leq g (asucc g (ASort (S n3) n0)) (asucc g (ASort n4
n2))) \to ((((leq g (asucc g (ASort n3 n0)) (asucc g (ASort n4 n2))) \to (leq
g (ASort n3 n0) (ASort n4 n2)))) \to (leq g (ASort (S n3) n0) (ASort n4
n2)))))).(\lambda (H1: (leq g (asucc g (ASort (S n3) n0)) (asucc g (ASort (S
n4) n2)))).(\lambda (_: (((leq g (asucc g (ASort n3 n0)) (asucc g (ASort (S
-n4) n2))) \to (leq g (ASort n3 n0) (ASort (S n4) n2))))).(let H2 \def (match
-H1 in leq return (\lambda (a: A).(\lambda (a0: A).(\lambda (_: (leq ? a
-a0)).((eq A a (ASort n3 n0)) \to ((eq A a0 (ASort n4 n2)) \to (leq g (ASort
-(S n3) n0) (ASort (S n4) n2))))))) with [(leq_sort h1 h2 n5 n6 k H2)
-\Rightarrow (\lambda (H3: (eq A (ASort h1 n5) (ASort n3 n0))).(\lambda (H4:
-(eq A (ASort h2 n6) (ASort n4 n2))).((let H5 \def (f_equal A nat (\lambda (e:
-A).(match e in A return (\lambda (_: A).nat) with [(ASort _ n7) \Rightarrow
-n7 | (AHead _ _) \Rightarrow n5])) (ASort h1 n5) (ASort n3 n0) H3) in ((let
-H6 \def (f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_:
-A).nat) with [(ASort n7 _) \Rightarrow n7 | (AHead _ _) \Rightarrow h1]))
-(ASort h1 n5) (ASort n3 n0) H3) in (eq_ind nat n3 (\lambda (n7: nat).((eq nat
-n5 n0) \to ((eq A (ASort h2 n6) (ASort n4 n2)) \to ((eq A (aplus g (ASort n7
-n5) k) (aplus g (ASort h2 n6) k)) \to (leq g (ASort (S n3) n0) (ASort (S n4)
-n2)))))) (\lambda (H7: (eq nat n5 n0)).(eq_ind nat n0 (\lambda (n7: nat).((eq
-A (ASort h2 n6) (ASort n4 n2)) \to ((eq A (aplus g (ASort n3 n7) k) (aplus g
-(ASort h2 n6) k)) \to (leq g (ASort (S n3) n0) (ASort (S n4) n2))))) (\lambda
-(H8: (eq A (ASort h2 n6) (ASort n4 n2))).(let H9 \def (f_equal A nat (\lambda
-(e: A).(match e in A return (\lambda (_: A).nat) with [(ASort _ n7)
-\Rightarrow n7 | (AHead _ _) \Rightarrow n6])) (ASort h2 n6) (ASort n4 n2)
-H8) in ((let H10 \def (f_equal A nat (\lambda (e: A).(match e in A return
-(\lambda (_: A).nat) with [(ASort n7 _) \Rightarrow n7 | (AHead _ _)
-\Rightarrow h2])) (ASort h2 n6) (ASort n4 n2) H8) in (eq_ind nat n4 (\lambda
-(n7: nat).((eq nat n6 n2) \to ((eq A (aplus g (ASort n3 n0) k) (aplus g
-(ASort n7 n6) k)) \to (leq g (ASort (S n3) n0) (ASort (S n4) n2))))) (\lambda
-(H11: (eq nat n6 n2)).(eq_ind nat n2 (\lambda (n7: nat).((eq A (aplus g
-(ASort n3 n0) k) (aplus g (ASort n4 n7) k)) \to (leq g (ASort (S n3) n0)
-(ASort (S n4) n2)))) (\lambda (H12: (eq A (aplus g (ASort n3 n0) k) (aplus g
-(ASort n4 n2) k))).(let H13 \def (eq_ind_r A (aplus g (ASort n3 n0) k)
-(\lambda (a: A).(eq A a (aplus g (ASort n4 n2) k))) H12 (aplus g (ASort (S
-n3) n0) (S k)) (aplus_sort_S_S_simpl g n0 n3 k)) in (let H14 \def (eq_ind_r A
-(aplus g (ASort n4 n2) k) (\lambda (a: A).(eq A (aplus g (ASort (S n3) n0) (S
-k)) a)) H13 (aplus g (ASort (S n4) n2) (S k)) (aplus_sort_S_S_simpl g n2 n4
-k)) in (leq_sort g (S n3) (S n4) n0 n2 (S k) H14)))) n6 (sym_eq nat n6 n2
-H11))) h2 (sym_eq nat h2 n4 H10))) H9))) n5 (sym_eq nat n5 n0 H7))) h1
-(sym_eq nat h1 n3 H6))) H5)) H4 H2))) | (leq_head a0 a3 H2 a4 a5 H3)
-\Rightarrow (\lambda (H4: (eq A (AHead a0 a4) (ASort n3 n0))).(\lambda (H5:
-(eq A (AHead a3 a5) (ASort n4 n2))).((let H6 \def (eq_ind A (AHead a0 a4)
-(\lambda (e: A).(match e in A return (\lambda (_: A).Prop) with [(ASort _ _)
-\Rightarrow False | (AHead _ _) \Rightarrow True])) I (ASort n3 n0) H4) in
-(False_ind ((eq A (AHead a3 a5) (ASort n4 n2)) \to ((leq g a0 a3) \to ((leq g
-a4 a5) \to (leq g (ASort (S n3) n0) (ASort (S n4) n2))))) H6)) H5 H2 H3)))])
-in (H2 (refl_equal A (ASort n3 n0)) (refl_equal A (ASort n4 n2)))))))) n1 H0
-IHn)))) n H)))) (\lambda (a: A).(\lambda (H: (((leq g (asucc g (ASort n n0))
-(asucc g a)) \to (leq g (ASort n n0) a)))).(\lambda (a0: A).(\lambda (H0:
-(((leq g (asucc g (ASort n n0)) (asucc g a0)) \to (leq g (ASort n n0)
+n4) n2))) \to (leq g (ASort n3 n0) (ASort (S n4) n2))))).(let H_x \def
+(leq_gen_sort1 g n3 n0 (ASort n4 n2) H1) in (let H2 \def H_x in (ex2_3_ind
+nat nat nat (\lambda (n5: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A
+(aplus g (ASort n3 n0) k) (aplus g (ASort h2 n5) k))))) (\lambda (n5:
+nat).(\lambda (h2: nat).(\lambda (_: nat).(eq A (ASort n4 n2) (ASort h2
+n5))))) (leq g (ASort (S n3) n0) (ASort (S n4) n2)) (\lambda (x0:
+nat).(\lambda (x1: nat).(\lambda (x2: nat).(\lambda (H3: (eq A (aplus g
+(ASort n3 n0) x2) (aplus g (ASort x1 x0) x2))).(\lambda (H4: (eq A (ASort n4
+n2) (ASort x1 x0))).(let H5 \def (f_equal A nat (\lambda (e: A).(match e in A
+return (\lambda (_: A).nat) with [(ASort n5 _) \Rightarrow n5 | (AHead _ _)
+\Rightarrow n4])) (ASort n4 n2) (ASort x1 x0) H4) in ((let H6 \def (f_equal A
+nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with [(ASort _
+n5) \Rightarrow n5 | (AHead _ _) \Rightarrow n2])) (ASort n4 n2) (ASort x1
+x0) H4) in (\lambda (H7: (eq nat n4 x1)).(let H8 \def (eq_ind_r nat x1
+(\lambda (n5: nat).(eq A (aplus g (ASort n3 n0) x2) (aplus g (ASort n5 x0)
+x2))) H3 n4 H7) in (let H9 \def (eq_ind_r nat x0 (\lambda (n5: nat).(eq A
+(aplus g (ASort n3 n0) x2) (aplus g (ASort n4 n5) x2))) H8 n2 H6) in (let H10
+\def (eq_ind_r A (aplus g (ASort n3 n0) x2) (\lambda (a: A).(eq A a (aplus g
+(ASort n4 n2) x2))) H9 (aplus g (ASort (S n3) n0) (S x2))
+(aplus_sort_S_S_simpl g n0 n3 x2)) in (let H11 \def (eq_ind_r A (aplus g
+(ASort n4 n2) x2) (\lambda (a: A).(eq A (aplus g (ASort (S n3) n0) (S x2))
+a)) H10 (aplus g (ASort (S n4) n2) (S x2)) (aplus_sort_S_S_simpl g n2 n4 x2))
+in (leq_sort g (S n3) (S n4) n0 n2 (S x2) H11))))))) H5))))))) H2))))))) n1
+H0 IHn)))) n H)))) (\lambda (a: A).(\lambda (H: (((leq g (asucc g (ASort n
+n0)) (asucc g a)) \to (leq g (ASort n n0) a)))).(\lambda (a0: A).(\lambda
+(H0: (((leq g (asucc g (ASort n n0)) (asucc g a0)) \to (leq g (ASort n n0)
a0)))).(\lambda (H1: (leq g (asucc g (ASort n n0)) (asucc g (AHead a
a0)))).(nat_ind (\lambda (n1: nat).((((leq g (asucc g (ASort n1 n0)) (asucc g
a)) \to (leq g (ASort n1 n0) a))) \to ((((leq g (asucc g (ASort n1 n0))
(\lambda (_: (((leq g (asucc g (ASort O n0)) (asucc g a)) \to (leq g (ASort O
n0) a)))).(\lambda (_: (((leq g (asucc g (ASort O n0)) (asucc g a0)) \to (leq
g (ASort O n0) a0)))).(\lambda (H4: (leq g (asucc g (ASort O n0)) (asucc g
-(AHead a a0)))).(let H5 \def (match H4 in leq return (\lambda (a3:
-A).(\lambda (a4: A).(\lambda (_: (leq ? a3 a4)).((eq A a3 (ASort O (next g
-n0))) \to ((eq A a4 (AHead a (asucc g a0))) \to (leq g (ASort O n0) (AHead a
-a0))))))) with [(leq_sort h1 h2 n1 n2 k H5) \Rightarrow (\lambda (H6: (eq A
-(ASort h1 n1) (ASort O (next g n0)))).(\lambda (H7: (eq A (ASort h2 n2)
-(AHead a (asucc g a0)))).((let H8 \def (f_equal A nat (\lambda (e: A).(match
-e in A return (\lambda (_: A).nat) with [(ASort _ n3) \Rightarrow n3 | (AHead
-_ _) \Rightarrow n1])) (ASort h1 n1) (ASort O (next g n0)) H6) in ((let H9
-\def (f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat)
-with [(ASort n3 _) \Rightarrow n3 | (AHead _ _) \Rightarrow h1])) (ASort h1
-n1) (ASort O (next g n0)) H6) in (eq_ind nat O (\lambda (n3: nat).((eq nat n1
-(next g n0)) \to ((eq A (ASort h2 n2) (AHead a (asucc g a0))) \to ((eq A
-(aplus g (ASort n3 n1) k) (aplus g (ASort h2 n2) k)) \to (leq g (ASort O n0)
-(AHead a a0)))))) (\lambda (H10: (eq nat n1 (next g n0))).(eq_ind nat (next g
-n0) (\lambda (n3: nat).((eq A (ASort h2 n2) (AHead a (asucc g a0))) \to ((eq
-A (aplus g (ASort O n3) k) (aplus g (ASort h2 n2) k)) \to (leq g (ASort O n0)
-(AHead a a0))))) (\lambda (H11: (eq A (ASort h2 n2) (AHead a (asucc g
-a0)))).(let H12 \def (eq_ind A (ASort h2 n2) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _)
-\Rightarrow False])) I (AHead a (asucc g a0)) H11) in (False_ind ((eq A
-(aplus g (ASort O (next g n0)) k) (aplus g (ASort h2 n2) k)) \to (leq g
-(ASort O n0) (AHead a a0))) H12))) n1 (sym_eq nat n1 (next g n0) H10))) h1
-(sym_eq nat h1 O H9))) H8)) H7 H5))) | (leq_head a3 a4 H5 a5 a6 H6)
-\Rightarrow (\lambda (H7: (eq A (AHead a3 a5) (ASort O (next g
-n0)))).(\lambda (H8: (eq A (AHead a4 a6) (AHead a (asucc g a0)))).((let H9
-\def (eq_ind A (AHead a3 a5) (\lambda (e: A).(match e in A return (\lambda
-(_: A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow
-True])) I (ASort O (next g n0)) H7) in (False_ind ((eq A (AHead a4 a6) (AHead
-a (asucc g a0))) \to ((leq g a3 a4) \to ((leq g a5 a6) \to (leq g (ASort O
-n0) (AHead a a0))))) H9)) H8 H5 H6)))]) in (H5 (refl_equal A (ASort O (next g
-n0))) (refl_equal A (AHead a (asucc g a0)))))))) (\lambda (n1: nat).(\lambda
-(_: (((((leq g (asucc g (ASort n1 n0)) (asucc g a)) \to (leq g (ASort n1 n0)
-a))) \to ((((leq g (asucc g (ASort n1 n0)) (asucc g a0)) \to (leq g (ASort n1
-n0) a0))) \to ((leq g (asucc g (ASort n1 n0)) (asucc g (AHead a a0))) \to
-(leq g (ASort n1 n0) (AHead a a0))))))).(\lambda (_: (((leq g (asucc g (ASort
-(S n1) n0)) (asucc g a)) \to (leq g (ASort (S n1) n0) a)))).(\lambda (_:
-(((leq g (asucc g (ASort (S n1) n0)) (asucc g a0)) \to (leq g (ASort (S n1)
-n0) a0)))).(\lambda (H4: (leq g (asucc g (ASort (S n1) n0)) (asucc g (AHead a
-a0)))).(let H5 \def (match H4 in leq return (\lambda (a3: A).(\lambda (a4:
-A).(\lambda (_: (leq ? a3 a4)).((eq A a3 (ASort n1 n0)) \to ((eq A a4 (AHead
-a (asucc g a0))) \to (leq g (ASort (S n1) n0) (AHead a a0))))))) with
-[(leq_sort h1 h2 n2 n3 k H5) \Rightarrow (\lambda (H6: (eq A (ASort h1 n2)
-(ASort n1 n0))).(\lambda (H7: (eq A (ASort h2 n3) (AHead a (asucc g
-a0)))).((let H8 \def (f_equal A nat (\lambda (e: A).(match e in A return
-(\lambda (_: A).nat) with [(ASort _ n4) \Rightarrow n4 | (AHead _ _)
-\Rightarrow n2])) (ASort h1 n2) (ASort n1 n0) H6) in ((let H9 \def (f_equal A
-nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with [(ASort n4
-_) \Rightarrow n4 | (AHead _ _) \Rightarrow h1])) (ASort h1 n2) (ASort n1 n0)
-H6) in (eq_ind nat n1 (\lambda (n4: nat).((eq nat n2 n0) \to ((eq A (ASort h2
-n3) (AHead a (asucc g a0))) \to ((eq A (aplus g (ASort n4 n2) k) (aplus g
-(ASort h2 n3) k)) \to (leq g (ASort (S n1) n0) (AHead a a0)))))) (\lambda
-(H10: (eq nat n2 n0)).(eq_ind nat n0 (\lambda (n4: nat).((eq A (ASort h2 n3)
-(AHead a (asucc g a0))) \to ((eq A (aplus g (ASort n1 n4) k) (aplus g (ASort
-h2 n3) k)) \to (leq g (ASort (S n1) n0) (AHead a a0))))) (\lambda (H11: (eq A
-(ASort h2 n3) (AHead a (asucc g a0)))).(let H12 \def (eq_ind A (ASort h2 n3)
-(\lambda (e: A).(match e in A return (\lambda (_: A).Prop) with [(ASort _ _)
-\Rightarrow True | (AHead _ _) \Rightarrow False])) I (AHead a (asucc g a0))
-H11) in (False_ind ((eq A (aplus g (ASort n1 n0) k) (aplus g (ASort h2 n3)
-k)) \to (leq g (ASort (S n1) n0) (AHead a a0))) H12))) n2 (sym_eq nat n2 n0
-H10))) h1 (sym_eq nat h1 n1 H9))) H8)) H7 H5))) | (leq_head a3 a4 H5 a5 a6
-H6) \Rightarrow (\lambda (H7: (eq A (AHead a3 a5) (ASort n1 n0))).(\lambda
-(H8: (eq A (AHead a4 a6) (AHead a (asucc g a0)))).((let H9 \def (eq_ind A
-(AHead a3 a5) (\lambda (e: A).(match e in A return (\lambda (_: A).Prop) with
-[(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow True])) I (ASort n1
-n0) H7) in (False_ind ((eq A (AHead a4 a6) (AHead a (asucc g a0))) \to ((leq
-g a3 a4) \to ((leq g a5 a6) \to (leq g (ASort (S n1) n0) (AHead a a0)))))
-H9)) H8 H5 H6)))]) in (H5 (refl_equal A (ASort n1 n0)) (refl_equal A (AHead a
-(asucc g a0)))))))))) n H H0 H1)))))) a2)))) (\lambda (a: A).(\lambda (_:
-((\forall (a2: A).((leq g (asucc g a) (asucc g a2)) \to (leq g a
-a2))))).(\lambda (a0: A).(\lambda (H0: ((\forall (a2: A).((leq g (asucc g a0)
-(asucc g a2)) \to (leq g a0 a2))))).(\lambda (a2: A).(A_ind (\lambda (a3:
-A).((leq g (asucc g (AHead a a0)) (asucc g a3)) \to (leq g (AHead a a0) a3)))
-(\lambda (n: nat).(\lambda (n0: nat).(\lambda (H1: (leq g (asucc g (AHead a
-a0)) (asucc g (ASort n n0)))).(nat_ind (\lambda (n1: nat).((leq g (asucc g
-(AHead a a0)) (asucc g (ASort n1 n0))) \to (leq g (AHead a a0) (ASort n1
-n0)))) (\lambda (H2: (leq g (asucc g (AHead a a0)) (asucc g (ASort O
-n0)))).(let H3 \def (match H2 in leq return (\lambda (a3: A).(\lambda (a4:
-A).(\lambda (_: (leq ? a3 a4)).((eq A a3 (AHead a (asucc g a0))) \to ((eq A
-a4 (ASort O (next g n0))) \to (leq g (AHead a a0) (ASort O n0))))))) with
-[(leq_sort h1 h2 n1 n2 k H3) \Rightarrow (\lambda (H4: (eq A (ASort h1 n1)
-(AHead a (asucc g a0)))).(\lambda (H5: (eq A (ASort h2 n2) (ASort O (next g
-n0)))).((let H6 \def (eq_ind A (ASort h1 n1) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _)
-\Rightarrow False])) I (AHead a (asucc g a0)) H4) in (False_ind ((eq A (ASort
-h2 n2) (ASort O (next g n0))) \to ((eq A (aplus g (ASort h1 n1) k) (aplus g
-(ASort h2 n2) k)) \to (leq g (AHead a a0) (ASort O n0)))) H6)) H5 H3))) |
-(leq_head a3 a4 H3 a5 a6 H4) \Rightarrow (\lambda (H5: (eq A (AHead a3 a5)
-(AHead a (asucc g a0)))).(\lambda (H6: (eq A (AHead a4 a6) (ASort O (next g
-n0)))).((let H7 \def (f_equal A A (\lambda (e: A).(match e in A return
-(\lambda (_: A).A) with [(ASort _ _) \Rightarrow a5 | (AHead _ a7)
-\Rightarrow a7])) (AHead a3 a5) (AHead a (asucc g a0)) H5) in ((let H8 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a3 | (AHead a7 _) \Rightarrow a7])) (AHead a3 a5)
-(AHead a (asucc g a0)) H5) in (eq_ind A a (\lambda (a7: A).((eq A a5 (asucc g
-a0)) \to ((eq A (AHead a4 a6) (ASort O (next g n0))) \to ((leq g a7 a4) \to
-((leq g a5 a6) \to (leq g (AHead a a0) (ASort O n0))))))) (\lambda (H9: (eq A
-a5 (asucc g a0))).(eq_ind A (asucc g a0) (\lambda (a7: A).((eq A (AHead a4
-a6) (ASort O (next g n0))) \to ((leq g a a4) \to ((leq g a7 a6) \to (leq g
-(AHead a a0) (ASort O n0)))))) (\lambda (H10: (eq A (AHead a4 a6) (ASort O
-(next g n0)))).(let H11 \def (eq_ind A (AHead a4 a6) (\lambda (e: A).(match e
-in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow False |
-(AHead _ _) \Rightarrow True])) I (ASort O (next g n0)) H10) in (False_ind
-((leq g a a4) \to ((leq g (asucc g a0) a6) \to (leq g (AHead a a0) (ASort O
-n0)))) H11))) a5 (sym_eq A a5 (asucc g a0) H9))) a3 (sym_eq A a3 a H8))) H7))
-H6 H3 H4)))]) in (H3 (refl_equal A (AHead a (asucc g a0))) (refl_equal A
-(ASort O (next g n0)))))) (\lambda (n1: nat).(\lambda (_: (((leq g (asucc g
-(AHead a a0)) (asucc g (ASort n1 n0))) \to (leq g (AHead a a0) (ASort n1
-n0))))).(\lambda (H2: (leq g (asucc g (AHead a a0)) (asucc g (ASort (S n1)
-n0)))).(let H3 \def (match H2 in leq return (\lambda (a3: A).(\lambda (a4:
-A).(\lambda (_: (leq ? a3 a4)).((eq A a3 (AHead a (asucc g a0))) \to ((eq A
-a4 (ASort n1 n0)) \to (leq g (AHead a a0) (ASort (S n1) n0))))))) with
-[(leq_sort h1 h2 n2 n3 k H3) \Rightarrow (\lambda (H4: (eq A (ASort h1 n2)
-(AHead a (asucc g a0)))).(\lambda (H5: (eq A (ASort h2 n3) (ASort n1
-n0))).((let H6 \def (eq_ind A (ASort h1 n2) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _)
-\Rightarrow False])) I (AHead a (asucc g a0)) H4) in (False_ind ((eq A (ASort
-h2 n3) (ASort n1 n0)) \to ((eq A (aplus g (ASort h1 n2) k) (aplus g (ASort h2
-n3) k)) \to (leq g (AHead a a0) (ASort (S n1) n0)))) H6)) H5 H3))) |
-(leq_head a3 a4 H3 a5 a6 H4) \Rightarrow (\lambda (H5: (eq A (AHead a3 a5)
-(AHead a (asucc g a0)))).(\lambda (H6: (eq A (AHead a4 a6) (ASort n1
-n0))).((let H7 \def (f_equal A A (\lambda (e: A).(match e in A return
-(\lambda (_: A).A) with [(ASort _ _) \Rightarrow a5 | (AHead _ a7)
-\Rightarrow a7])) (AHead a3 a5) (AHead a (asucc g a0)) H5) in ((let H8 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a3 | (AHead a7 _) \Rightarrow a7])) (AHead a3 a5)
-(AHead a (asucc g a0)) H5) in (eq_ind A a (\lambda (a7: A).((eq A a5 (asucc g
-a0)) \to ((eq A (AHead a4 a6) (ASort n1 n0)) \to ((leq g a7 a4) \to ((leq g
-a5 a6) \to (leq g (AHead a a0) (ASort (S n1) n0))))))) (\lambda (H9: (eq A a5
-(asucc g a0))).(eq_ind A (asucc g a0) (\lambda (a7: A).((eq A (AHead a4 a6)
-(ASort n1 n0)) \to ((leq g a a4) \to ((leq g a7 a6) \to (leq g (AHead a a0)
-(ASort (S n1) n0)))))) (\lambda (H10: (eq A (AHead a4 a6) (ASort n1
-n0))).(let H11 \def (eq_ind A (AHead a4 a6) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _
-_) \Rightarrow True])) I (ASort n1 n0) H10) in (False_ind ((leq g a a4) \to
-((leq g (asucc g a0) a6) \to (leq g (AHead a a0) (ASort (S n1) n0)))) H11)))
-a5 (sym_eq A a5 (asucc g a0) H9))) a3 (sym_eq A a3 a H8))) H7)) H6 H3 H4)))])
-in (H3 (refl_equal A (AHead a (asucc g a0))) (refl_equal A (ASort n1
-n0))))))) n H1)))) (\lambda (a3: A).(\lambda (_: (((leq g (asucc g (AHead a
-a0)) (asucc g a3)) \to (leq g (AHead a a0) a3)))).(\lambda (a4: A).(\lambda
-(_: (((leq g (asucc g (AHead a a0)) (asucc g a4)) \to (leq g (AHead a a0)
-a4)))).(\lambda (H3: (leq g (asucc g (AHead a a0)) (asucc g (AHead a3
-a4)))).(let H4 \def (match H3 in leq return (\lambda (a5: A).(\lambda (a6:
-A).(\lambda (_: (leq ? a5 a6)).((eq A a5 (AHead a (asucc g a0))) \to ((eq A
-a6 (AHead a3 (asucc g a4))) \to (leq g (AHead a a0) (AHead a3 a4))))))) with
-[(leq_sort h1 h2 n1 n2 k H4) \Rightarrow (\lambda (H5: (eq A (ASort h1 n1)
-(AHead a (asucc g a0)))).(\lambda (H6: (eq A (ASort h2 n2) (AHead a3 (asucc g
-a4)))).((let H7 \def (eq_ind A (ASort h1 n1) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _)
-\Rightarrow False])) I (AHead a (asucc g a0)) H5) in (False_ind ((eq A (ASort
-h2 n2) (AHead a3 (asucc g a4))) \to ((eq A (aplus g (ASort h1 n1) k) (aplus g
-(ASort h2 n2) k)) \to (leq g (AHead a a0) (AHead a3 a4)))) H7)) H6 H4))) |
-(leq_head a5 a6 H4 a7 a8 H5) \Rightarrow (\lambda (H6: (eq A (AHead a5 a7)
-(AHead a (asucc g a0)))).(\lambda (H7: (eq A (AHead a6 a8) (AHead a3 (asucc g
-a4)))).((let H8 \def (f_equal A A (\lambda (e: A).(match e in A return
-(\lambda (_: A).A) with [(ASort _ _) \Rightarrow a7 | (AHead _ a9)
-\Rightarrow a9])) (AHead a5 a7) (AHead a (asucc g a0)) H6) in ((let H9 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a5 | (AHead a9 _) \Rightarrow a9])) (AHead a5 a7)
-(AHead a (asucc g a0)) H6) in (eq_ind A a (\lambda (a9: A).((eq A a7 (asucc g
-a0)) \to ((eq A (AHead a6 a8) (AHead a3 (asucc g a4))) \to ((leq g a9 a6) \to
-((leq g a7 a8) \to (leq g (AHead a a0) (AHead a3 a4))))))) (\lambda (H10: (eq
-A a7 (asucc g a0))).(eq_ind A (asucc g a0) (\lambda (a9: A).((eq A (AHead a6
-a8) (AHead a3 (asucc g a4))) \to ((leq g a a6) \to ((leq g a9 a8) \to (leq g
-(AHead a a0) (AHead a3 a4)))))) (\lambda (H11: (eq A (AHead a6 a8) (AHead a3
-(asucc g a4)))).(let H12 \def (f_equal A A (\lambda (e: A).(match e in A
-return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a8 | (AHead _ a9)
-\Rightarrow a9])) (AHead a6 a8) (AHead a3 (asucc g a4)) H11) in ((let H13
+(AHead a a0)))).(let H_x \def (leq_gen_sort1 g O (next g n0) (AHead a (asucc
+g a0)) H4) in (let H5 \def H_x in (ex2_3_ind nat nat nat (\lambda (n2:
+nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort O (next g
+n0)) k) (aplus g (ASort h2 n2) k))))) (\lambda (n2: nat).(\lambda (h2:
+nat).(\lambda (_: nat).(eq A (AHead a (asucc g a0)) (ASort h2 n2))))) (leq g
+(ASort O n0) (AHead a a0)) (\lambda (x0: nat).(\lambda (x1: nat).(\lambda
+(x2: nat).(\lambda (_: (eq A (aplus g (ASort O (next g n0)) x2) (aplus g
+(ASort x1 x0) x2))).(\lambda (H7: (eq A (AHead a (asucc g a0)) (ASort x1
+x0))).(let H8 \def (eq_ind A (AHead a (asucc g a0)) (\lambda (ee: A).(match
+ee in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow False |
+(AHead _ _) \Rightarrow True])) I (ASort x1 x0) H7) in (False_ind (leq g
+(ASort O n0) (AHead a a0)) H8))))))) H5)))))) (\lambda (n1: nat).(\lambda (_:
+(((((leq g (asucc g (ASort n1 n0)) (asucc g a)) \to (leq g (ASort n1 n0) a)))
+\to ((((leq g (asucc g (ASort n1 n0)) (asucc g a0)) \to (leq g (ASort n1 n0)
+a0))) \to ((leq g (asucc g (ASort n1 n0)) (asucc g (AHead a a0))) \to (leq g
+(ASort n1 n0) (AHead a a0))))))).(\lambda (_: (((leq g (asucc g (ASort (S n1)
+n0)) (asucc g a)) \to (leq g (ASort (S n1) n0) a)))).(\lambda (_: (((leq g
+(asucc g (ASort (S n1) n0)) (asucc g a0)) \to (leq g (ASort (S n1) n0)
+a0)))).(\lambda (H4: (leq g (asucc g (ASort (S n1) n0)) (asucc g (AHead a
+a0)))).(let H_x \def (leq_gen_sort1 g n1 n0 (AHead a (asucc g a0)) H4) in
+(let H5 \def H_x in (ex2_3_ind nat nat nat (\lambda (n2: nat).(\lambda (h2:
+nat).(\lambda (k: nat).(eq A (aplus g (ASort n1 n0) k) (aplus g (ASort h2 n2)
+k))))) (\lambda (n2: nat).(\lambda (h2: nat).(\lambda (_: nat).(eq A (AHead a
+(asucc g a0)) (ASort h2 n2))))) (leq g (ASort (S n1) n0) (AHead a a0))
+(\lambda (x0: nat).(\lambda (x1: nat).(\lambda (x2: nat).(\lambda (_: (eq A
+(aplus g (ASort n1 n0) x2) (aplus g (ASort x1 x0) x2))).(\lambda (H7: (eq A
+(AHead a (asucc g a0)) (ASort x1 x0))).(let H8 \def (eq_ind A (AHead a (asucc
+g a0)) (\lambda (ee: A).(match ee in A return (\lambda (_: A).Prop) with
+[(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow True])) I (ASort x1
+x0) H7) in (False_ind (leq g (ASort (S n1) n0) (AHead a a0)) H8)))))))
+H5)))))))) n H H0 H1)))))) a2)))) (\lambda (a: A).(\lambda (_: ((\forall (a2:
+A).((leq g (asucc g a) (asucc g a2)) \to (leq g a a2))))).(\lambda (a0:
+A).(\lambda (H0: ((\forall (a2: A).((leq g (asucc g a0) (asucc g a2)) \to
+(leq g a0 a2))))).(\lambda (a2: A).(A_ind (\lambda (a3: A).((leq g (asucc g
+(AHead a a0)) (asucc g a3)) \to (leq g (AHead a a0) a3))) (\lambda (n:
+nat).(\lambda (n0: nat).(\lambda (H1: (leq g (asucc g (AHead a a0)) (asucc g
+(ASort n n0)))).(nat_ind (\lambda (n1: nat).((leq g (asucc g (AHead a a0))
+(asucc g (ASort n1 n0))) \to (leq g (AHead a a0) (ASort n1 n0)))) (\lambda
+(H2: (leq g (asucc g (AHead a a0)) (asucc g (ASort O n0)))).(let H_x \def
+(leq_gen_head1 g a (asucc g a0) (ASort O (next g n0)) H2) in (let H3 \def H_x
+in (ex3_2_ind A A (\lambda (a3: A).(\lambda (_: A).(leq g a a3))) (\lambda
+(_: A).(\lambda (a4: A).(leq g (asucc g a0) a4))) (\lambda (a3: A).(\lambda
+(a4: A).(eq A (ASort O (next g n0)) (AHead a3 a4)))) (leq g (AHead a a0)
+(ASort O n0)) (\lambda (x0: A).(\lambda (x1: A).(\lambda (_: (leq g a
+x0)).(\lambda (_: (leq g (asucc g a0) x1)).(\lambda (H6: (eq A (ASort O (next
+g n0)) (AHead x0 x1))).(let H7 \def (eq_ind A (ASort O (next g n0)) (\lambda
+(ee: A).(match ee in A return (\lambda (_: A).Prop) with [(ASort _ _)
+\Rightarrow True | (AHead _ _) \Rightarrow False])) I (AHead x0 x1) H6) in
+(False_ind (leq g (AHead a a0) (ASort O n0)) H7))))))) H3)))) (\lambda (n1:
+nat).(\lambda (_: (((leq g (asucc g (AHead a a0)) (asucc g (ASort n1 n0)))
+\to (leq g (AHead a a0) (ASort n1 n0))))).(\lambda (H2: (leq g (asucc g
+(AHead a a0)) (asucc g (ASort (S n1) n0)))).(let H_x \def (leq_gen_head1 g a
+(asucc g a0) (ASort n1 n0) H2) in (let H3 \def H_x in (ex3_2_ind A A (\lambda
+(a3: A).(\lambda (_: A).(leq g a a3))) (\lambda (_: A).(\lambda (a4: A).(leq
+g (asucc g a0) a4))) (\lambda (a3: A).(\lambda (a4: A).(eq A (ASort n1 n0)
+(AHead a3 a4)))) (leq g (AHead a a0) (ASort (S n1) n0)) (\lambda (x0:
+A).(\lambda (x1: A).(\lambda (_: (leq g a x0)).(\lambda (_: (leq g (asucc g
+a0) x1)).(\lambda (H6: (eq A (ASort n1 n0) (AHead x0 x1))).(let H7 \def
+(eq_ind A (ASort n1 n0) (\lambda (ee: A).(match ee in A return (\lambda (_:
+A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _) \Rightarrow
+False])) I (AHead x0 x1) H6) in (False_ind (leq g (AHead a a0) (ASort (S n1)
+n0)) H7))))))) H3)))))) n H1)))) (\lambda (a3: A).(\lambda (_: (((leq g
+(asucc g (AHead a a0)) (asucc g a3)) \to (leq g (AHead a a0) a3)))).(\lambda
+(a4: A).(\lambda (_: (((leq g (asucc g (AHead a a0)) (asucc g a4)) \to (leq g
+(AHead a a0) a4)))).(\lambda (H3: (leq g (asucc g (AHead a a0)) (asucc g
+(AHead a3 a4)))).(let H_x \def (leq_gen_head1 g a (asucc g a0) (AHead a3
+(asucc g a4)) H3) in (let H4 \def H_x in (ex3_2_ind A A (\lambda (a5:
+A).(\lambda (_: A).(leq g a a5))) (\lambda (_: A).(\lambda (a6: A).(leq g
+(asucc g a0) a6))) (\lambda (a5: A).(\lambda (a6: A).(eq A (AHead a3 (asucc g
+a4)) (AHead a5 a6)))) (leq g (AHead a a0) (AHead a3 a4)) (\lambda (x0:
+A).(\lambda (x1: A).(\lambda (H5: (leq g a x0)).(\lambda (H6: (leq g (asucc g
+a0) x1)).(\lambda (H7: (eq A (AHead a3 (asucc g a4)) (AHead x0 x1))).(let H8
\def (f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A)
-with [(ASort _ _) \Rightarrow a6 | (AHead a9 _) \Rightarrow a9])) (AHead a6
-a8) (AHead a3 (asucc g a4)) H11) in (eq_ind A a3 (\lambda (a9: A).((eq A a8
-(asucc g a4)) \to ((leq g a a9) \to ((leq g (asucc g a0) a8) \to (leq g
-(AHead a a0) (AHead a3 a4)))))) (\lambda (H14: (eq A a8 (asucc g
-a4))).(eq_ind A (asucc g a4) (\lambda (a9: A).((leq g a a3) \to ((leq g
-(asucc g a0) a9) \to (leq g (AHead a a0) (AHead a3 a4))))) (\lambda (H15:
-(leq g a a3)).(\lambda (H16: (leq g (asucc g a0) (asucc g a4))).(leq_head g a
-a3 H15 a0 a4 (H0 a4 H16)))) a8 (sym_eq A a8 (asucc g a4) H14))) a6 (sym_eq A
-a6 a3 H13))) H12))) a7 (sym_eq A a7 (asucc g a0) H10))) a5 (sym_eq A a5 a
-H9))) H8)) H7 H4 H5)))]) in (H4 (refl_equal A (AHead a (asucc g a0)))
-(refl_equal A (AHead a3 (asucc g a4)))))))))) a2)))))) a1)).
+with [(ASort _ _) \Rightarrow a3 | (AHead a5 _) \Rightarrow a5])) (AHead a3
+(asucc g a4)) (AHead x0 x1) H7) in ((let H9 \def (f_equal A A (\lambda (e:
+A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow
+((let rec asucc (g0: G) (l: A) on l: A \def (match l with [(ASort n0 n)
+\Rightarrow (match n0 with [O \Rightarrow (ASort O (next g0 n)) | (S h)
+\Rightarrow (ASort h n)]) | (AHead a5 a6) \Rightarrow (AHead a5 (asucc g0
+a6))]) in asucc) g a4) | (AHead _ a5) \Rightarrow a5])) (AHead a3 (asucc g
+a4)) (AHead x0 x1) H7) in (\lambda (H10: (eq A a3 x0)).(let H11 \def
+(eq_ind_r A x1 (\lambda (a5: A).(leq g (asucc g a0) a5)) H6 (asucc g a4) H9)
+in (let H12 \def (eq_ind_r A x0 (\lambda (a5: A).(leq g a a5)) H5 a3 H10) in
+(leq_head g a a3 H12 a0 a4 (H0 a4 H11)))))) H8))))))) H4)))))))) a2))))))
+a1)).
theorem leq_asucc:
\forall (g: G).(\forall (a: A).(ex A (\lambda (a0: A).(leq g a (asucc g
\Rightarrow (ASort h n0)]))).(\lambda (P: Prop).(nat_ind (\lambda (n1:
nat).((leq g (AHead (ASort n1 n0) a2) (match n1 with [O \Rightarrow (ASort O
(next g n0)) | (S h) \Rightarrow (ASort h n0)])) \to P)) (\lambda (H0: (leq g
-(AHead (ASort O n0) a2) (ASort O (next g n0)))).(let H1 \def (match H0 in leq
-return (\lambda (a: A).(\lambda (a0: A).(\lambda (_: (leq ? a a0)).((eq A a
-(AHead (ASort O n0) a2)) \to ((eq A a0 (ASort O (next g n0))) \to P))))) with
-[(leq_sort h1 h2 n1 n2 k H1) \Rightarrow (\lambda (H2: (eq A (ASort h1 n1)
-(AHead (ASort O n0) a2))).(\lambda (H3: (eq A (ASort h2 n2) (ASort O (next g
-n0)))).((let H4 \def (eq_ind A (ASort h1 n1) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _)
-\Rightarrow False])) I (AHead (ASort O n0) a2) H2) in (False_ind ((eq A
-(ASort h2 n2) (ASort O (next g n0))) \to ((eq A (aplus g (ASort h1 n1) k)
-(aplus g (ASort h2 n2) k)) \to P)) H4)) H3 H1))) | (leq_head a0 a3 H1 a4 a5
-H2) \Rightarrow (\lambda (H3: (eq A (AHead a0 a4) (AHead (ASort O n0)
-a2))).(\lambda (H4: (eq A (AHead a3 a5) (ASort O (next g n0)))).((let H5 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a4 | (AHead _ a) \Rightarrow a])) (AHead a0 a4)
-(AHead (ASort O n0) a2) H3) in ((let H6 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a0 |
-(AHead a _) \Rightarrow a])) (AHead a0 a4) (AHead (ASort O n0) a2) H3) in
-(eq_ind A (ASort O n0) (\lambda (a: A).((eq A a4 a2) \to ((eq A (AHead a3 a5)
-(ASort O (next g n0))) \to ((leq g a a3) \to ((leq g a4 a5) \to P)))))
-(\lambda (H7: (eq A a4 a2)).(eq_ind A a2 (\lambda (a: A).((eq A (AHead a3 a5)
-(ASort O (next g n0))) \to ((leq g (ASort O n0) a3) \to ((leq g a a5) \to
-P)))) (\lambda (H8: (eq A (AHead a3 a5) (ASort O (next g n0)))).(let H9 \def
-(eq_ind A (AHead a3 a5) (\lambda (e: A).(match e in A return (\lambda (_:
-A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow
-True])) I (ASort O (next g n0)) H8) in (False_ind ((leq g (ASort O n0) a3)
-\to ((leq g a2 a5) \to P)) H9))) a4 (sym_eq A a4 a2 H7))) a0 (sym_eq A a0
-(ASort O n0) H6))) H5)) H4 H1 H2)))]) in (H1 (refl_equal A (AHead (ASort O
-n0) a2)) (refl_equal A (ASort O (next g n0)))))) (\lambda (n1: nat).(\lambda
-(_: (((leq g (AHead (ASort n1 n0) a2) (match n1 with [O \Rightarrow (ASort O
-(next g n0)) | (S h) \Rightarrow (ASort h n0)])) \to P))).(\lambda (H0: (leq
-g (AHead (ASort (S n1) n0) a2) (ASort n1 n0))).(let H1 \def (match H0 in leq
-return (\lambda (a: A).(\lambda (a0: A).(\lambda (_: (leq ? a a0)).((eq A a
-(AHead (ASort (S n1) n0) a2)) \to ((eq A a0 (ASort n1 n0)) \to P))))) with
-[(leq_sort h1 h2 n2 n3 k H1) \Rightarrow (\lambda (H2: (eq A (ASort h1 n2)
-(AHead (ASort (S n1) n0) a2))).(\lambda (H3: (eq A (ASort h2 n3) (ASort n1
-n0))).((let H4 \def (eq_ind A (ASort h1 n2) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _)
-\Rightarrow False])) I (AHead (ASort (S n1) n0) a2) H2) in (False_ind ((eq A
-(ASort h2 n3) (ASort n1 n0)) \to ((eq A (aplus g (ASort h1 n2) k) (aplus g
-(ASort h2 n3) k)) \to P)) H4)) H3 H1))) | (leq_head a0 a3 H1 a4 a5 H2)
-\Rightarrow (\lambda (H3: (eq A (AHead a0 a4) (AHead (ASort (S n1) n0)
-a2))).(\lambda (H4: (eq A (AHead a3 a5) (ASort n1 n0))).((let H5 \def
+(AHead (ASort O n0) a2) (ASort O (next g n0)))).(let H_x \def (leq_gen_head1
+g (ASort O n0) a2 (ASort O (next g n0)) H0) in (let H1 \def H_x in (ex3_2_ind
+A A (\lambda (a3: A).(\lambda (_: A).(leq g (ASort O n0) a3))) (\lambda (_:
+A).(\lambda (a4: A).(leq g a2 a4))) (\lambda (a3: A).(\lambda (a4: A).(eq A
+(ASort O (next g n0)) (AHead a3 a4)))) P (\lambda (x0: A).(\lambda (x1:
+A).(\lambda (_: (leq g (ASort O n0) x0)).(\lambda (_: (leq g a2 x1)).(\lambda
+(H4: (eq A (ASort O (next g n0)) (AHead x0 x1))).(let H5 \def (eq_ind A
+(ASort O (next g n0)) (\lambda (ee: A).(match ee in A return (\lambda (_:
+A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _) \Rightarrow
+False])) I (AHead x0 x1) H4) in (False_ind P H5))))))) H1)))) (\lambda (n1:
+nat).(\lambda (_: (((leq g (AHead (ASort n1 n0) a2) (match n1 with [O
+\Rightarrow (ASort O (next g n0)) | (S h) \Rightarrow (ASort h n0)])) \to
+P))).(\lambda (H0: (leq g (AHead (ASort (S n1) n0) a2) (ASort n1 n0))).(let
+H_x \def (leq_gen_head1 g (ASort (S n1) n0) a2 (ASort n1 n0) H0) in (let H1
+\def H_x in (ex3_2_ind A A (\lambda (a3: A).(\lambda (_: A).(leq g (ASort (S
+n1) n0) a3))) (\lambda (_: A).(\lambda (a4: A).(leq g a2 a4))) (\lambda (a3:
+A).(\lambda (a4: A).(eq A (ASort n1 n0) (AHead a3 a4)))) P (\lambda (x0:
+A).(\lambda (x1: A).(\lambda (_: (leq g (ASort (S n1) n0) x0)).(\lambda (_:
+(leq g a2 x1)).(\lambda (H4: (eq A (ASort n1 n0) (AHead x0 x1))).(let H5 \def
+(eq_ind A (ASort n1 n0) (\lambda (ee: A).(match ee in A return (\lambda (_:
+A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _) \Rightarrow
+False])) I (AHead x0 x1) H4) in (False_ind P H5))))))) H1)))))) n H))))))
+(\lambda (a: A).(\lambda (_: ((\forall (a2: A).((leq g (AHead a a2) (asucc g
+a)) \to (\forall (P: Prop).P))))).(\lambda (a0: A).(\lambda (_: ((\forall
+(a2: A).((leq g (AHead a0 a2) (asucc g a0)) \to (\forall (P:
+Prop).P))))).(\lambda (a2: A).(\lambda (H1: (leq g (AHead (AHead a a0) a2)
+(AHead a (asucc g a0)))).(\lambda (P: Prop).(let H_x \def (leq_gen_head1 g
+(AHead a a0) a2 (AHead a (asucc g a0)) H1) in (let H2 \def H_x in (ex3_2_ind
+A A (\lambda (a3: A).(\lambda (_: A).(leq g (AHead a a0) a3))) (\lambda (_:
+A).(\lambda (a4: A).(leq g a2 a4))) (\lambda (a3: A).(\lambda (a4: A).(eq A
+(AHead a (asucc g a0)) (AHead a3 a4)))) P (\lambda (x0: A).(\lambda (x1:
+A).(\lambda (H3: (leq g (AHead a a0) x0)).(\lambda (H4: (leq g a2
+x1)).(\lambda (H5: (eq A (AHead a (asucc g a0)) (AHead x0 x1))).(let H6 \def
(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a4 | (AHead _ a) \Rightarrow a])) (AHead a0 a4)
-(AHead (ASort (S n1) n0) a2) H3) in ((let H6 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a0 |
-(AHead a _) \Rightarrow a])) (AHead a0 a4) (AHead (ASort (S n1) n0) a2) H3)
-in (eq_ind A (ASort (S n1) n0) (\lambda (a: A).((eq A a4 a2) \to ((eq A
-(AHead a3 a5) (ASort n1 n0)) \to ((leq g a a3) \to ((leq g a4 a5) \to P)))))
-(\lambda (H7: (eq A a4 a2)).(eq_ind A a2 (\lambda (a: A).((eq A (AHead a3 a5)
-(ASort n1 n0)) \to ((leq g (ASort (S n1) n0) a3) \to ((leq g a a5) \to P))))
-(\lambda (H8: (eq A (AHead a3 a5) (ASort n1 n0))).(let H9 \def (eq_ind A
-(AHead a3 a5) (\lambda (e: A).(match e in A return (\lambda (_: A).Prop) with
-[(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow True])) I (ASort n1
-n0) H8) in (False_ind ((leq g (ASort (S n1) n0) a3) \to ((leq g a2 a5) \to
-P)) H9))) a4 (sym_eq A a4 a2 H7))) a0 (sym_eq A a0 (ASort (S n1) n0) H6)))
-H5)) H4 H1 H2)))]) in (H1 (refl_equal A (AHead (ASort (S n1) n0) a2))
-(refl_equal A (ASort n1 n0))))))) n H)))))) (\lambda (a: A).(\lambda (_:
-((\forall (a2: A).((leq g (AHead a a2) (asucc g a)) \to (\forall (P:
-Prop).P))))).(\lambda (a0: A).(\lambda (_: ((\forall (a2: A).((leq g (AHead
-a0 a2) (asucc g a0)) \to (\forall (P: Prop).P))))).(\lambda (a2: A).(\lambda
-(H1: (leq g (AHead (AHead a a0) a2) (AHead a (asucc g a0)))).(\lambda (P:
-Prop).(let H2 \def (match H1 in leq return (\lambda (a3: A).(\lambda (a4:
-A).(\lambda (_: (leq ? a3 a4)).((eq A a3 (AHead (AHead a a0) a2)) \to ((eq A
-a4 (AHead a (asucc g a0))) \to P))))) with [(leq_sort h1 h2 n1 n2 k H2)
-\Rightarrow (\lambda (H3: (eq A (ASort h1 n1) (AHead (AHead a a0)
-a2))).(\lambda (H4: (eq A (ASort h2 n2) (AHead a (asucc g a0)))).((let H5
-\def (eq_ind A (ASort h1 n1) (\lambda (e: A).(match e in A return (\lambda
-(_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _) \Rightarrow
-False])) I (AHead (AHead a a0) a2) H3) in (False_ind ((eq A (ASort h2 n2)
-(AHead a (asucc g a0))) \to ((eq A (aplus g (ASort h1 n1) k) (aplus g (ASort
-h2 n2) k)) \to P)) H5)) H4 H2))) | (leq_head a3 a4 H2 a5 a6 H3) \Rightarrow
-(\lambda (H4: (eq A (AHead a3 a5) (AHead (AHead a a0) a2))).(\lambda (H5: (eq
-A (AHead a4 a6) (AHead a (asucc g a0)))).((let H6 \def (f_equal A A (\lambda
-(e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow
-a5 | (AHead _ a7) \Rightarrow a7])) (AHead a3 a5) (AHead (AHead a a0) a2) H4)
-in ((let H7 \def (f_equal A A (\lambda (e: A).(match e in A return (\lambda
-(_: A).A) with [(ASort _ _) \Rightarrow a3 | (AHead a7 _) \Rightarrow a7]))
-(AHead a3 a5) (AHead (AHead a a0) a2) H4) in (eq_ind A (AHead a a0) (\lambda
-(a7: A).((eq A a5 a2) \to ((eq A (AHead a4 a6) (AHead a (asucc g a0))) \to
-((leq g a7 a4) \to ((leq g a5 a6) \to P))))) (\lambda (H8: (eq A a5
-a2)).(eq_ind A a2 (\lambda (a7: A).((eq A (AHead a4 a6) (AHead a (asucc g
-a0))) \to ((leq g (AHead a a0) a4) \to ((leq g a7 a6) \to P)))) (\lambda (H9:
-(eq A (AHead a4 a6) (AHead a (asucc g a0)))).(let H10 \def (f_equal A A
-(\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
-\Rightarrow a6 | (AHead _ a7) \Rightarrow a7])) (AHead a4 a6) (AHead a (asucc
-g a0)) H9) in ((let H11 \def (f_equal A A (\lambda (e: A).(match e in A
-return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a4 | (AHead a7 _)
-\Rightarrow a7])) (AHead a4 a6) (AHead a (asucc g a0)) H9) in (eq_ind A a
-(\lambda (a7: A).((eq A a6 (asucc g a0)) \to ((leq g (AHead a a0) a7) \to
-((leq g a2 a6) \to P)))) (\lambda (H12: (eq A a6 (asucc g a0))).(eq_ind A
-(asucc g a0) (\lambda (a7: A).((leq g (AHead a a0) a) \to ((leq g a2 a7) \to
-P))) (\lambda (H13: (leq g (AHead a a0) a)).(\lambda (_: (leq g a2 (asucc g
-a0))).(leq_ahead_false_1 g a a0 H13 P))) a6 (sym_eq A a6 (asucc g a0) H12)))
-a4 (sym_eq A a4 a H11))) H10))) a5 (sym_eq A a5 a2 H8))) a3 (sym_eq A a3
-(AHead a a0) H7))) H6)) H5 H2 H3)))]) in (H2 (refl_equal A (AHead (AHead a
-a0) a2)) (refl_equal A (AHead a (asucc g a0)))))))))))) a1)).
+[(ASort _ _) \Rightarrow a | (AHead a3 _) \Rightarrow a3])) (AHead a (asucc g
+a0)) (AHead x0 x1) H5) in ((let H7 \def (f_equal A A (\lambda (e: A).(match e
+in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow ((let rec asucc
+(g0: G) (l: A) on l: A \def (match l with [(ASort n0 n) \Rightarrow (match n0
+with [O \Rightarrow (ASort O (next g0 n)) | (S h) \Rightarrow (ASort h n)]) |
+(AHead a3 a4) \Rightarrow (AHead a3 (asucc g0 a4))]) in asucc) g a0) | (AHead
+_ a3) \Rightarrow a3])) (AHead a (asucc g a0)) (AHead x0 x1) H5) in (\lambda
+(H8: (eq A a x0)).(let H9 \def (eq_ind_r A x1 (\lambda (a3: A).(leq g a2 a3))
+H4 (asucc g a0) H7) in (let H10 \def (eq_ind_r A x0 (\lambda (a3: A).(leq g
+(AHead a a0) a3)) H3 a H8) in (leq_ahead_false_1 g a a0 H10 P))))) H6)))))))
+H2)))))))))) a1)).
theorem leq_asucc_false:
\forall (g: G).(\forall (a: A).((leq g (asucc g a) a) \to (\forall (P:
\Rightarrow (ASort h n0)]) (ASort n n0))).(\lambda (P: Prop).(nat_ind
(\lambda (n1: nat).((leq g (match n1 with [O \Rightarrow (ASort O (next g
n0)) | (S h) \Rightarrow (ASort h n0)]) (ASort n1 n0)) \to P)) (\lambda (H0:
-(leq g (ASort O (next g n0)) (ASort O n0))).(let H1 \def (match H0 in leq
-return (\lambda (a0: A).(\lambda (a1: A).(\lambda (_: (leq ? a0 a1)).((eq A
-a0 (ASort O (next g n0))) \to ((eq A a1 (ASort O n0)) \to P))))) with
-[(leq_sort h1 h2 n1 n2 k H1) \Rightarrow (\lambda (H2: (eq A (ASort h1 n1)
-(ASort O (next g n0)))).(\lambda (H3: (eq A (ASort h2 n2) (ASort O
-n0))).((let H4 \def (f_equal A nat (\lambda (e: A).(match e in A return
-(\lambda (_: A).nat) with [(ASort _ n3) \Rightarrow n3 | (AHead _ _)
-\Rightarrow n1])) (ASort h1 n1) (ASort O (next g n0)) H2) in ((let H5 \def
-(f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with
-[(ASort n3 _) \Rightarrow n3 | (AHead _ _) \Rightarrow h1])) (ASort h1 n1)
-(ASort O (next g n0)) H2) in (eq_ind nat O (\lambda (n3: nat).((eq nat n1
-(next g n0)) \to ((eq A (ASort h2 n2) (ASort O n0)) \to ((eq A (aplus g
-(ASort n3 n1) k) (aplus g (ASort h2 n2) k)) \to P)))) (\lambda (H6: (eq nat
-n1 (next g n0))).(eq_ind nat (next g n0) (\lambda (n3: nat).((eq A (ASort h2
-n2) (ASort O n0)) \to ((eq A (aplus g (ASort O n3) k) (aplus g (ASort h2 n2)
-k)) \to P))) (\lambda (H7: (eq A (ASort h2 n2) (ASort O n0))).(let H8 \def
-(f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with
-[(ASort _ n3) \Rightarrow n3 | (AHead _ _) \Rightarrow n2])) (ASort h2 n2)
-(ASort O n0) H7) in ((let H9 \def (f_equal A nat (\lambda (e: A).(match e in
-A return (\lambda (_: A).nat) with [(ASort n3 _) \Rightarrow n3 | (AHead _ _)
-\Rightarrow h2])) (ASort h2 n2) (ASort O n0) H7) in (eq_ind nat O (\lambda
-(n3: nat).((eq nat n2 n0) \to ((eq A (aplus g (ASort O (next g n0)) k) (aplus
-g (ASort n3 n2) k)) \to P))) (\lambda (H10: (eq nat n2 n0)).(eq_ind nat n0
-(\lambda (n3: nat).((eq A (aplus g (ASort O (next g n0)) k) (aplus g (ASort O
-n3) k)) \to P)) (\lambda (H11: (eq A (aplus g (ASort O (next g n0)) k) (aplus
-g (ASort O n0) k))).(let H12 \def (eq_ind_r A (aplus g (ASort O (next g n0))
-k) (\lambda (a0: A).(eq A a0 (aplus g (ASort O n0) k))) H11 (aplus g (ASort O
-n0) (S k)) (aplus_sort_O_S_simpl g n0 k)) in (let H_y \def (aplus_inj g (S k)
-k (ASort O n0) H12) in (le_Sx_x k (eq_ind_r nat k (\lambda (n3: nat).(le n3
-k)) (le_n k) (S k) H_y) P)))) n2 (sym_eq nat n2 n0 H10))) h2 (sym_eq nat h2 O
-H9))) H8))) n1 (sym_eq nat n1 (next g n0) H6))) h1 (sym_eq nat h1 O H5)))
-H4)) H3 H1))) | (leq_head a1 a2 H1 a3 a4 H2) \Rightarrow (\lambda (H3: (eq A
-(AHead a1 a3) (ASort O (next g n0)))).(\lambda (H4: (eq A (AHead a2 a4)
-(ASort O n0))).((let H5 \def (eq_ind A (AHead a1 a3) (\lambda (e: A).(match e
-in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow False |
-(AHead _ _) \Rightarrow True])) I (ASort O (next g n0)) H3) in (False_ind
-((eq A (AHead a2 a4) (ASort O n0)) \to ((leq g a1 a2) \to ((leq g a3 a4) \to
-P))) H5)) H4 H1 H2)))]) in (H1 (refl_equal A (ASort O (next g n0)))
-(refl_equal A (ASort O n0))))) (\lambda (n1: nat).(\lambda (_: (((leq g
-(match n1 with [O \Rightarrow (ASort O (next g n0)) | (S h) \Rightarrow
-(ASort h n0)]) (ASort n1 n0)) \to P))).(\lambda (H0: (leq g (ASort n1 n0)
-(ASort (S n1) n0))).(let H1 \def (match H0 in leq return (\lambda (a0:
-A).(\lambda (a1: A).(\lambda (_: (leq ? a0 a1)).((eq A a0 (ASort n1 n0)) \to
-((eq A a1 (ASort (S n1) n0)) \to P))))) with [(leq_sort h1 h2 n2 n3 k H1)
-\Rightarrow (\lambda (H2: (eq A (ASort h1 n2) (ASort n1 n0))).(\lambda (H3:
-(eq A (ASort h2 n3) (ASort (S n1) n0))).((let H4 \def (f_equal A nat (\lambda
-(e: A).(match e in A return (\lambda (_: A).nat) with [(ASort _ n4)
-\Rightarrow n4 | (AHead _ _) \Rightarrow n2])) (ASort h1 n2) (ASort n1 n0)
-H2) in ((let H5 \def (f_equal A nat (\lambda (e: A).(match e in A return
-(\lambda (_: A).nat) with [(ASort n4 _) \Rightarrow n4 | (AHead _ _)
-\Rightarrow h1])) (ASort h1 n2) (ASort n1 n0) H2) in (eq_ind nat n1 (\lambda
-(n4: nat).((eq nat n2 n0) \to ((eq A (ASort h2 n3) (ASort (S n1) n0)) \to
-((eq A (aplus g (ASort n4 n2) k) (aplus g (ASort h2 n3) k)) \to P))))
-(\lambda (H6: (eq nat n2 n0)).(eq_ind nat n0 (\lambda (n4: nat).((eq A (ASort
-h2 n3) (ASort (S n1) n0)) \to ((eq A (aplus g (ASort n1 n4) k) (aplus g
-(ASort h2 n3) k)) \to P))) (\lambda (H7: (eq A (ASort h2 n3) (ASort (S n1)
-n0))).(let H8 \def (f_equal A nat (\lambda (e: A).(match e in A return
-(\lambda (_: A).nat) with [(ASort _ n4) \Rightarrow n4 | (AHead _ _)
-\Rightarrow n3])) (ASort h2 n3) (ASort (S n1) n0) H7) in ((let H9 \def
+(leq g (ASort O (next g n0)) (ASort O n0))).(let H_x \def (leq_gen_sort1 g O
+(next g n0) (ASort O n0) H0) in (let H1 \def H_x in (ex2_3_ind nat nat nat
+(\lambda (n2: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort
+O (next g n0)) k) (aplus g (ASort h2 n2) k))))) (\lambda (n2: nat).(\lambda
+(h2: nat).(\lambda (_: nat).(eq A (ASort O n0) (ASort h2 n2))))) P (\lambda
+(x0: nat).(\lambda (x1: nat).(\lambda (x2: nat).(\lambda (H2: (eq A (aplus g
+(ASort O (next g n0)) x2) (aplus g (ASort x1 x0) x2))).(\lambda (H3: (eq A
+(ASort O n0) (ASort x1 x0))).(let H4 \def (f_equal A nat (\lambda (e:
+A).(match e in A return (\lambda (_: A).nat) with [(ASort n1 _) \Rightarrow
+n1 | (AHead _ _) \Rightarrow O])) (ASort O n0) (ASort x1 x0) H3) in ((let H5
+\def (f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat)
+with [(ASort _ n1) \Rightarrow n1 | (AHead _ _) \Rightarrow n0])) (ASort O
+n0) (ASort x1 x0) H3) in (\lambda (H6: (eq nat O x1)).(let H7 \def (eq_ind_r
+nat x1 (\lambda (n1: nat).(eq A (aplus g (ASort O (next g n0)) x2) (aplus g
+(ASort n1 x0) x2))) H2 O H6) in (let H8 \def (eq_ind_r nat x0 (\lambda (n1:
+nat).(eq A (aplus g (ASort O (next g n0)) x2) (aplus g (ASort O n1) x2))) H7
+n0 H5) in (let H9 \def (eq_ind_r A (aplus g (ASort O (next g n0)) x2)
+(\lambda (a0: A).(eq A a0 (aplus g (ASort O n0) x2))) H8 (aplus g (ASort O
+n0) (S x2)) (aplus_sort_O_S_simpl g n0 x2)) in (let H_y \def (aplus_inj g (S
+x2) x2 (ASort O n0) H9) in (le_Sx_x x2 (eq_ind_r nat x2 (\lambda (n1:
+nat).(le n1 x2)) (le_n x2) (S x2) H_y) P))))))) H4))))))) H1)))) (\lambda
+(n1: nat).(\lambda (_: (((leq g (match n1 with [O \Rightarrow (ASort O (next
+g n0)) | (S h) \Rightarrow (ASort h n0)]) (ASort n1 n0)) \to P))).(\lambda
+(H0: (leq g (ASort n1 n0) (ASort (S n1) n0))).(let H_x \def (leq_gen_sort1 g
+n1 n0 (ASort (S n1) n0) H0) in (let H1 \def H_x in (ex2_3_ind nat nat nat
+(\lambda (n2: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort
+n1 n0) k) (aplus g (ASort h2 n2) k))))) (\lambda (n2: nat).(\lambda (h2:
+nat).(\lambda (_: nat).(eq A (ASort (S n1) n0) (ASort h2 n2))))) P (\lambda
+(x0: nat).(\lambda (x1: nat).(\lambda (x2: nat).(\lambda (H2: (eq A (aplus g
+(ASort n1 n0) x2) (aplus g (ASort x1 x0) x2))).(\lambda (H3: (eq A (ASort (S
+n1) n0) (ASort x1 x0))).(let H4 \def (f_equal A nat (\lambda (e: A).(match e
+in A return (\lambda (_: A).nat) with [(ASort n2 _) \Rightarrow n2 | (AHead _
+_) \Rightarrow (S n1)])) (ASort (S n1) n0) (ASort x1 x0) H3) in ((let H5 \def
(f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with
-[(ASort n4 _) \Rightarrow n4 | (AHead _ _) \Rightarrow h2])) (ASort h2 n3)
-(ASort (S n1) n0) H7) in (eq_ind nat (S n1) (\lambda (n4: nat).((eq nat n3
-n0) \to ((eq A (aplus g (ASort n1 n0) k) (aplus g (ASort n4 n3) k)) \to P)))
-(\lambda (H10: (eq nat n3 n0)).(eq_ind nat n0 (\lambda (n4: nat).((eq A
-(aplus g (ASort n1 n0) k) (aplus g (ASort (S n1) n4) k)) \to P)) (\lambda
-(H11: (eq A (aplus g (ASort n1 n0) k) (aplus g (ASort (S n1) n0) k))).(let
-H12 \def (eq_ind_r A (aplus g (ASort n1 n0) k) (\lambda (a0: A).(eq A a0
-(aplus g (ASort (S n1) n0) k))) H11 (aplus g (ASort (S n1) n0) (S k))
-(aplus_sort_S_S_simpl g n0 n1 k)) in (let H_y \def (aplus_inj g (S k) k
-(ASort (S n1) n0) H12) in (le_Sx_x k (eq_ind_r nat k (\lambda (n4: nat).(le
-n4 k)) (le_n k) (S k) H_y) P)))) n3 (sym_eq nat n3 n0 H10))) h2 (sym_eq nat
-h2 (S n1) H9))) H8))) n2 (sym_eq nat n2 n0 H6))) h1 (sym_eq nat h1 n1 H5)))
-H4)) H3 H1))) | (leq_head a1 a2 H1 a3 a4 H2) \Rightarrow (\lambda (H3: (eq A
-(AHead a1 a3) (ASort n1 n0))).(\lambda (H4: (eq A (AHead a2 a4) (ASort (S n1)
-n0))).((let H5 \def (eq_ind A (AHead a1 a3) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _
-_) \Rightarrow True])) I (ASort n1 n0) H3) in (False_ind ((eq A (AHead a2 a4)
-(ASort (S n1) n0)) \to ((leq g a1 a2) \to ((leq g a3 a4) \to P))) H5)) H4 H1
-H2)))]) in (H1 (refl_equal A (ASort n1 n0)) (refl_equal A (ASort (S n1)
-n0))))))) n H))))) (\lambda (a0: A).(\lambda (_: (((leq g (asucc g a0) a0)
-\to (\forall (P: Prop).P)))).(\lambda (a1: A).(\lambda (H0: (((leq g (asucc g
-a1) a1) \to (\forall (P: Prop).P)))).(\lambda (H1: (leq g (AHead a0 (asucc g
-a1)) (AHead a0 a1))).(\lambda (P: Prop).(let H2 \def (match H1 in leq return
-(\lambda (a2: A).(\lambda (a3: A).(\lambda (_: (leq ? a2 a3)).((eq A a2
-(AHead a0 (asucc g a1))) \to ((eq A a3 (AHead a0 a1)) \to P))))) with
-[(leq_sort h1 h2 n1 n2 k H2) \Rightarrow (\lambda (H3: (eq A (ASort h1 n1)
-(AHead a0 (asucc g a1)))).(\lambda (H4: (eq A (ASort h2 n2) (AHead a0
-a1))).((let H5 \def (eq_ind A (ASort h1 n1) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _)
-\Rightarrow False])) I (AHead a0 (asucc g a1)) H3) in (False_ind ((eq A
-(ASort h2 n2) (AHead a0 a1)) \to ((eq A (aplus g (ASort h1 n1) k) (aplus g
-(ASort h2 n2) k)) \to P)) H5)) H4 H2))) | (leq_head a2 a3 H2 a4 a5 H3)
-\Rightarrow (\lambda (H4: (eq A (AHead a2 a4) (AHead a0 (asucc g
-a1)))).(\lambda (H5: (eq A (AHead a3 a5) (AHead a0 a1))).((let H6 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a4 | (AHead _ a6) \Rightarrow a6])) (AHead a2 a4)
-(AHead a0 (asucc g a1)) H4) in ((let H7 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a2 |
-(AHead a6 _) \Rightarrow a6])) (AHead a2 a4) (AHead a0 (asucc g a1)) H4) in
-(eq_ind A a0 (\lambda (a6: A).((eq A a4 (asucc g a1)) \to ((eq A (AHead a3
-a5) (AHead a0 a1)) \to ((leq g a6 a3) \to ((leq g a4 a5) \to P))))) (\lambda
-(H8: (eq A a4 (asucc g a1))).(eq_ind A (asucc g a1) (\lambda (a6: A).((eq A
-(AHead a3 a5) (AHead a0 a1)) \to ((leq g a0 a3) \to ((leq g a6 a5) \to P))))
-(\lambda (H9: (eq A (AHead a3 a5) (AHead a0 a1))).(let H10 \def (f_equal A A
-(\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
-\Rightarrow a5 | (AHead _ a6) \Rightarrow a6])) (AHead a3 a5) (AHead a0 a1)
-H9) in ((let H11 \def (f_equal A A (\lambda (e: A).(match e in A return
-(\lambda (_: A).A) with [(ASort _ _) \Rightarrow a3 | (AHead a6 _)
-\Rightarrow a6])) (AHead a3 a5) (AHead a0 a1) H9) in (eq_ind A a0 (\lambda
-(a6: A).((eq A a5 a1) \to ((leq g a0 a6) \to ((leq g (asucc g a1) a5) \to
-P)))) (\lambda (H12: (eq A a5 a1)).(eq_ind A a1 (\lambda (a6: A).((leq g a0
-a0) \to ((leq g (asucc g a1) a6) \to P))) (\lambda (_: (leq g a0
-a0)).(\lambda (H14: (leq g (asucc g a1) a1)).(H0 H14 P))) a5 (sym_eq A a5 a1
-H12))) a3 (sym_eq A a3 a0 H11))) H10))) a4 (sym_eq A a4 (asucc g a1) H8))) a2
-(sym_eq A a2 a0 H7))) H6)) H5 H2 H3)))]) in (H2 (refl_equal A (AHead a0
-(asucc g a1))) (refl_equal A (AHead a0 a1)))))))))) a)).
+[(ASort _ n2) \Rightarrow n2 | (AHead _ _) \Rightarrow n0])) (ASort (S n1)
+n0) (ASort x1 x0) H3) in (\lambda (H6: (eq nat (S n1) x1)).(let H7 \def
+(eq_ind_r nat x1 (\lambda (n2: nat).(eq A (aplus g (ASort n1 n0) x2) (aplus g
+(ASort n2 x0) x2))) H2 (S n1) H6) in (let H8 \def (eq_ind_r nat x0 (\lambda
+(n2: nat).(eq A (aplus g (ASort n1 n0) x2) (aplus g (ASort (S n1) n2) x2)))
+H7 n0 H5) in (let H9 \def (eq_ind_r A (aplus g (ASort n1 n0) x2) (\lambda
+(a0: A).(eq A a0 (aplus g (ASort (S n1) n0) x2))) H8 (aplus g (ASort (S n1)
+n0) (S x2)) (aplus_sort_S_S_simpl g n0 n1 x2)) in (let H_y \def (aplus_inj g
+(S x2) x2 (ASort (S n1) n0) H9) in (le_Sx_x x2 (eq_ind_r nat x2 (\lambda (n2:
+nat).(le n2 x2)) (le_n x2) (S x2) H_y) P))))))) H4))))))) H1)))))) n H)))))
+(\lambda (a0: A).(\lambda (_: (((leq g (asucc g a0) a0) \to (\forall (P:
+Prop).P)))).(\lambda (a1: A).(\lambda (H0: (((leq g (asucc g a1) a1) \to
+(\forall (P: Prop).P)))).(\lambda (H1: (leq g (AHead a0 (asucc g a1)) (AHead
+a0 a1))).(\lambda (P: Prop).(let H_x \def (leq_gen_head1 g a0 (asucc g a1)
+(AHead a0 a1) H1) in (let H2 \def H_x in (ex3_2_ind A A (\lambda (a3:
+A).(\lambda (_: A).(leq g a0 a3))) (\lambda (_: A).(\lambda (a4: A).(leq g
+(asucc g a1) a4))) (\lambda (a3: A).(\lambda (a4: A).(eq A (AHead a0 a1)
+(AHead a3 a4)))) P (\lambda (x0: A).(\lambda (x1: A).(\lambda (H3: (leq g a0
+x0)).(\lambda (H4: (leq g (asucc g a1) x1)).(\lambda (H5: (eq A (AHead a0 a1)
+(AHead x0 x1))).(let H6 \def (f_equal A A (\lambda (e: A).(match e in A
+return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a0 | (AHead a2 _)
+\Rightarrow a2])) (AHead a0 a1) (AHead x0 x1) H5) in ((let H7 \def (f_equal A
+A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
+\Rightarrow a1 | (AHead _ a2) \Rightarrow a2])) (AHead a0 a1) (AHead x0 x1)
+H5) in (\lambda (H8: (eq A a0 x0)).(let H9 \def (eq_ind_r A x1 (\lambda (a2:
+A).(leq g (asucc g a1) a2)) H4 a1 H7) in (let H10 \def (eq_ind_r A x0
+(\lambda (a2: A).(leq g a0 a2)) H3 a0 H8) in (H0 H9 P))))) H6)))))))
+H2))))))))) a)).
include "LambdaDelta-1/leq/defs.ma".
-theorem leq_gen_sort:
+theorem leq_gen_sort1:
\forall (g: G).(\forall (h1: nat).(\forall (n1: nat).(\forall (a2: A).((leq
g (ASort h1 n1) a2) \to (ex2_3 nat nat nat (\lambda (n2: nat).(\lambda (h2:
-nat).(\lambda (_: nat).(eq A a2 (ASort h2 n2))))) (\lambda (n2: nat).(\lambda
-(h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort h1 n1) k) (aplus g (ASort
-h2 n2) k))))))))))
+nat).(\lambda (k: nat).(eq A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2)
+k))))) (\lambda (n2: nat).(\lambda (h2: nat).(\lambda (_: nat).(eq A a2
+(ASort h2 n2))))))))))
\def
\lambda (g: G).(\lambda (h1: nat).(\lambda (n1: nat).(\lambda (a2:
-A).(\lambda (H: (leq g (ASort h1 n1) a2)).(let H0 \def (match H in leq return
-(\lambda (a: A).(\lambda (a0: A).(\lambda (_: (leq ? a a0)).((eq A a (ASort
-h1 n1)) \to ((eq A a0 a2) \to (ex2_3 nat nat nat (\lambda (n2: nat).(\lambda
-(h2: nat).(\lambda (_: nat).(eq A a2 (ASort h2 n2))))) (\lambda (n2:
-nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort h1 n1) k)
-(aplus g (ASort h2 n2) k))))))))))) with [(leq_sort h0 h2 n0 n2 k H0)
-\Rightarrow (\lambda (H1: (eq A (ASort h0 n0) (ASort h1 n1))).(\lambda (H2:
-(eq A (ASort h2 n2) a2)).((let H3 \def (f_equal A nat (\lambda (e: A).(match
-e in A return (\lambda (_: A).nat) with [(ASort _ n) \Rightarrow n | (AHead _
-_) \Rightarrow n0])) (ASort h0 n0) (ASort h1 n1) H1) in ((let H4 \def
-(f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with
-[(ASort n _) \Rightarrow n | (AHead _ _) \Rightarrow h0])) (ASort h0 n0)
-(ASort h1 n1) H1) in (eq_ind nat h1 (\lambda (n: nat).((eq nat n0 n1) \to
-((eq A (ASort h2 n2) a2) \to ((eq A (aplus g (ASort n n0) k) (aplus g (ASort
-h2 n2) k)) \to (ex2_3 nat nat nat (\lambda (n3: nat).(\lambda (h3:
-nat).(\lambda (_: nat).(eq A a2 (ASort h3 n3))))) (\lambda (n3: nat).(\lambda
-(h3: nat).(\lambda (k0: nat).(eq A (aplus g (ASort h1 n1) k0) (aplus g (ASort
-h3 n3) k0)))))))))) (\lambda (H5: (eq nat n0 n1)).(eq_ind nat n1 (\lambda (n:
-nat).((eq A (ASort h2 n2) a2) \to ((eq A (aplus g (ASort h1 n) k) (aplus g
-(ASort h2 n2) k)) \to (ex2_3 nat nat nat (\lambda (n3: nat).(\lambda (h3:
-nat).(\lambda (_: nat).(eq A a2 (ASort h3 n3))))) (\lambda (n3: nat).(\lambda
-(h3: nat).(\lambda (k0: nat).(eq A (aplus g (ASort h1 n1) k0) (aplus g (ASort
-h3 n3) k0))))))))) (\lambda (H6: (eq A (ASort h2 n2) a2)).(eq_ind A (ASort h2
-n2) (\lambda (a: A).((eq A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2)
-k)) \to (ex2_3 nat nat nat (\lambda (n3: nat).(\lambda (h3: nat).(\lambda (_:
-nat).(eq A a (ASort h3 n3))))) (\lambda (n3: nat).(\lambda (h3: nat).(\lambda
-(k0: nat).(eq A (aplus g (ASort h1 n1) k0) (aplus g (ASort h3 n3) k0))))))))
-(\lambda (H7: (eq A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2)
-k))).(ex2_3_intro nat nat nat (\lambda (n3: nat).(\lambda (h3: nat).(\lambda
-(_: nat).(eq A (ASort h2 n2) (ASort h3 n3))))) (\lambda (n3: nat).(\lambda
-(h3: nat).(\lambda (k0: nat).(eq A (aplus g (ASort h1 n1) k0) (aplus g (ASort
-h3 n3) k0))))) n2 h2 k (refl_equal A (ASort h2 n2)) H7)) a2 H6)) n0 (sym_eq
-nat n0 n1 H5))) h0 (sym_eq nat h0 h1 H4))) H3)) H2 H0))) | (leq_head a1 a0 H0
-a3 a4 H1) \Rightarrow (\lambda (H2: (eq A (AHead a1 a3) (ASort h1
-n1))).(\lambda (H3: (eq A (AHead a0 a4) a2)).((let H4 \def (eq_ind A (AHead
-a1 a3) (\lambda (e: A).(match e in A return (\lambda (_: A).Prop) with
-[(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow True])) I (ASort h1
-n1) H2) in (False_ind ((eq A (AHead a0 a4) a2) \to ((leq g a1 a0) \to ((leq g
-a3 a4) \to (ex2_3 nat nat nat (\lambda (n2: nat).(\lambda (h2: nat).(\lambda
-(_: nat).(eq A a2 (ASort h2 n2))))) (\lambda (n2: nat).(\lambda (h2:
-nat).(\lambda (k: nat).(eq A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2)
-k))))))))) H4)) H3 H0 H1)))]) in (H0 (refl_equal A (ASort h1 n1)) (refl_equal
-A a2))))))).
+A).(\lambda (H: (leq g (ASort h1 n1) a2)).(insert_eq A (ASort h1 n1) (\lambda
+(a: A).(leq g a a2)) (\lambda (a: A).(ex2_3 nat nat nat (\lambda (n2:
+nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g a k) (aplus g (ASort
+h2 n2) k))))) (\lambda (n2: nat).(\lambda (h2: nat).(\lambda (_: nat).(eq A
+a2 (ASort h2 n2))))))) (\lambda (y: A).(\lambda (H0: (leq g y a2)).(leq_ind g
+(\lambda (a: A).(\lambda (a0: A).((eq A a (ASort h1 n1)) \to (ex2_3 nat nat
+nat (\lambda (n2: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g a
+k) (aplus g (ASort h2 n2) k))))) (\lambda (n2: nat).(\lambda (h2:
+nat).(\lambda (_: nat).(eq A a0 (ASort h2 n2))))))))) (\lambda (h0:
+nat).(\lambda (h2: nat).(\lambda (n0: nat).(\lambda (n2: nat).(\lambda (k:
+nat).(\lambda (H1: (eq A (aplus g (ASort h0 n0) k) (aplus g (ASort h2 n2)
+k))).(\lambda (H2: (eq A (ASort h0 n0) (ASort h1 n1))).(let H3 \def (f_equal
+A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with [(ASort
+n _) \Rightarrow n | (AHead _ _) \Rightarrow h0])) (ASort h0 n0) (ASort h1
+n1) H2) in ((let H4 \def (f_equal A nat (\lambda (e: A).(match e in A return
+(\lambda (_: A).nat) with [(ASort _ n) \Rightarrow n | (AHead _ _)
+\Rightarrow n0])) (ASort h0 n0) (ASort h1 n1) H2) in (\lambda (H5: (eq nat h0
+h1)).(let H6 \def (eq_ind nat n0 (\lambda (n: nat).(eq A (aplus g (ASort h0
+n) k) (aplus g (ASort h2 n2) k))) H1 n1 H4) in (eq_ind_r nat n1 (\lambda (n:
+nat).(ex2_3 nat nat nat (\lambda (n3: nat).(\lambda (h3: nat).(\lambda (k0:
+nat).(eq A (aplus g (ASort h0 n) k0) (aplus g (ASort h3 n3) k0))))) (\lambda
+(n3: nat).(\lambda (h3: nat).(\lambda (_: nat).(eq A (ASort h2 n2) (ASort h3
+n3))))))) (let H7 \def (eq_ind nat h0 (\lambda (n: nat).(eq A (aplus g (ASort
+n n1) k) (aplus g (ASort h2 n2) k))) H6 h1 H5) in (eq_ind_r nat h1 (\lambda
+(n: nat).(ex2_3 nat nat nat (\lambda (n3: nat).(\lambda (h3: nat).(\lambda
+(k0: nat).(eq A (aplus g (ASort n n1) k0) (aplus g (ASort h3 n3) k0)))))
+(\lambda (n3: nat).(\lambda (h3: nat).(\lambda (_: nat).(eq A (ASort h2 n2)
+(ASort h3 n3))))))) (ex2_3_intro nat nat nat (\lambda (n3: nat).(\lambda (h3:
+nat).(\lambda (k0: nat).(eq A (aplus g (ASort h1 n1) k0) (aplus g (ASort h3
+n3) k0))))) (\lambda (n3: nat).(\lambda (h3: nat).(\lambda (_: nat).(eq A
+(ASort h2 n2) (ASort h3 n3))))) n2 h2 k H7 (refl_equal A (ASort h2 n2))) h0
+H5)) n0 H4)))) H3))))))))) (\lambda (a1: A).(\lambda (a3: A).(\lambda (_:
+(leq g a1 a3)).(\lambda (_: (((eq A a1 (ASort h1 n1)) \to (ex2_3 nat nat nat
+(\lambda (n2: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g a1 k)
+(aplus g (ASort h2 n2) k))))) (\lambda (n2: nat).(\lambda (h2: nat).(\lambda
+(_: nat).(eq A a3 (ASort h2 n2))))))))).(\lambda (a4: A).(\lambda (a5:
+A).(\lambda (_: (leq g a4 a5)).(\lambda (_: (((eq A a4 (ASort h1 n1)) \to
+(ex2_3 nat nat nat (\lambda (n2: nat).(\lambda (h2: nat).(\lambda (k:
+nat).(eq A (aplus g a4 k) (aplus g (ASort h2 n2) k))))) (\lambda (n2:
+nat).(\lambda (h2: nat).(\lambda (_: nat).(eq A a5 (ASort h2
+n2))))))))).(\lambda (H5: (eq A (AHead a1 a4) (ASort h1 n1))).(let H6 \def
+(eq_ind A (AHead a1 a4) (\lambda (ee: A).(match ee in A return (\lambda (_:
+A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow
+True])) I (ASort h1 n1) H5) in (False_ind (ex2_3 nat nat nat (\lambda (n2:
+nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (AHead a1 a4) k)
+(aplus g (ASort h2 n2) k))))) (\lambda (n2: nat).(\lambda (h2: nat).(\lambda
+(_: nat).(eq A (AHead a3 a5) (ASort h2 n2)))))) H6))))))))))) y a2 H0)))
+H))))).
-theorem leq_gen_head:
+theorem leq_gen_head1:
\forall (g: G).(\forall (a1: A).(\forall (a2: A).(\forall (a: A).((leq g
-(AHead a1 a2) a) \to (ex3_2 A A (\lambda (a3: A).(\lambda (a4: A).(eq A a
-(AHead a3 a4)))) (\lambda (a3: A).(\lambda (_: A).(leq g a1 a3))) (\lambda
-(_: A).(\lambda (a4: A).(leq g a2 a4))))))))
+(AHead a1 a2) a) \to (ex3_2 A A (\lambda (a3: A).(\lambda (_: A).(leq g a1
+a3))) (\lambda (_: A).(\lambda (a4: A).(leq g a2 a4))) (\lambda (a3:
+A).(\lambda (a4: A).(eq A a (AHead a3 a4)))))))))
+\def
+ \lambda (g: G).(\lambda (a1: A).(\lambda (a2: A).(\lambda (a: A).(\lambda
+(H: (leq g (AHead a1 a2) a)).(insert_eq A (AHead a1 a2) (\lambda (a0: A).(leq
+g a0 a)) (\lambda (_: A).(ex3_2 A A (\lambda (a3: A).(\lambda (_: A).(leq g
+a1 a3))) (\lambda (_: A).(\lambda (a4: A).(leq g a2 a4))) (\lambda (a3:
+A).(\lambda (a4: A).(eq A a (AHead a3 a4)))))) (\lambda (y: A).(\lambda (H0:
+(leq g y a)).(leq_ind g (\lambda (a0: A).(\lambda (a3: A).((eq A a0 (AHead a1
+a2)) \to (ex3_2 A A (\lambda (a4: A).(\lambda (_: A).(leq g a1 a4))) (\lambda
+(_: A).(\lambda (a5: A).(leq g a2 a5))) (\lambda (a4: A).(\lambda (a5: A).(eq
+A a3 (AHead a4 a5)))))))) (\lambda (h1: nat).(\lambda (h2: nat).(\lambda (n1:
+nat).(\lambda (n2: nat).(\lambda (k: nat).(\lambda (_: (eq A (aplus g (ASort
+h1 n1) k) (aplus g (ASort h2 n2) k))).(\lambda (H2: (eq A (ASort h1 n1)
+(AHead a1 a2))).(let H3 \def (eq_ind A (ASort h1 n1) (\lambda (ee: A).(match
+ee in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True |
+(AHead _ _) \Rightarrow False])) I (AHead a1 a2) H2) in (False_ind (ex3_2 A A
+(\lambda (a3: A).(\lambda (_: A).(leq g a1 a3))) (\lambda (_: A).(\lambda
+(a4: A).(leq g a2 a4))) (\lambda (a3: A).(\lambda (a4: A).(eq A (ASort h2 n2)
+(AHead a3 a4))))) H3))))))))) (\lambda (a0: A).(\lambda (a3: A).(\lambda (H1:
+(leq g a0 a3)).(\lambda (H2: (((eq A a0 (AHead a1 a2)) \to (ex3_2 A A
+(\lambda (a4: A).(\lambda (_: A).(leq g a1 a4))) (\lambda (_: A).(\lambda
+(a5: A).(leq g a2 a5))) (\lambda (a4: A).(\lambda (a5: A).(eq A a3 (AHead a4
+a5)))))))).(\lambda (a4: A).(\lambda (a5: A).(\lambda (H3: (leq g a4
+a5)).(\lambda (H4: (((eq A a4 (AHead a1 a2)) \to (ex3_2 A A (\lambda (a6:
+A).(\lambda (_: A).(leq g a1 a6))) (\lambda (_: A).(\lambda (a7: A).(leq g a2
+a7))) (\lambda (a6: A).(\lambda (a7: A).(eq A a5 (AHead a6
+a7)))))))).(\lambda (H5: (eq A (AHead a0 a4) (AHead a1 a2))).(let H6 \def
+(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
+[(ASort _ _) \Rightarrow a0 | (AHead a6 _) \Rightarrow a6])) (AHead a0 a4)
+(AHead a1 a2) H5) in ((let H7 \def (f_equal A A (\lambda (e: A).(match e in A
+return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a4 | (AHead _ a6)
+\Rightarrow a6])) (AHead a0 a4) (AHead a1 a2) H5) in (\lambda (H8: (eq A a0
+a1)).(let H9 \def (eq_ind A a4 (\lambda (a6: A).((eq A a6 (AHead a1 a2)) \to
+(ex3_2 A A (\lambda (a7: A).(\lambda (_: A).(leq g a1 a7))) (\lambda (_:
+A).(\lambda (a8: A).(leq g a2 a8))) (\lambda (a7: A).(\lambda (a8: A).(eq A
+a5 (AHead a7 a8))))))) H4 a2 H7) in (let H10 \def (eq_ind A a4 (\lambda (a6:
+A).(leq g a6 a5)) H3 a2 H7) in (let H11 \def (eq_ind A a0 (\lambda (a6:
+A).((eq A a6 (AHead a1 a2)) \to (ex3_2 A A (\lambda (a7: A).(\lambda (_:
+A).(leq g a1 a7))) (\lambda (_: A).(\lambda (a8: A).(leq g a2 a8))) (\lambda
+(a7: A).(\lambda (a8: A).(eq A a3 (AHead a7 a8))))))) H2 a1 H8) in (let H12
+\def (eq_ind A a0 (\lambda (a6: A).(leq g a6 a3)) H1 a1 H8) in (ex3_2_intro A
+A (\lambda (a6: A).(\lambda (_: A).(leq g a1 a6))) (\lambda (_: A).(\lambda
+(a7: A).(leq g a2 a7))) (\lambda (a6: A).(\lambda (a7: A).(eq A (AHead a3 a5)
+(AHead a6 a7)))) a3 a5 H12 H10 (refl_equal A (AHead a3 a5)))))))))
+H6))))))))))) y a H0))) H))))).
+
+theorem leq_gen_sort2:
+ \forall (g: G).(\forall (h1: nat).(\forall (n1: nat).(\forall (a2: A).((leq
+g a2 (ASort h1 n1)) \to (ex2_3 nat nat nat (\lambda (n2: nat).(\lambda (h2:
+nat).(\lambda (k: nat).(eq A (aplus g (ASort h2 n2) k) (aplus g (ASort h1 n1)
+k))))) (\lambda (n2: nat).(\lambda (h2: nat).(\lambda (_: nat).(eq A a2
+(ASort h2 n2))))))))))
+\def
+ \lambda (g: G).(\lambda (h1: nat).(\lambda (n1: nat).(\lambda (a2:
+A).(\lambda (H: (leq g a2 (ASort h1 n1))).(insert_eq A (ASort h1 n1) (\lambda
+(a: A).(leq g a2 a)) (\lambda (a: A).(ex2_3 nat nat nat (\lambda (n2:
+nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort h2 n2) k)
+(aplus g a k))))) (\lambda (n2: nat).(\lambda (h2: nat).(\lambda (_: nat).(eq
+A a2 (ASort h2 n2))))))) (\lambda (y: A).(\lambda (H0: (leq g a2 y)).(leq_ind
+g (\lambda (a: A).(\lambda (a0: A).((eq A a0 (ASort h1 n1)) \to (ex2_3 nat
+nat nat (\lambda (n2: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus
+g (ASort h2 n2) k) (aplus g a0 k))))) (\lambda (n2: nat).(\lambda (h2:
+nat).(\lambda (_: nat).(eq A a (ASort h2 n2))))))))) (\lambda (h0:
+nat).(\lambda (h2: nat).(\lambda (n0: nat).(\lambda (n2: nat).(\lambda (k:
+nat).(\lambda (H1: (eq A (aplus g (ASort h0 n0) k) (aplus g (ASort h2 n2)
+k))).(\lambda (H2: (eq A (ASort h2 n2) (ASort h1 n1))).(let H3 \def (f_equal
+A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with [(ASort
+n _) \Rightarrow n | (AHead _ _) \Rightarrow h2])) (ASort h2 n2) (ASort h1
+n1) H2) in ((let H4 \def (f_equal A nat (\lambda (e: A).(match e in A return
+(\lambda (_: A).nat) with [(ASort _ n) \Rightarrow n | (AHead _ _)
+\Rightarrow n2])) (ASort h2 n2) (ASort h1 n1) H2) in (\lambda (H5: (eq nat h2
+h1)).(let H6 \def (eq_ind nat n2 (\lambda (n: nat).(eq A (aplus g (ASort h0
+n0) k) (aplus g (ASort h2 n) k))) H1 n1 H4) in (eq_ind_r nat n1 (\lambda (n:
+nat).(ex2_3 nat nat nat (\lambda (n3: nat).(\lambda (h3: nat).(\lambda (k0:
+nat).(eq A (aplus g (ASort h3 n3) k0) (aplus g (ASort h2 n) k0))))) (\lambda
+(n3: nat).(\lambda (h3: nat).(\lambda (_: nat).(eq A (ASort h0 n0) (ASort h3
+n3))))))) (let H7 \def (eq_ind nat h2 (\lambda (n: nat).(eq A (aplus g (ASort
+h0 n0) k) (aplus g (ASort n n1) k))) H6 h1 H5) in (eq_ind_r nat h1 (\lambda
+(n: nat).(ex2_3 nat nat nat (\lambda (n3: nat).(\lambda (h3: nat).(\lambda
+(k0: nat).(eq A (aplus g (ASort h3 n3) k0) (aplus g (ASort n n1) k0)))))
+(\lambda (n3: nat).(\lambda (h3: nat).(\lambda (_: nat).(eq A (ASort h0 n0)
+(ASort h3 n3))))))) (ex2_3_intro nat nat nat (\lambda (n3: nat).(\lambda (h3:
+nat).(\lambda (k0: nat).(eq A (aplus g (ASort h3 n3) k0) (aplus g (ASort h1
+n1) k0))))) (\lambda (n3: nat).(\lambda (h3: nat).(\lambda (_: nat).(eq A
+(ASort h0 n0) (ASort h3 n3))))) n0 h0 k H7 (refl_equal A (ASort h0 n0))) h2
+H5)) n2 H4)))) H3))))))))) (\lambda (a1: A).(\lambda (a3: A).(\lambda (_:
+(leq g a1 a3)).(\lambda (_: (((eq A a3 (ASort h1 n1)) \to (ex2_3 nat nat nat
+(\lambda (n2: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort
+h2 n2) k) (aplus g a3 k))))) (\lambda (n2: nat).(\lambda (h2: nat).(\lambda
+(_: nat).(eq A a1 (ASort h2 n2))))))))).(\lambda (a4: A).(\lambda (a5:
+A).(\lambda (_: (leq g a4 a5)).(\lambda (_: (((eq A a5 (ASort h1 n1)) \to
+(ex2_3 nat nat nat (\lambda (n2: nat).(\lambda (h2: nat).(\lambda (k:
+nat).(eq A (aplus g (ASort h2 n2) k) (aplus g a5 k))))) (\lambda (n2:
+nat).(\lambda (h2: nat).(\lambda (_: nat).(eq A a4 (ASort h2
+n2))))))))).(\lambda (H5: (eq A (AHead a3 a5) (ASort h1 n1))).(let H6 \def
+(eq_ind A (AHead a3 a5) (\lambda (ee: A).(match ee in A return (\lambda (_:
+A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow
+True])) I (ASort h1 n1) H5) in (False_ind (ex2_3 nat nat nat (\lambda (n2:
+nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort h2 n2) k)
+(aplus g (AHead a3 a5) k))))) (\lambda (n2: nat).(\lambda (h2: nat).(\lambda
+(_: nat).(eq A (AHead a1 a4) (ASort h2 n2)))))) H6))))))))))) a2 y H0)))
+H))))).
+
+theorem leq_gen_head2:
+ \forall (g: G).(\forall (a1: A).(\forall (a2: A).(\forall (a: A).((leq g a
+(AHead a1 a2)) \to (ex3_2 A A (\lambda (a3: A).(\lambda (_: A).(leq g a3
+a1))) (\lambda (_: A).(\lambda (a4: A).(leq g a4 a2))) (\lambda (a3:
+A).(\lambda (a4: A).(eq A a (AHead a3 a4)))))))))
\def
\lambda (g: G).(\lambda (a1: A).(\lambda (a2: A).(\lambda (a: A).(\lambda
-(H: (leq g (AHead a1 a2) a)).(let H0 \def (match H in leq return (\lambda
-(a0: A).(\lambda (a3: A).(\lambda (_: (leq ? a0 a3)).((eq A a0 (AHead a1 a2))
-\to ((eq A a3 a) \to (ex3_2 A A (\lambda (a4: A).(\lambda (a5: A).(eq A a
-(AHead a4 a5)))) (\lambda (a4: A).(\lambda (_: A).(leq g a1 a4))) (\lambda
-(_: A).(\lambda (a5: A).(leq g a2 a5))))))))) with [(leq_sort h1 h2 n1 n2 k
-H0) \Rightarrow (\lambda (H1: (eq A (ASort h1 n1) (AHead a1 a2))).(\lambda
-(H2: (eq A (ASort h2 n2) a)).((let H3 \def (eq_ind A (ASort h1 n1) (\lambda
-(e: A).(match e in A return (\lambda (_: A).Prop) with [(ASort _ _)
-\Rightarrow True | (AHead _ _) \Rightarrow False])) I (AHead a1 a2) H1) in
-(False_ind ((eq A (ASort h2 n2) a) \to ((eq A (aplus g (ASort h1 n1) k)
-(aplus g (ASort h2 n2) k)) \to (ex3_2 A A (\lambda (a3: A).(\lambda (a4:
-A).(eq A a (AHead a3 a4)))) (\lambda (a3: A).(\lambda (_: A).(leq g a1 a3)))
-(\lambda (_: A).(\lambda (a4: A).(leq g a2 a4)))))) H3)) H2 H0))) | (leq_head
-a0 a3 H0 a4 a5 H1) \Rightarrow (\lambda (H2: (eq A (AHead a0 a4) (AHead a1
-a2))).(\lambda (H3: (eq A (AHead a3 a5) a)).((let H4 \def (f_equal A A
-(\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
-\Rightarrow a4 | (AHead _ a6) \Rightarrow a6])) (AHead a0 a4) (AHead a1 a2)
-H2) in ((let H5 \def (f_equal A A (\lambda (e: A).(match e in A return
-(\lambda (_: A).A) with [(ASort _ _) \Rightarrow a0 | (AHead a6 _)
-\Rightarrow a6])) (AHead a0 a4) (AHead a1 a2) H2) in (eq_ind A a1 (\lambda
-(a6: A).((eq A a4 a2) \to ((eq A (AHead a3 a5) a) \to ((leq g a6 a3) \to
-((leq g a4 a5) \to (ex3_2 A A (\lambda (a7: A).(\lambda (a8: A).(eq A a
-(AHead a7 a8)))) (\lambda (a7: A).(\lambda (_: A).(leq g a1 a7))) (\lambda
-(_: A).(\lambda (a8: A).(leq g a2 a8))))))))) (\lambda (H6: (eq A a4
-a2)).(eq_ind A a2 (\lambda (a6: A).((eq A (AHead a3 a5) a) \to ((leq g a1 a3)
-\to ((leq g a6 a5) \to (ex3_2 A A (\lambda (a7: A).(\lambda (a8: A).(eq A a
-(AHead a7 a8)))) (\lambda (a7: A).(\lambda (_: A).(leq g a1 a7))) (\lambda
-(_: A).(\lambda (a8: A).(leq g a2 a8)))))))) (\lambda (H7: (eq A (AHead a3
-a5) a)).(eq_ind A (AHead a3 a5) (\lambda (a6: A).((leq g a1 a3) \to ((leq g
-a2 a5) \to (ex3_2 A A (\lambda (a7: A).(\lambda (a8: A).(eq A a6 (AHead a7
-a8)))) (\lambda (a7: A).(\lambda (_: A).(leq g a1 a7))) (\lambda (_:
-A).(\lambda (a8: A).(leq g a2 a8))))))) (\lambda (H8: (leq g a1 a3)).(\lambda
-(H9: (leq g a2 a5)).(ex3_2_intro A A (\lambda (a6: A).(\lambda (a7: A).(eq A
-(AHead a3 a5) (AHead a6 a7)))) (\lambda (a6: A).(\lambda (_: A).(leq g a1
-a6))) (\lambda (_: A).(\lambda (a7: A).(leq g a2 a7))) a3 a5 (refl_equal A
-(AHead a3 a5)) H8 H9))) a H7)) a4 (sym_eq A a4 a2 H6))) a0 (sym_eq A a0 a1
-H5))) H4)) H3 H0 H1)))]) in (H0 (refl_equal A (AHead a1 a2)) (refl_equal A
-a))))))).
+(H: (leq g a (AHead a1 a2))).(insert_eq A (AHead a1 a2) (\lambda (a0: A).(leq
+g a a0)) (\lambda (_: A).(ex3_2 A A (\lambda (a3: A).(\lambda (_: A).(leq g
+a3 a1))) (\lambda (_: A).(\lambda (a4: A).(leq g a4 a2))) (\lambda (a3:
+A).(\lambda (a4: A).(eq A a (AHead a3 a4)))))) (\lambda (y: A).(\lambda (H0:
+(leq g a y)).(leq_ind g (\lambda (a0: A).(\lambda (a3: A).((eq A a3 (AHead a1
+a2)) \to (ex3_2 A A (\lambda (a4: A).(\lambda (_: A).(leq g a4 a1))) (\lambda
+(_: A).(\lambda (a5: A).(leq g a5 a2))) (\lambda (a4: A).(\lambda (a5: A).(eq
+A a0 (AHead a4 a5)))))))) (\lambda (h1: nat).(\lambda (h2: nat).(\lambda (n1:
+nat).(\lambda (n2: nat).(\lambda (k: nat).(\lambda (_: (eq A (aplus g (ASort
+h1 n1) k) (aplus g (ASort h2 n2) k))).(\lambda (H2: (eq A (ASort h2 n2)
+(AHead a1 a2))).(let H3 \def (eq_ind A (ASort h2 n2) (\lambda (ee: A).(match
+ee in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True |
+(AHead _ _) \Rightarrow False])) I (AHead a1 a2) H2) in (False_ind (ex3_2 A A
+(\lambda (a3: A).(\lambda (_: A).(leq g a3 a1))) (\lambda (_: A).(\lambda
+(a4: A).(leq g a4 a2))) (\lambda (a3: A).(\lambda (a4: A).(eq A (ASort h1 n1)
+(AHead a3 a4))))) H3))))))))) (\lambda (a0: A).(\lambda (a3: A).(\lambda (H1:
+(leq g a0 a3)).(\lambda (H2: (((eq A a3 (AHead a1 a2)) \to (ex3_2 A A
+(\lambda (a4: A).(\lambda (_: A).(leq g a4 a1))) (\lambda (_: A).(\lambda
+(a5: A).(leq g a5 a2))) (\lambda (a4: A).(\lambda (a5: A).(eq A a0 (AHead a4
+a5)))))))).(\lambda (a4: A).(\lambda (a5: A).(\lambda (H3: (leq g a4
+a5)).(\lambda (H4: (((eq A a5 (AHead a1 a2)) \to (ex3_2 A A (\lambda (a6:
+A).(\lambda (_: A).(leq g a6 a1))) (\lambda (_: A).(\lambda (a7: A).(leq g a7
+a2))) (\lambda (a6: A).(\lambda (a7: A).(eq A a4 (AHead a6
+a7)))))))).(\lambda (H5: (eq A (AHead a3 a5) (AHead a1 a2))).(let H6 \def
+(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
+[(ASort _ _) \Rightarrow a3 | (AHead a6 _) \Rightarrow a6])) (AHead a3 a5)
+(AHead a1 a2) H5) in ((let H7 \def (f_equal A A (\lambda (e: A).(match e in A
+return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a5 | (AHead _ a6)
+\Rightarrow a6])) (AHead a3 a5) (AHead a1 a2) H5) in (\lambda (H8: (eq A a3
+a1)).(let H9 \def (eq_ind A a5 (\lambda (a6: A).((eq A a6 (AHead a1 a2)) \to
+(ex3_2 A A (\lambda (a7: A).(\lambda (_: A).(leq g a7 a1))) (\lambda (_:
+A).(\lambda (a8: A).(leq g a8 a2))) (\lambda (a7: A).(\lambda (a8: A).(eq A
+a4 (AHead a7 a8))))))) H4 a2 H7) in (let H10 \def (eq_ind A a5 (\lambda (a6:
+A).(leq g a4 a6)) H3 a2 H7) in (let H11 \def (eq_ind A a3 (\lambda (a6:
+A).((eq A a6 (AHead a1 a2)) \to (ex3_2 A A (\lambda (a7: A).(\lambda (_:
+A).(leq g a7 a1))) (\lambda (_: A).(\lambda (a8: A).(leq g a8 a2))) (\lambda
+(a7: A).(\lambda (a8: A).(eq A a0 (AHead a7 a8))))))) H2 a1 H8) in (let H12
+\def (eq_ind A a3 (\lambda (a6: A).(leq g a0 a6)) H1 a1 H8) in (ex3_2_intro A
+A (\lambda (a6: A).(\lambda (_: A).(leq g a6 a1))) (\lambda (_: A).(\lambda
+(a7: A).(leq g a7 a2))) (\lambda (a6: A).(\lambda (a7: A).(eq A (AHead a0 a4)
+(AHead a6 a7)))) a0 a4 H12 H10 (refl_equal A (AHead a0 a4)))))))))
+H6))))))))))) a y H0))) H))))).
(* This file was automatically generated: do not edit *********************)
-include "LambdaDelta-1/leq/defs.ma".
+include "LambdaDelta-1/leq/fwd.ma".
include "LambdaDelta-1/aplus/props.ma".
(a4: A).((leq g (AHead a1 a2) (AHead a3 a4)) \to (leq g a2 a4))))))
\def
\lambda (g: G).(\lambda (a1: A).(\lambda (a2: A).(\lambda (a3: A).(\lambda
-(a4: A).(\lambda (H: (leq g (AHead a1 a2) (AHead a3 a4))).(let H0 \def (match
-H in leq return (\lambda (a: A).(\lambda (a0: A).(\lambda (_: (leq ? a
-a0)).((eq A a (AHead a1 a2)) \to ((eq A a0 (AHead a3 a4)) \to (leq g a2
-a4)))))) with [(leq_sort h1 h2 n1 n2 k H0) \Rightarrow (\lambda (H1: (eq A
-(ASort h1 n1) (AHead a1 a2))).(\lambda (H2: (eq A (ASort h2 n2) (AHead a3
-a4))).((let H3 \def (eq_ind A (ASort h1 n1) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _)
-\Rightarrow False])) I (AHead a1 a2) H1) in (False_ind ((eq A (ASort h2 n2)
-(AHead a3 a4)) \to ((eq A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2)
-k)) \to (leq g a2 a4))) H3)) H2 H0))) | (leq_head a0 a5 H0 a6 a7 H1)
-\Rightarrow (\lambda (H2: (eq A (AHead a0 a6) (AHead a1 a2))).(\lambda (H3:
-(eq A (AHead a5 a7) (AHead a3 a4))).((let H4 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a6 |
-(AHead _ a) \Rightarrow a])) (AHead a0 a6) (AHead a1 a2) H2) in ((let H5 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a0 | (AHead a _) \Rightarrow a])) (AHead a0 a6)
-(AHead a1 a2) H2) in (eq_ind A a1 (\lambda (a: A).((eq A a6 a2) \to ((eq A
-(AHead a5 a7) (AHead a3 a4)) \to ((leq g a a5) \to ((leq g a6 a7) \to (leq g
-a2 a4)))))) (\lambda (H6: (eq A a6 a2)).(eq_ind A a2 (\lambda (a: A).((eq A
-(AHead a5 a7) (AHead a3 a4)) \to ((leq g a1 a5) \to ((leq g a a7) \to (leq g
-a2 a4))))) (\lambda (H7: (eq A (AHead a5 a7) (AHead a3 a4))).(let H8 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a7 | (AHead _ a) \Rightarrow a])) (AHead a5 a7)
-(AHead a3 a4) H7) in ((let H9 \def (f_equal A A (\lambda (e: A).(match e in A
-return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a5 | (AHead a _)
-\Rightarrow a])) (AHead a5 a7) (AHead a3 a4) H7) in (eq_ind A a3 (\lambda (a:
-A).((eq A a7 a4) \to ((leq g a1 a) \to ((leq g a2 a7) \to (leq g a2 a4)))))
-(\lambda (H10: (eq A a7 a4)).(eq_ind A a4 (\lambda (a: A).((leq g a1 a3) \to
-((leq g a2 a) \to (leq g a2 a4)))) (\lambda (_: (leq g a1 a3)).(\lambda (H12:
-(leq g a2 a4)).H12)) a7 (sym_eq A a7 a4 H10))) a5 (sym_eq A a5 a3 H9))) H8)))
-a6 (sym_eq A a6 a2 H6))) a0 (sym_eq A a0 a1 H5))) H4)) H3 H0 H1)))]) in (H0
-(refl_equal A (AHead a1 a2)) (refl_equal A (AHead a3 a4))))))))).
+(a4: A).(\lambda (H: (leq g (AHead a1 a2) (AHead a3 a4))).(let H_x \def
+(leq_gen_head1 g a1 a2 (AHead a3 a4) H) in (let H0 \def H_x in (ex3_2_ind A A
+(\lambda (a5: A).(\lambda (_: A).(leq g a1 a5))) (\lambda (_: A).(\lambda
+(a6: A).(leq g a2 a6))) (\lambda (a5: A).(\lambda (a6: A).(eq A (AHead a3 a4)
+(AHead a5 a6)))) (leq g a2 a4) (\lambda (x0: A).(\lambda (x1: A).(\lambda
+(H1: (leq g a1 x0)).(\lambda (H2: (leq g a2 x1)).(\lambda (H3: (eq A (AHead
+a3 a4) (AHead x0 x1))).(let H4 \def (f_equal A A (\lambda (e: A).(match e in
+A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a3 | (AHead a _)
+\Rightarrow a])) (AHead a3 a4) (AHead x0 x1) H3) in ((let H5 \def (f_equal A
+A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
+\Rightarrow a4 | (AHead _ a) \Rightarrow a])) (AHead a3 a4) (AHead x0 x1) H3)
+in (\lambda (H6: (eq A a3 x0)).(let H7 \def (eq_ind_r A x1 (\lambda (a:
+A).(leq g a2 a)) H2 a4 H5) in (let H8 \def (eq_ind_r A x0 (\lambda (a:
+A).(leq g a1 a)) H1 a3 H6) in H7)))) H4))))))) H0)))))))).
theorem leq_refl:
\forall (g: G).(\forall (a: A).(leq g a a))
a2))))
\def
\lambda (g: G).(\lambda (a1: A).(\lambda (a2: A).(\lambda (H: (eq A a1
-a2)).(eq_ind_r A a2 (\lambda (a: A).(leq g a a2)) (leq_refl g a2) a1 H)))).
+a2)).(eq_ind A a1 (\lambda (a: A).(leq g a1 a)) (leq_refl g a1) a2 H)))).
theorem leq_sym:
\forall (g: G).(\forall (a1: A).(\forall (a2: A).((leq g a1 a2) \to (leq g
a3) \to (leq g a a3))))) (\lambda (h1: nat).(\lambda (h2: nat).(\lambda (n1:
nat).(\lambda (n2: nat).(\lambda (k: nat).(\lambda (H0: (eq A (aplus g (ASort
h1 n1) k) (aplus g (ASort h2 n2) k))).(\lambda (a3: A).(\lambda (H1: (leq g
-(ASort h2 n2) a3)).(let H2 \def (match H1 in leq return (\lambda (a:
-A).(\lambda (a0: A).(\lambda (_: (leq ? a a0)).((eq A a (ASort h2 n2)) \to
-((eq A a0 a3) \to (leq g (ASort h1 n1) a3)))))) with [(leq_sort h0 h3 n0 n3
-k0 H2) \Rightarrow (\lambda (H3: (eq A (ASort h0 n0) (ASort h2 n2))).(\lambda
-(H4: (eq A (ASort h3 n3) a3)).((let H5 \def (f_equal A nat (\lambda (e:
-A).(match e in A return (\lambda (_: A).nat) with [(ASort _ n) \Rightarrow n
-| (AHead _ _) \Rightarrow n0])) (ASort h0 n0) (ASort h2 n2) H3) in ((let H6
-\def (f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat)
-with [(ASort n _) \Rightarrow n | (AHead _ _) \Rightarrow h0])) (ASort h0 n0)
-(ASort h2 n2) H3) in (eq_ind nat h2 (\lambda (n: nat).((eq nat n0 n2) \to
-((eq A (ASort h3 n3) a3) \to ((eq A (aplus g (ASort n n0) k0) (aplus g (ASort
-h3 n3) k0)) \to (leq g (ASort h1 n1) a3))))) (\lambda (H7: (eq nat n0
-n2)).(eq_ind nat n2 (\lambda (n: nat).((eq A (ASort h3 n3) a3) \to ((eq A
-(aplus g (ASort h2 n) k0) (aplus g (ASort h3 n3) k0)) \to (leq g (ASort h1
-n1) a3)))) (\lambda (H8: (eq A (ASort h3 n3) a3)).(eq_ind A (ASort h3 n3)
-(\lambda (a: A).((eq A (aplus g (ASort h2 n2) k0) (aplus g (ASort h3 n3) k0))
-\to (leq g (ASort h1 n1) a))) (\lambda (H9: (eq A (aplus g (ASort h2 n2) k0)
-(aplus g (ASort h3 n3) k0))).(lt_le_e k k0 (leq g (ASort h1 n1) (ASort h3
-n3)) (\lambda (H10: (lt k k0)).(let H_y \def (aplus_reg_r g (ASort h1 n1)
-(ASort h2 n2) k k H0 (minus k0 k)) in (let H11 \def (eq_ind_r nat (plus
-(minus k0 k) k) (\lambda (n: nat).(eq A (aplus g (ASort h1 n1) n) (aplus g
-(ASort h2 n2) n))) H_y k0 (le_plus_minus_sym k k0 (le_trans k (S k) k0 (le_S
-k k (le_n k)) H10))) in (leq_sort g h1 h3 n1 n3 k0 (trans_eq A (aplus g
-(ASort h1 n1) k0) (aplus g (ASort h2 n2) k0) (aplus g (ASort h3 n3) k0) H11
-H9))))) (\lambda (H10: (le k0 k)).(let H_y \def (aplus_reg_r g (ASort h2 n2)
-(ASort h3 n3) k0 k0 H9 (minus k k0)) in (let H11 \def (eq_ind_r nat (plus
-(minus k k0) k0) (\lambda (n: nat).(eq A (aplus g (ASort h2 n2) n) (aplus g
-(ASort h3 n3) n))) H_y k (le_plus_minus_sym k0 k H10)) in (leq_sort g h1 h3
-n1 n3 k (trans_eq A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2) k)
-(aplus g (ASort h3 n3) k) H0 H11))))))) a3 H8)) n0 (sym_eq nat n0 n2 H7))) h0
-(sym_eq nat h0 h2 H6))) H5)) H4 H2))) | (leq_head a0 a4 H2 a5 a6 H3)
-\Rightarrow (\lambda (H4: (eq A (AHead a0 a5) (ASort h2 n2))).(\lambda (H5:
-(eq A (AHead a4 a6) a3)).((let H6 \def (eq_ind A (AHead a0 a5) (\lambda (e:
-A).(match e in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow
-False | (AHead _ _) \Rightarrow True])) I (ASort h2 n2) H4) in (False_ind
-((eq A (AHead a4 a6) a3) \to ((leq g a0 a4) \to ((leq g a5 a6) \to (leq g
-(ASort h1 n1) a3)))) H6)) H5 H2 H3)))]) in (H2 (refl_equal A (ASort h2 n2))
-(refl_equal A a3))))))))))) (\lambda (a3: A).(\lambda (a4: A).(\lambda (_:
-(leq g a3 a4)).(\lambda (H1: ((\forall (a5: A).((leq g a4 a5) \to (leq g a3
-a5))))).(\lambda (a5: A).(\lambda (a6: A).(\lambda (_: (leq g a5
-a6)).(\lambda (H3: ((\forall (a7: A).((leq g a6 a7) \to (leq g a5
-a7))))).(\lambda (a0: A).(\lambda (H4: (leq g (AHead a4 a6) a0)).(let H5 \def
-(match H4 in leq return (\lambda (a: A).(\lambda (a7: A).(\lambda (_: (leq ?
-a a7)).((eq A a (AHead a4 a6)) \to ((eq A a7 a0) \to (leq g (AHead a3 a5)
-a0)))))) with [(leq_sort h1 h2 n1 n2 k H5) \Rightarrow (\lambda (H6: (eq A
-(ASort h1 n1) (AHead a4 a6))).(\lambda (H7: (eq A (ASort h2 n2) a0)).((let H8
-\def (eq_ind A (ASort h1 n1) (\lambda (e: A).(match e in A return (\lambda
-(_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _) \Rightarrow
-False])) I (AHead a4 a6) H6) in (False_ind ((eq A (ASort h2 n2) a0) \to ((eq
-A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2) k)) \to (leq g (AHead a3
-a5) a0))) H8)) H7 H5))) | (leq_head a7 a8 H5 a9 a10 H6) \Rightarrow (\lambda
-(H7: (eq A (AHead a7 a9) (AHead a4 a6))).(\lambda (H8: (eq A (AHead a8 a10)
-a0)).((let H9 \def (f_equal A A (\lambda (e: A).(match e in A return (\lambda
-(_: A).A) with [(ASort _ _) \Rightarrow a9 | (AHead _ a) \Rightarrow a]))
-(AHead a7 a9) (AHead a4 a6) H7) in ((let H10 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a7 |
-(AHead a _) \Rightarrow a])) (AHead a7 a9) (AHead a4 a6) H7) in (eq_ind A a4
-(\lambda (a: A).((eq A a9 a6) \to ((eq A (AHead a8 a10) a0) \to ((leq g a a8)
-\to ((leq g a9 a10) \to (leq g (AHead a3 a5) a0)))))) (\lambda (H11: (eq A a9
-a6)).(eq_ind A a6 (\lambda (a: A).((eq A (AHead a8 a10) a0) \to ((leq g a4
-a8) \to ((leq g a a10) \to (leq g (AHead a3 a5) a0))))) (\lambda (H12: (eq A
-(AHead a8 a10) a0)).(eq_ind A (AHead a8 a10) (\lambda (a: A).((leq g a4 a8)
-\to ((leq g a6 a10) \to (leq g (AHead a3 a5) a)))) (\lambda (H13: (leq g a4
-a8)).(\lambda (H14: (leq g a6 a10)).(leq_head g a3 a8 (H1 a8 H13) a5 a10 (H3
-a10 H14)))) a0 H12)) a9 (sym_eq A a9 a6 H11))) a7 (sym_eq A a7 a4 H10))) H9))
-H8 H5 H6)))]) in (H5 (refl_equal A (AHead a4 a6)) (refl_equal A
-a0))))))))))))) a1 a2 H)))).
+(ASort h2 n2) a3)).(let H_x \def (leq_gen_sort1 g h2 n2 a3 H1) in (let H2
+\def H_x in (ex2_3_ind nat nat nat (\lambda (n3: nat).(\lambda (h3:
+nat).(\lambda (k0: nat).(eq A (aplus g (ASort h2 n2) k0) (aplus g (ASort h3
+n3) k0))))) (\lambda (n3: nat).(\lambda (h3: nat).(\lambda (_: nat).(eq A a3
+(ASort h3 n3))))) (leq g (ASort h1 n1) a3) (\lambda (x0: nat).(\lambda (x1:
+nat).(\lambda (x2: nat).(\lambda (H3: (eq A (aplus g (ASort h2 n2) x2) (aplus
+g (ASort x1 x0) x2))).(\lambda (H4: (eq A a3 (ASort x1 x0))).(let H5 \def
+(f_equal A A (\lambda (e: A).e) a3 (ASort x1 x0) H4) in (eq_ind_r A (ASort x1
+x0) (\lambda (a: A).(leq g (ASort h1 n1) a)) (lt_le_e k x2 (leq g (ASort h1
+n1) (ASort x1 x0)) (\lambda (H6: (lt k x2)).(let H_y \def (aplus_reg_r g
+(ASort h1 n1) (ASort h2 n2) k k H0 (minus x2 k)) in (let H7 \def (eq_ind_r
+nat (plus (minus x2 k) k) (\lambda (n: nat).(eq A (aplus g (ASort h1 n1) n)
+(aplus g (ASort h2 n2) n))) H_y x2 (le_plus_minus_sym k x2 (le_trans k (S k)
+x2 (le_S k k (le_n k)) H6))) in (leq_sort g h1 x1 n1 x0 x2 (trans_eq A (aplus
+g (ASort h1 n1) x2) (aplus g (ASort h2 n2) x2) (aplus g (ASort x1 x0) x2) H7
+H3))))) (\lambda (H6: (le x2 k)).(let H_y \def (aplus_reg_r g (ASort h2 n2)
+(ASort x1 x0) x2 x2 H3 (minus k x2)) in (let H7 \def (eq_ind_r nat (plus
+(minus k x2) x2) (\lambda (n: nat).(eq A (aplus g (ASort h2 n2) n) (aplus g
+(ASort x1 x0) n))) H_y k (le_plus_minus_sym x2 k H6)) in (leq_sort g h1 x1 n1
+x0 k (trans_eq A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2) k) (aplus g
+(ASort x1 x0) k) H0 H7)))))) a3 H5))))))) H2))))))))))) (\lambda (a3:
+A).(\lambda (a4: A).(\lambda (_: (leq g a3 a4)).(\lambda (H1: ((\forall (a5:
+A).((leq g a4 a5) \to (leq g a3 a5))))).(\lambda (a5: A).(\lambda (a6:
+A).(\lambda (_: (leq g a5 a6)).(\lambda (H3: ((\forall (a7: A).((leq g a6 a7)
+\to (leq g a5 a7))))).(\lambda (a0: A).(\lambda (H4: (leq g (AHead a4 a6)
+a0)).(let H_x \def (leq_gen_head1 g a4 a6 a0 H4) in (let H5 \def H_x in
+(ex3_2_ind A A (\lambda (a7: A).(\lambda (_: A).(leq g a4 a7))) (\lambda (_:
+A).(\lambda (a8: A).(leq g a6 a8))) (\lambda (a7: A).(\lambda (a8: A).(eq A
+a0 (AHead a7 a8)))) (leq g (AHead a3 a5) a0) (\lambda (x0: A).(\lambda (x1:
+A).(\lambda (H6: (leq g a4 x0)).(\lambda (H7: (leq g a6 x1)).(\lambda (H8:
+(eq A a0 (AHead x0 x1))).(let H9 \def (f_equal A A (\lambda (e: A).e) a0
+(AHead x0 x1) H8) in (eq_ind_r A (AHead x0 x1) (\lambda (a: A).(leq g (AHead
+a3 a5) a)) (leq_head g a3 x0 (H1 x0 H6) a5 x1 (H3 x1 H7)) a0 H9)))))))
+H5))))))))))))) a1 a2 H)))).
theorem leq_ahead_false_1:
\forall (g: G).(\forall (a1: A).(\forall (a2: A).((leq g (AHead a1 a2) a1)
nat).(\lambda (n0: nat).(\lambda (a2: A).(\lambda (H: (leq g (AHead (ASort n
n0) a2) (ASort n n0))).(\lambda (P: Prop).(nat_ind (\lambda (n1: nat).((leq g
(AHead (ASort n1 n0) a2) (ASort n1 n0)) \to P)) (\lambda (H0: (leq g (AHead
-(ASort O n0) a2) (ASort O n0))).(let H1 \def (match H0 in leq return (\lambda
-(a: A).(\lambda (a0: A).(\lambda (_: (leq ? a a0)).((eq A a (AHead (ASort O
-n0) a2)) \to ((eq A a0 (ASort O n0)) \to P))))) with [(leq_sort h1 h2 n1 n2 k
-H1) \Rightarrow (\lambda (H2: (eq A (ASort h1 n1) (AHead (ASort O n0)
-a2))).(\lambda (H3: (eq A (ASort h2 n2) (ASort O n0))).((let H4 \def (eq_ind
-A (ASort h1 n1) (\lambda (e: A).(match e in A return (\lambda (_: A).Prop)
-with [(ASort _ _) \Rightarrow True | (AHead _ _) \Rightarrow False])) I
-(AHead (ASort O n0) a2) H2) in (False_ind ((eq A (ASort h2 n2) (ASort O n0))
-\to ((eq A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2) k)) \to P)) H4))
-H3 H1))) | (leq_head a0 a3 H1 a4 a5 H2) \Rightarrow (\lambda (H3: (eq A
-(AHead a0 a4) (AHead (ASort O n0) a2))).(\lambda (H4: (eq A (AHead a3 a5)
-(ASort O n0))).((let H5 \def (f_equal A A (\lambda (e: A).(match e in A
-return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a4 | (AHead _ a)
-\Rightarrow a])) (AHead a0 a4) (AHead (ASort O n0) a2) H3) in ((let H6 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a0 | (AHead a _) \Rightarrow a])) (AHead a0 a4)
-(AHead (ASort O n0) a2) H3) in (eq_ind A (ASort O n0) (\lambda (a: A).((eq A
-a4 a2) \to ((eq A (AHead a3 a5) (ASort O n0)) \to ((leq g a a3) \to ((leq g
-a4 a5) \to P))))) (\lambda (H7: (eq A a4 a2)).(eq_ind A a2 (\lambda (a:
-A).((eq A (AHead a3 a5) (ASort O n0)) \to ((leq g (ASort O n0) a3) \to ((leq
-g a a5) \to P)))) (\lambda (H8: (eq A (AHead a3 a5) (ASort O n0))).(let H9
-\def (eq_ind A (AHead a3 a5) (\lambda (e: A).(match e in A return (\lambda
-(_: A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow
-True])) I (ASort O n0) H8) in (False_ind ((leq g (ASort O n0) a3) \to ((leq g
-a2 a5) \to P)) H9))) a4 (sym_eq A a4 a2 H7))) a0 (sym_eq A a0 (ASort O n0)
-H6))) H5)) H4 H1 H2)))]) in (H1 (refl_equal A (AHead (ASort O n0) a2))
-(refl_equal A (ASort O n0))))) (\lambda (n1: nat).(\lambda (_: (((leq g
-(AHead (ASort n1 n0) a2) (ASort n1 n0)) \to P))).(\lambda (H0: (leq g (AHead
-(ASort (S n1) n0) a2) (ASort (S n1) n0))).(let H1 \def (match H0 in leq
-return (\lambda (a: A).(\lambda (a0: A).(\lambda (_: (leq ? a a0)).((eq A a
-(AHead (ASort (S n1) n0) a2)) \to ((eq A a0 (ASort (S n1) n0)) \to P)))))
-with [(leq_sort h1 h2 n2 n3 k H1) \Rightarrow (\lambda (H2: (eq A (ASort h1
-n2) (AHead (ASort (S n1) n0) a2))).(\lambda (H3: (eq A (ASort h2 n3) (ASort
-(S n1) n0))).((let H4 \def (eq_ind A (ASort h1 n2) (\lambda (e: A).(match e
-in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead
-_ _) \Rightarrow False])) I (AHead (ASort (S n1) n0) a2) H2) in (False_ind
-((eq A (ASort h2 n3) (ASort (S n1) n0)) \to ((eq A (aplus g (ASort h1 n2) k)
-(aplus g (ASort h2 n3) k)) \to P)) H4)) H3 H1))) | (leq_head a0 a3 H1 a4 a5
-H2) \Rightarrow (\lambda (H3: (eq A (AHead a0 a4) (AHead (ASort (S n1) n0)
-a2))).(\lambda (H4: (eq A (AHead a3 a5) (ASort (S n1) n0))).((let H5 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a4 | (AHead _ a) \Rightarrow a])) (AHead a0 a4)
-(AHead (ASort (S n1) n0) a2) H3) in ((let H6 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a0 |
-(AHead a _) \Rightarrow a])) (AHead a0 a4) (AHead (ASort (S n1) n0) a2) H3)
-in (eq_ind A (ASort (S n1) n0) (\lambda (a: A).((eq A a4 a2) \to ((eq A
-(AHead a3 a5) (ASort (S n1) n0)) \to ((leq g a a3) \to ((leq g a4 a5) \to
-P))))) (\lambda (H7: (eq A a4 a2)).(eq_ind A a2 (\lambda (a: A).((eq A (AHead
-a3 a5) (ASort (S n1) n0)) \to ((leq g (ASort (S n1) n0) a3) \to ((leq g a a5)
-\to P)))) (\lambda (H8: (eq A (AHead a3 a5) (ASort (S n1) n0))).(let H9 \def
-(eq_ind A (AHead a3 a5) (\lambda (e: A).(match e in A return (\lambda (_:
-A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow
-True])) I (ASort (S n1) n0) H8) in (False_ind ((leq g (ASort (S n1) n0) a3)
-\to ((leq g a2 a5) \to P)) H9))) a4 (sym_eq A a4 a2 H7))) a0 (sym_eq A a0
-(ASort (S n1) n0) H6))) H5)) H4 H1 H2)))]) in (H1 (refl_equal A (AHead (ASort
-(S n1) n0) a2)) (refl_equal A (ASort (S n1) n0))))))) n H)))))) (\lambda (a:
-A).(\lambda (H: ((\forall (a2: A).((leq g (AHead a a2) a) \to (\forall (P:
+(ASort O n0) a2) (ASort O n0))).(let H_x \def (leq_gen_head1 g (ASort O n0)
+a2 (ASort O n0) H0) in (let H1 \def H_x in (ex3_2_ind A A (\lambda (a3:
+A).(\lambda (_: A).(leq g (ASort O n0) a3))) (\lambda (_: A).(\lambda (a4:
+A).(leq g a2 a4))) (\lambda (a3: A).(\lambda (a4: A).(eq A (ASort O n0)
+(AHead a3 a4)))) P (\lambda (x0: A).(\lambda (x1: A).(\lambda (_: (leq g
+(ASort O n0) x0)).(\lambda (_: (leq g a2 x1)).(\lambda (H4: (eq A (ASort O
+n0) (AHead x0 x1))).(let H5 \def (eq_ind A (ASort O n0) (\lambda (ee:
+A).(match ee in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow
+True | (AHead _ _) \Rightarrow False])) I (AHead x0 x1) H4) in (False_ind P
+H5))))))) H1)))) (\lambda (n1: nat).(\lambda (_: (((leq g (AHead (ASort n1
+n0) a2) (ASort n1 n0)) \to P))).(\lambda (H0: (leq g (AHead (ASort (S n1) n0)
+a2) (ASort (S n1) n0))).(let H_x \def (leq_gen_head1 g (ASort (S n1) n0) a2
+(ASort (S n1) n0) H0) in (let H1 \def H_x in (ex3_2_ind A A (\lambda (a3:
+A).(\lambda (_: A).(leq g (ASort (S n1) n0) a3))) (\lambda (_: A).(\lambda
+(a4: A).(leq g a2 a4))) (\lambda (a3: A).(\lambda (a4: A).(eq A (ASort (S n1)
+n0) (AHead a3 a4)))) P (\lambda (x0: A).(\lambda (x1: A).(\lambda (_: (leq g
+(ASort (S n1) n0) x0)).(\lambda (_: (leq g a2 x1)).(\lambda (H4: (eq A (ASort
+(S n1) n0) (AHead x0 x1))).(let H5 \def (eq_ind A (ASort (S n1) n0) (\lambda
+(ee: A).(match ee in A return (\lambda (_: A).Prop) with [(ASort _ _)
+\Rightarrow True | (AHead _ _) \Rightarrow False])) I (AHead x0 x1) H4) in
+(False_ind P H5))))))) H1)))))) n H)))))) (\lambda (a: A).(\lambda (H:
+((\forall (a2: A).((leq g (AHead a a2) a) \to (\forall (P:
Prop).P))))).(\lambda (a0: A).(\lambda (_: ((\forall (a2: A).((leq g (AHead
a0 a2) a0) \to (\forall (P: Prop).P))))).(\lambda (a2: A).(\lambda (H1: (leq
-g (AHead (AHead a a0) a2) (AHead a a0))).(\lambda (P: Prop).(let H2 \def
-(match H1 in leq return (\lambda (a3: A).(\lambda (a4: A).(\lambda (_: (leq ?
-a3 a4)).((eq A a3 (AHead (AHead a a0) a2)) \to ((eq A a4 (AHead a a0)) \to
-P))))) with [(leq_sort h1 h2 n1 n2 k H2) \Rightarrow (\lambda (H3: (eq A
-(ASort h1 n1) (AHead (AHead a a0) a2))).(\lambda (H4: (eq A (ASort h2 n2)
-(AHead a a0))).((let H5 \def (eq_ind A (ASort h1 n1) (\lambda (e: A).(match e
-in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead
-_ _) \Rightarrow False])) I (AHead (AHead a a0) a2) H3) in (False_ind ((eq A
-(ASort h2 n2) (AHead a a0)) \to ((eq A (aplus g (ASort h1 n1) k) (aplus g
-(ASort h2 n2) k)) \to P)) H5)) H4 H2))) | (leq_head a3 a4 H2 a5 a6 H3)
-\Rightarrow (\lambda (H4: (eq A (AHead a3 a5) (AHead (AHead a a0)
-a2))).(\lambda (H5: (eq A (AHead a4 a6) (AHead a a0))).((let H6 \def (f_equal
-A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
-\Rightarrow a5 | (AHead _ a7) \Rightarrow a7])) (AHead a3 a5) (AHead (AHead a
-a0) a2) H4) in ((let H7 \def (f_equal A A (\lambda (e: A).(match e in A
-return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a3 | (AHead a7 _)
-\Rightarrow a7])) (AHead a3 a5) (AHead (AHead a a0) a2) H4) in (eq_ind A
-(AHead a a0) (\lambda (a7: A).((eq A a5 a2) \to ((eq A (AHead a4 a6) (AHead a
-a0)) \to ((leq g a7 a4) \to ((leq g a5 a6) \to P))))) (\lambda (H8: (eq A a5
-a2)).(eq_ind A a2 (\lambda (a7: A).((eq A (AHead a4 a6) (AHead a a0)) \to
-((leq g (AHead a a0) a4) \to ((leq g a7 a6) \to P)))) (\lambda (H9: (eq A
-(AHead a4 a6) (AHead a a0))).(let H10 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a6 |
-(AHead _ a7) \Rightarrow a7])) (AHead a4 a6) (AHead a a0) H9) in ((let H11
-\def (f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A)
-with [(ASort _ _) \Rightarrow a4 | (AHead a7 _) \Rightarrow a7])) (AHead a4
-a6) (AHead a a0) H9) in (eq_ind A a (\lambda (a7: A).((eq A a6 a0) \to ((leq
-g (AHead a a0) a7) \to ((leq g a2 a6) \to P)))) (\lambda (H12: (eq A a6
-a0)).(eq_ind A a0 (\lambda (a7: A).((leq g (AHead a a0) a) \to ((leq g a2 a7)
-\to P))) (\lambda (H13: (leq g (AHead a a0) a)).(\lambda (_: (leq g a2
-a0)).(H a0 H13 P))) a6 (sym_eq A a6 a0 H12))) a4 (sym_eq A a4 a H11))) H10)))
-a5 (sym_eq A a5 a2 H8))) a3 (sym_eq A a3 (AHead a a0) H7))) H6)) H5 H2
-H3)))]) in (H2 (refl_equal A (AHead (AHead a a0) a2)) (refl_equal A (AHead a
-a0))))))))))) a1)).
+g (AHead (AHead a a0) a2) (AHead a a0))).(\lambda (P: Prop).(let H_x \def
+(leq_gen_head1 g (AHead a a0) a2 (AHead a a0) H1) in (let H2 \def H_x in
+(ex3_2_ind A A (\lambda (a3: A).(\lambda (_: A).(leq g (AHead a a0) a3)))
+(\lambda (_: A).(\lambda (a4: A).(leq g a2 a4))) (\lambda (a3: A).(\lambda
+(a4: A).(eq A (AHead a a0) (AHead a3 a4)))) P (\lambda (x0: A).(\lambda (x1:
+A).(\lambda (H3: (leq g (AHead a a0) x0)).(\lambda (H4: (leq g a2
+x1)).(\lambda (H5: (eq A (AHead a a0) (AHead x0 x1))).(let H6 \def (f_equal A
+A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
+\Rightarrow a | (AHead a3 _) \Rightarrow a3])) (AHead a a0) (AHead x0 x1) H5)
+in ((let H7 \def (f_equal A A (\lambda (e: A).(match e in A return (\lambda
+(_: A).A) with [(ASort _ _) \Rightarrow a0 | (AHead _ a3) \Rightarrow a3]))
+(AHead a a0) (AHead x0 x1) H5) in (\lambda (H8: (eq A a x0)).(let H9 \def
+(eq_ind_r A x1 (\lambda (a3: A).(leq g a2 a3)) H4 a0 H7) in (let H10 \def
+(eq_ind_r A x0 (\lambda (a3: A).(leq g (AHead a a0) a3)) H3 a H8) in (H a0
+H10 P))))) H6))))))) H2)))))))))) a1)).
theorem leq_ahead_false_2:
\forall (g: G).(\forall (a2: A).(\forall (a1: A).((leq g (AHead a1 a2) a2)
nat).(\lambda (n0: nat).(\lambda (a1: A).(\lambda (H: (leq g (AHead a1 (ASort
n n0)) (ASort n n0))).(\lambda (P: Prop).(nat_ind (\lambda (n1: nat).((leq g
(AHead a1 (ASort n1 n0)) (ASort n1 n0)) \to P)) (\lambda (H0: (leq g (AHead
-a1 (ASort O n0)) (ASort O n0))).(let H1 \def (match H0 in leq return (\lambda
-(a: A).(\lambda (a0: A).(\lambda (_: (leq ? a a0)).((eq A a (AHead a1 (ASort
-O n0))) \to ((eq A a0 (ASort O n0)) \to P))))) with [(leq_sort h1 h2 n1 n2 k
-H1) \Rightarrow (\lambda (H2: (eq A (ASort h1 n1) (AHead a1 (ASort O
-n0)))).(\lambda (H3: (eq A (ASort h2 n2) (ASort O n0))).((let H4 \def (eq_ind
-A (ASort h1 n1) (\lambda (e: A).(match e in A return (\lambda (_: A).Prop)
-with [(ASort _ _) \Rightarrow True | (AHead _ _) \Rightarrow False])) I
-(AHead a1 (ASort O n0)) H2) in (False_ind ((eq A (ASort h2 n2) (ASort O n0))
-\to ((eq A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2) k)) \to P)) H4))
-H3 H1))) | (leq_head a0 a3 H1 a4 a5 H2) \Rightarrow (\lambda (H3: (eq A
-(AHead a0 a4) (AHead a1 (ASort O n0)))).(\lambda (H4: (eq A (AHead a3 a5)
-(ASort O n0))).((let H5 \def (f_equal A A (\lambda (e: A).(match e in A
-return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a4 | (AHead _ a)
-\Rightarrow a])) (AHead a0 a4) (AHead a1 (ASort O n0)) H3) in ((let H6 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a0 | (AHead a _) \Rightarrow a])) (AHead a0 a4)
-(AHead a1 (ASort O n0)) H3) in (eq_ind A a1 (\lambda (a: A).((eq A a4 (ASort
-O n0)) \to ((eq A (AHead a3 a5) (ASort O n0)) \to ((leq g a a3) \to ((leq g
-a4 a5) \to P))))) (\lambda (H7: (eq A a4 (ASort O n0))).(eq_ind A (ASort O
-n0) (\lambda (a: A).((eq A (AHead a3 a5) (ASort O n0)) \to ((leq g a1 a3) \to
-((leq g a a5) \to P)))) (\lambda (H8: (eq A (AHead a3 a5) (ASort O n0))).(let
-H9 \def (eq_ind A (AHead a3 a5) (\lambda (e: A).(match e in A return (\lambda
-(_: A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _ _) \Rightarrow
-True])) I (ASort O n0) H8) in (False_ind ((leq g a1 a3) \to ((leq g (ASort O
-n0) a5) \to P)) H9))) a4 (sym_eq A a4 (ASort O n0) H7))) a0 (sym_eq A a0 a1
-H6))) H5)) H4 H1 H2)))]) in (H1 (refl_equal A (AHead a1 (ASort O n0)))
-(refl_equal A (ASort O n0))))) (\lambda (n1: nat).(\lambda (_: (((leq g
-(AHead a1 (ASort n1 n0)) (ASort n1 n0)) \to P))).(\lambda (H0: (leq g (AHead
-a1 (ASort (S n1) n0)) (ASort (S n1) n0))).(let H1 \def (match H0 in leq
-return (\lambda (a: A).(\lambda (a0: A).(\lambda (_: (leq ? a a0)).((eq A a
-(AHead a1 (ASort (S n1) n0))) \to ((eq A a0 (ASort (S n1) n0)) \to P)))))
-with [(leq_sort h1 h2 n2 n3 k H1) \Rightarrow (\lambda (H2: (eq A (ASort h1
-n2) (AHead a1 (ASort (S n1) n0)))).(\lambda (H3: (eq A (ASort h2 n3) (ASort
-(S n1) n0))).((let H4 \def (eq_ind A (ASort h1 n2) (\lambda (e: A).(match e
-in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead
-_ _) \Rightarrow False])) I (AHead a1 (ASort (S n1) n0)) H2) in (False_ind
-((eq A (ASort h2 n3) (ASort (S n1) n0)) \to ((eq A (aplus g (ASort h1 n2) k)
-(aplus g (ASort h2 n3) k)) \to P)) H4)) H3 H1))) | (leq_head a0 a3 H1 a4 a5
-H2) \Rightarrow (\lambda (H3: (eq A (AHead a0 a4) (AHead a1 (ASort (S n1)
-n0)))).(\lambda (H4: (eq A (AHead a3 a5) (ASort (S n1) n0))).((let H5 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a4 | (AHead _ a) \Rightarrow a])) (AHead a0 a4)
-(AHead a1 (ASort (S n1) n0)) H3) in ((let H6 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a0 |
-(AHead a _) \Rightarrow a])) (AHead a0 a4) (AHead a1 (ASort (S n1) n0)) H3)
-in (eq_ind A a1 (\lambda (a: A).((eq A a4 (ASort (S n1) n0)) \to ((eq A
-(AHead a3 a5) (ASort (S n1) n0)) \to ((leq g a a3) \to ((leq g a4 a5) \to
-P))))) (\lambda (H7: (eq A a4 (ASort (S n1) n0))).(eq_ind A (ASort (S n1) n0)
-(\lambda (a: A).((eq A (AHead a3 a5) (ASort (S n1) n0)) \to ((leq g a1 a3)
-\to ((leq g a a5) \to P)))) (\lambda (H8: (eq A (AHead a3 a5) (ASort (S n1)
-n0))).(let H9 \def (eq_ind A (AHead a3 a5) (\lambda (e: A).(match e in A
-return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow False | (AHead _
-_) \Rightarrow True])) I (ASort (S n1) n0) H8) in (False_ind ((leq g a1 a3)
-\to ((leq g (ASort (S n1) n0) a5) \to P)) H9))) a4 (sym_eq A a4 (ASort (S n1)
-n0) H7))) a0 (sym_eq A a0 a1 H6))) H5)) H4 H1 H2)))]) in (H1 (refl_equal A
-(AHead a1 (ASort (S n1) n0))) (refl_equal A (ASort (S n1) n0))))))) n H))))))
-(\lambda (a: A).(\lambda (_: ((\forall (a1: A).((leq g (AHead a1 a) a) \to
-(\forall (P: Prop).P))))).(\lambda (a0: A).(\lambda (H0: ((\forall (a1:
-A).((leq g (AHead a1 a0) a0) \to (\forall (P: Prop).P))))).(\lambda (a1:
-A).(\lambda (H1: (leq g (AHead a1 (AHead a a0)) (AHead a a0))).(\lambda (P:
-Prop).(let H2 \def (match H1 in leq return (\lambda (a3: A).(\lambda (a4:
-A).(\lambda (_: (leq ? a3 a4)).((eq A a3 (AHead a1 (AHead a a0))) \to ((eq A
-a4 (AHead a a0)) \to P))))) with [(leq_sort h1 h2 n1 n2 k H2) \Rightarrow
-(\lambda (H3: (eq A (ASort h1 n1) (AHead a1 (AHead a a0)))).(\lambda (H4: (eq
-A (ASort h2 n2) (AHead a a0))).((let H5 \def (eq_ind A (ASort h1 n1) (\lambda
-(e: A).(match e in A return (\lambda (_: A).Prop) with [(ASort _ _)
-\Rightarrow True | (AHead _ _) \Rightarrow False])) I (AHead a1 (AHead a a0))
-H3) in (False_ind ((eq A (ASort h2 n2) (AHead a a0)) \to ((eq A (aplus g
-(ASort h1 n1) k) (aplus g (ASort h2 n2) k)) \to P)) H5)) H4 H2))) | (leq_head
-a3 a4 H2 a5 a6 H3) \Rightarrow (\lambda (H4: (eq A (AHead a3 a5) (AHead a1
-(AHead a a0)))).(\lambda (H5: (eq A (AHead a4 a6) (AHead a a0))).((let H6
-\def (f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A)
-with [(ASort _ _) \Rightarrow a5 | (AHead _ a7) \Rightarrow a7])) (AHead a3
-a5) (AHead a1 (AHead a a0)) H4) in ((let H7 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a3 |
-(AHead a7 _) \Rightarrow a7])) (AHead a3 a5) (AHead a1 (AHead a a0)) H4) in
-(eq_ind A a1 (\lambda (a7: A).((eq A a5 (AHead a a0)) \to ((eq A (AHead a4
-a6) (AHead a a0)) \to ((leq g a7 a4) \to ((leq g a5 a6) \to P))))) (\lambda
-(H8: (eq A a5 (AHead a a0))).(eq_ind A (AHead a a0) (\lambda (a7: A).((eq A
-(AHead a4 a6) (AHead a a0)) \to ((leq g a1 a4) \to ((leq g a7 a6) \to P))))
-(\lambda (H9: (eq A (AHead a4 a6) (AHead a a0))).(let H10 \def (f_equal A A
-(\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
-\Rightarrow a6 | (AHead _ a7) \Rightarrow a7])) (AHead a4 a6) (AHead a a0)
-H9) in ((let H11 \def (f_equal A A (\lambda (e: A).(match e in A return
-(\lambda (_: A).A) with [(ASort _ _) \Rightarrow a4 | (AHead a7 _)
-\Rightarrow a7])) (AHead a4 a6) (AHead a a0) H9) in (eq_ind A a (\lambda (a7:
-A).((eq A a6 a0) \to ((leq g a1 a7) \to ((leq g (AHead a a0) a6) \to P))))
-(\lambda (H12: (eq A a6 a0)).(eq_ind A a0 (\lambda (a7: A).((leq g a1 a) \to
-((leq g (AHead a a0) a7) \to P))) (\lambda (_: (leq g a1 a)).(\lambda (H14:
-(leq g (AHead a a0) a0)).(H0 a H14 P))) a6 (sym_eq A a6 a0 H12))) a4 (sym_eq
-A a4 a H11))) H10))) a5 (sym_eq A a5 (AHead a a0) H8))) a3 (sym_eq A a3 a1
-H7))) H6)) H5 H2 H3)))]) in (H2 (refl_equal A (AHead a1 (AHead a a0)))
-(refl_equal A (AHead a a0))))))))))) a2)).
+a1 (ASort O n0)) (ASort O n0))).(let H_x \def (leq_gen_head1 g a1 (ASort O
+n0) (ASort O n0) H0) in (let H1 \def H_x in (ex3_2_ind A A (\lambda (a3:
+A).(\lambda (_: A).(leq g a1 a3))) (\lambda (_: A).(\lambda (a4: A).(leq g
+(ASort O n0) a4))) (\lambda (a3: A).(\lambda (a4: A).(eq A (ASort O n0)
+(AHead a3 a4)))) P (\lambda (x0: A).(\lambda (x1: A).(\lambda (_: (leq g a1
+x0)).(\lambda (_: (leq g (ASort O n0) x1)).(\lambda (H4: (eq A (ASort O n0)
+(AHead x0 x1))).(let H5 \def (eq_ind A (ASort O n0) (\lambda (ee: A).(match
+ee in A return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True |
+(AHead _ _) \Rightarrow False])) I (AHead x0 x1) H4) in (False_ind P
+H5))))))) H1)))) (\lambda (n1: nat).(\lambda (_: (((leq g (AHead a1 (ASort n1
+n0)) (ASort n1 n0)) \to P))).(\lambda (H0: (leq g (AHead a1 (ASort (S n1)
+n0)) (ASort (S n1) n0))).(let H_x \def (leq_gen_head1 g a1 (ASort (S n1) n0)
+(ASort (S n1) n0) H0) in (let H1 \def H_x in (ex3_2_ind A A (\lambda (a3:
+A).(\lambda (_: A).(leq g a1 a3))) (\lambda (_: A).(\lambda (a4: A).(leq g
+(ASort (S n1) n0) a4))) (\lambda (a3: A).(\lambda (a4: A).(eq A (ASort (S n1)
+n0) (AHead a3 a4)))) P (\lambda (x0: A).(\lambda (x1: A).(\lambda (_: (leq g
+a1 x0)).(\lambda (_: (leq g (ASort (S n1) n0) x1)).(\lambda (H4: (eq A (ASort
+(S n1) n0) (AHead x0 x1))).(let H5 \def (eq_ind A (ASort (S n1) n0) (\lambda
+(ee: A).(match ee in A return (\lambda (_: A).Prop) with [(ASort _ _)
+\Rightarrow True | (AHead _ _) \Rightarrow False])) I (AHead x0 x1) H4) in
+(False_ind P H5))))))) H1)))))) n H)))))) (\lambda (a: A).(\lambda (_:
+((\forall (a1: A).((leq g (AHead a1 a) a) \to (\forall (P:
+Prop).P))))).(\lambda (a0: A).(\lambda (H0: ((\forall (a1: A).((leq g (AHead
+a1 a0) a0) \to (\forall (P: Prop).P))))).(\lambda (a1: A).(\lambda (H1: (leq
+g (AHead a1 (AHead a a0)) (AHead a a0))).(\lambda (P: Prop).(let H_x \def
+(leq_gen_head1 g a1 (AHead a a0) (AHead a a0) H1) in (let H2 \def H_x in
+(ex3_2_ind A A (\lambda (a3: A).(\lambda (_: A).(leq g a1 a3))) (\lambda (_:
+A).(\lambda (a4: A).(leq g (AHead a a0) a4))) (\lambda (a3: A).(\lambda (a4:
+A).(eq A (AHead a a0) (AHead a3 a4)))) P (\lambda (x0: A).(\lambda (x1:
+A).(\lambda (H3: (leq g a1 x0)).(\lambda (H4: (leq g (AHead a a0)
+x1)).(\lambda (H5: (eq A (AHead a a0) (AHead x0 x1))).(let H6 \def (f_equal A
+A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
+\Rightarrow a | (AHead a3 _) \Rightarrow a3])) (AHead a a0) (AHead x0 x1) H5)
+in ((let H7 \def (f_equal A A (\lambda (e: A).(match e in A return (\lambda
+(_: A).A) with [(ASort _ _) \Rightarrow a0 | (AHead _ a3) \Rightarrow a3]))
+(AHead a a0) (AHead x0 x1) H5) in (\lambda (H8: (eq A a x0)).(let H9 \def
+(eq_ind_r A x1 (\lambda (a3: A).(leq g (AHead a a0) a3)) H4 a0 H7) in (let
+H10 \def (eq_ind_r A x0 (\lambda (a3: A).(leq g a1 a3)) H3 a H8) in (H0 a H9
+P))))) H6))))))) H2)))))))))) a2)).
(THead (Flat Appl) u t1) (TSort n)))) (ex3_2 TList nat (\lambda (ws:
TList).(\lambda (i: nat).(eq T (THead (Flat Appl) u t1) (THeads (Flat Appl)
ws (TLRef i))))) (\lambda (ws: TList).(\lambda (_: nat).(nfs2 c0 ws)))
-(\lambda (_: TList).(\lambda (i: nat).(nf2 c0 (TLRef i))))))) (let H13 \def
-(match (arity_gen_sort g c0 x (AHead a1 a2) H12) in leq return (\lambda (a0:
-A).(\lambda (a3: A).(\lambda (_: (leq ? a0 a3)).((eq A a0 (AHead a1 a2)) \to
-((eq A a3 (ASort O x)) \to (or3 (ex3_2 T T (\lambda (w: T).(\lambda (u0:
-T).(eq T (THead (Flat Appl) u (TSort x)) (THead (Bind Abst) w u0)))) (\lambda
-(w: T).(\lambda (_: T).(nf2 c0 w))) (\lambda (w: T).(\lambda (u0: T).(nf2
-(CHead c0 (Bind Abst) w) u0)))) (ex nat (\lambda (n: nat).(eq T (THead (Flat
-Appl) u (TSort x)) (TSort n)))) (ex3_2 TList nat (\lambda (ws:
-TList).(\lambda (i: nat).(eq T (THead (Flat Appl) u (TSort x)) (THeads (Flat
-Appl) ws (TLRef i))))) (\lambda (ws: TList).(\lambda (_: nat).(nfs2 c0 ws)))
-(\lambda (_: TList).(\lambda (i: nat).(nf2 c0 (TLRef i))))))))))) with
-[(leq_sort h1 h2 n1 n2 k H13) \Rightarrow (\lambda (H14: (eq A (ASort h1 n1)
-(AHead a1 a2))).(\lambda (H15: (eq A (ASort h2 n2) (ASort O x))).((let H16
-\def (eq_ind A (ASort h1 n1) (\lambda (e: A).(match e in A return (\lambda
-(_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _) \Rightarrow
-False])) I (AHead a1 a2) H14) in (False_ind ((eq A (ASort h2 n2) (ASort O x))
-\to ((eq A (aplus g (ASort h1 n1) k) (aplus g (ASort h2 n2) k)) \to (or3
-(ex3_2 T T (\lambda (w: T).(\lambda (u0: T).(eq T (THead (Flat Appl) u (TSort
-x)) (THead (Bind Abst) w u0)))) (\lambda (w: T).(\lambda (_: T).(nf2 c0 w)))
-(\lambda (w: T).(\lambda (u0: T).(nf2 (CHead c0 (Bind Abst) w) u0)))) (ex nat
-(\lambda (n: nat).(eq T (THead (Flat Appl) u (TSort x)) (TSort n)))) (ex3_2
-TList nat (\lambda (ws: TList).(\lambda (i: nat).(eq T (THead (Flat Appl) u
-(TSort x)) (THeads (Flat Appl) ws (TLRef i))))) (\lambda (ws: TList).(\lambda
-(_: nat).(nfs2 c0 ws))) (\lambda (_: TList).(\lambda (i: nat).(nf2 c0 (TLRef
-i)))))))) H16)) H15 H13))) | (leq_head a0 a3 H13 a4 a5 H14) \Rightarrow
-(\lambda (H15: (eq A (AHead a0 a4) (AHead a1 a2))).(\lambda (H16: (eq A
-(AHead a3 a5) (ASort O x))).((let H17 \def (f_equal A A (\lambda (e:
-A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a4 |
-(AHead _ a6) \Rightarrow a6])) (AHead a0 a4) (AHead a1 a2) H15) in ((let H18
-\def (f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A)
-with [(ASort _ _) \Rightarrow a0 | (AHead a6 _) \Rightarrow a6])) (AHead a0
-a4) (AHead a1 a2) H15) in (eq_ind A a1 (\lambda (a6: A).((eq A a4 a2) \to
-((eq A (AHead a3 a5) (ASort O x)) \to ((leq g a6 a3) \to ((leq g a4 a5) \to
-(or3 (ex3_2 T T (\lambda (w: T).(\lambda (u0: T).(eq T (THead (Flat Appl) u
-(TSort x)) (THead (Bind Abst) w u0)))) (\lambda (w: T).(\lambda (_: T).(nf2
-c0 w))) (\lambda (w: T).(\lambda (u0: T).(nf2 (CHead c0 (Bind Abst) w) u0))))
-(ex nat (\lambda (n: nat).(eq T (THead (Flat Appl) u (TSort x)) (TSort n))))
-(ex3_2 TList nat (\lambda (ws: TList).(\lambda (i: nat).(eq T (THead (Flat
-Appl) u (TSort x)) (THeads (Flat Appl) ws (TLRef i))))) (\lambda (ws:
-TList).(\lambda (_: nat).(nfs2 c0 ws))) (\lambda (_: TList).(\lambda (i:
-nat).(nf2 c0 (TLRef i))))))))))) (\lambda (H19: (eq A a4 a2)).(eq_ind A a2
-(\lambda (a6: A).((eq A (AHead a3 a5) (ASort O x)) \to ((leq g a1 a3) \to
-((leq g a6 a5) \to (or3 (ex3_2 T T (\lambda (w: T).(\lambda (u0: T).(eq T
-(THead (Flat Appl) u (TSort x)) (THead (Bind Abst) w u0)))) (\lambda (w:
-T).(\lambda (_: T).(nf2 c0 w))) (\lambda (w: T).(\lambda (u0: T).(nf2 (CHead
-c0 (Bind Abst) w) u0)))) (ex nat (\lambda (n: nat).(eq T (THead (Flat Appl) u
-(TSort x)) (TSort n)))) (ex3_2 TList nat (\lambda (ws: TList).(\lambda (i:
-nat).(eq T (THead (Flat Appl) u (TSort x)) (THeads (Flat Appl) ws (TLRef
-i))))) (\lambda (ws: TList).(\lambda (_: nat).(nfs2 c0 ws))) (\lambda (_:
-TList).(\lambda (i: nat).(nf2 c0 (TLRef i)))))))))) (\lambda (H20: (eq A
-(AHead a3 a5) (ASort O x))).(let H21 \def (eq_ind A (AHead a3 a5) (\lambda
-(e: A).(match e in A return (\lambda (_: A).Prop) with [(ASort _ _)
-\Rightarrow False | (AHead _ _) \Rightarrow True])) I (ASort O x) H20) in
-(False_ind ((leq g a1 a3) \to ((leq g a2 a5) \to (or3 (ex3_2 T T (\lambda (w:
-T).(\lambda (u0: T).(eq T (THead (Flat Appl) u (TSort x)) (THead (Bind Abst)
-w u0)))) (\lambda (w: T).(\lambda (_: T).(nf2 c0 w))) (\lambda (w:
-T).(\lambda (u0: T).(nf2 (CHead c0 (Bind Abst) w) u0)))) (ex nat (\lambda (n:
-nat).(eq T (THead (Flat Appl) u (TSort x)) (TSort n)))) (ex3_2 TList nat
+(\lambda (_: TList).(\lambda (i: nat).(nf2 c0 (TLRef i))))))) (let H_x0 \def
+(leq_gen_head1 g a1 a2 (ASort O x) (arity_gen_sort g c0 x (AHead a1 a2) H12))
+in (let H13 \def H_x0 in (ex3_2_ind A A (\lambda (a3: A).(\lambda (_: A).(leq
+g a1 a3))) (\lambda (_: A).(\lambda (a4: A).(leq g a2 a4))) (\lambda (a3:
+A).(\lambda (a4: A).(eq A (ASort O x) (AHead a3 a4)))) (or3 (ex3_2 T T
+(\lambda (w: T).(\lambda (u0: T).(eq T (THead (Flat Appl) u (TSort x)) (THead
+(Bind Abst) w u0)))) (\lambda (w: T).(\lambda (_: T).(nf2 c0 w))) (\lambda
+(w: T).(\lambda (u0: T).(nf2 (CHead c0 (Bind Abst) w) u0)))) (ex nat (\lambda
+(n: nat).(eq T (THead (Flat Appl) u (TSort x)) (TSort n)))) (ex3_2 TList nat
(\lambda (ws: TList).(\lambda (i: nat).(eq T (THead (Flat Appl) u (TSort x))
(THeads (Flat Appl) ws (TLRef i))))) (\lambda (ws: TList).(\lambda (_:
nat).(nfs2 c0 ws))) (\lambda (_: TList).(\lambda (i: nat).(nf2 c0 (TLRef
-i)))))))) H21))) a4 (sym_eq A a4 a2 H19))) a0 (sym_eq A a0 a1 H18))) H17))
-H16 H13 H14)))]) in (H13 (refl_equal A (AHead a1 a2)) (refl_equal A (ASort O
-x)))) t0 H10))))) H9)) (\lambda (H9: (ex3_2 TList nat (\lambda (ws:
-TList).(\lambda (i: nat).(eq T t0 (THeads (Flat Appl) ws (TLRef i)))))
-(\lambda (ws: TList).(\lambda (_: nat).(nfs2 c0 ws))) (\lambda (_:
+i)))))) (\lambda (x0: A).(\lambda (x1: A).(\lambda (_: (leq g a1
+x0)).(\lambda (_: (leq g a2 x1)).(\lambda (H16: (eq A (ASort O x) (AHead x0
+x1))).(let H17 \def (eq_ind A (ASort O x) (\lambda (ee: A).(match ee in A
+return (\lambda (_: A).Prop) with [(ASort _ _) \Rightarrow True | (AHead _ _)
+\Rightarrow False])) I (AHead x0 x1) H16) in (False_ind (or3 (ex3_2 T T
+(\lambda (w: T).(\lambda (u0: T).(eq T (THead (Flat Appl) u (TSort x)) (THead
+(Bind Abst) w u0)))) (\lambda (w: T).(\lambda (_: T).(nf2 c0 w))) (\lambda
+(w: T).(\lambda (u0: T).(nf2 (CHead c0 (Bind Abst) w) u0)))) (ex nat (\lambda
+(n: nat).(eq T (THead (Flat Appl) u (TSort x)) (TSort n)))) (ex3_2 TList nat
+(\lambda (ws: TList).(\lambda (i: nat).(eq T (THead (Flat Appl) u (TSort x))
+(THeads (Flat Appl) ws (TLRef i))))) (\lambda (ws: TList).(\lambda (_:
+nat).(nfs2 c0 ws))) (\lambda (_: TList).(\lambda (i: nat).(nf2 c0 (TLRef
+i)))))) H17))))))) H13))) t0 H10))))) H9)) (\lambda (H9: (ex3_2 TList nat
+(\lambda (ws: TList).(\lambda (i: nat).(eq T t0 (THeads (Flat Appl) ws (TLRef
+i))))) (\lambda (ws: TList).(\lambda (_: nat).(nfs2 c0 ws))) (\lambda (_:
TList).(\lambda (i: nat).(nf2 c0 (TLRef i)))))).(ex3_2_ind TList nat (\lambda
(ws: TList).(\lambda (i: nat).(eq T t0 (THeads (Flat Appl) ws (TLRef i)))))
(\lambda (ws: TList).(\lambda (_: nat).(nfs2 c0 ws))) (\lambda (_:
t))).(\lambda (a3: A).(\lambda (H1: (leq g (ASort n n0) a3)).(let H2 \def H0
in (and_ind (arity g c t (ASort n n0)) (sn3 c t) (sc3 g a3 c t) (\lambda (H3:
(arity g c t (ASort n n0))).(\lambda (H4: (sn3 c t)).(let H_y \def
-(arity_repl g c t (ASort n n0) H3 a3 H1) in (let H_x \def (leq_gen_sort g n
+(arity_repl g c t (ASort n n0) H3 a3 H1) in (let H_x \def (leq_gen_sort1 g n
n0 a3 H1) in (let H5 \def H_x in (ex2_3_ind nat nat nat (\lambda (n2:
-nat).(\lambda (h2: nat).(\lambda (_: nat).(eq A a3 (ASort h2 n2))))) (\lambda
-(n2: nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort n n0) k)
-(aplus g (ASort h2 n2) k))))) (sc3 g a3 c t) (\lambda (x0: nat).(\lambda (x1:
-nat).(\lambda (x2: nat).(\lambda (H6: (eq A a3 (ASort x1 x0))).(\lambda (_:
-(eq A (aplus g (ASort n n0) x2) (aplus g (ASort x1 x0) x2))).(let H8 \def
-(eq_ind A a3 (\lambda (a: A).(arity g c t a)) H_y (ASort x1 x0) H6) in
-(eq_ind_r A (ASort x1 x0) (\lambda (a: A).(sc3 g a c t)) (conj (arity g c t
-(ASort x1 x0)) (sn3 c t) H8 H4) a3 H6))))))) H5)))))) H2)))))))))) (\lambda
-(a: A).(\lambda (_: ((((\forall (a3: A).((llt a3 a) \to (\forall (c:
+nat).(\lambda (h2: nat).(\lambda (k: nat).(eq A (aplus g (ASort n n0) k)
+(aplus g (ASort h2 n2) k))))) (\lambda (n2: nat).(\lambda (h2: nat).(\lambda
+(_: nat).(eq A a3 (ASort h2 n2))))) (sc3 g a3 c t) (\lambda (x0:
+nat).(\lambda (x1: nat).(\lambda (x2: nat).(\lambda (_: (eq A (aplus g (ASort
+n n0) x2) (aplus g (ASort x1 x0) x2))).(\lambda (H7: (eq A a3 (ASort x1
+x0))).(let H8 \def (f_equal A A (\lambda (e: A).e) a3 (ASort x1 x0) H7) in
+(let H9 \def (eq_ind A a3 (\lambda (a: A).(arity g c t a)) H_y (ASort x1 x0)
+H8) in (eq_ind_r A (ASort x1 x0) (\lambda (a: A).(sc3 g a c t)) (conj (arity
+g c t (ASort x1 x0)) (sn3 c t) H9 H4) a3 H8)))))))) H5)))))) H2))))))))))
+(\lambda (a: A).(\lambda (_: ((((\forall (a3: A).((llt a3 a) \to (\forall (c:
C).(\forall (t: T).((sc3 g a3 c t) \to (\forall (a4: A).((leq g a3 a4) \to
(sc3 g a4 c t))))))))) \to (\forall (c: C).(\forall (t: T).((sc3 g a c t) \to
(\forall (a3: A).((leq g a a3) \to (sc3 g a3 c t))))))))).(\lambda (a0:
(THead (Flat Appl) w (lift1 is t)))))))) (sc3 g a3 c t) (\lambda (H5: (arity
g c t (AHead a a0))).(\lambda (H6: ((\forall (d: C).(\forall (w: T).((sc3 g a
d w) \to (\forall (is: PList).((drop1 is d c) \to (sc3 g a0 d (THead (Flat
-Appl) w (lift1 is t)))))))))).(let H_x \def (leq_gen_head g a a0 a3 H3) in
-(let H7 \def H_x in (ex3_2_ind A A (\lambda (a4: A).(\lambda (a5: A).(eq A a3
-(AHead a4 a5)))) (\lambda (a4: A).(\lambda (_: A).(leq g a a4))) (\lambda (_:
-A).(\lambda (a5: A).(leq g a0 a5))) (sc3 g a3 c t) (\lambda (x0: A).(\lambda
-(x1: A).(\lambda (H8: (eq A a3 (AHead x0 x1))).(\lambda (H9: (leq g a
-x0)).(\lambda (H10: (leq g a0 x1)).(eq_ind_r A (AHead x0 x1) (\lambda (a4:
-A).(sc3 g a4 c t)) (conj (arity g c t (AHead x0 x1)) (\forall (d: C).(\forall
-(w: T).((sc3 g x0 d w) \to (\forall (is: PList).((drop1 is d c) \to (sc3 g x1
-d (THead (Flat Appl) w (lift1 is t)))))))) (arity_repl g c t (AHead a a0) H5
-(AHead x0 x1) (leq_head g a x0 H9 a0 x1 H10)) (\lambda (d: C).(\lambda (w:
-T).(\lambda (H11: (sc3 g x0 d w)).(\lambda (is: PList).(\lambda (H12: (drop1
-is d c)).(H0 (\lambda (a4: A).(\lambda (H13: (llt a4 a0)).(\lambda (c0:
-C).(\lambda (t0: T).(\lambda (H14: (sc3 g a4 c0 t0)).(\lambda (a5:
-A).(\lambda (H15: (leq g a4 a5)).(H1 a4 (llt_trans a4 a0 (AHead a a0) H13
-(llt_head_dx a a0)) c0 t0 H14 a5 H15)))))))) d (THead (Flat Appl) w (lift1 is
-t)) (H6 d w (H1 x0 (llt_repl g a x0 H9 (AHead a a0) (llt_head_sx a a0)) d w
-H11 a (leq_sym g a x0 H9)) is H12) x1 H10))))))) a3 H8)))))) H7)))))
-H4)))))))))))) a2)) a1)).
+Appl) w (lift1 is t)))))))))).(let H_x \def (leq_gen_head1 g a a0 a3 H3) in
+(let H7 \def H_x in (ex3_2_ind A A (\lambda (a4: A).(\lambda (_: A).(leq g a
+a4))) (\lambda (_: A).(\lambda (a5: A).(leq g a0 a5))) (\lambda (a4:
+A).(\lambda (a5: A).(eq A a3 (AHead a4 a5)))) (sc3 g a3 c t) (\lambda (x0:
+A).(\lambda (x1: A).(\lambda (H8: (leq g a x0)).(\lambda (H9: (leq g a0
+x1)).(\lambda (H10: (eq A a3 (AHead x0 x1))).(let H11 \def (f_equal A A
+(\lambda (e: A).e) a3 (AHead x0 x1) H10) in (eq_ind_r A (AHead x0 x1)
+(\lambda (a4: A).(sc3 g a4 c t)) (conj (arity g c t (AHead x0 x1)) (\forall
+(d: C).(\forall (w: T).((sc3 g x0 d w) \to (\forall (is: PList).((drop1 is d
+c) \to (sc3 g x1 d (THead (Flat Appl) w (lift1 is t)))))))) (arity_repl g c t
+(AHead a a0) H5 (AHead x0 x1) (leq_head g a x0 H8 a0 x1 H9)) (\lambda (d:
+C).(\lambda (w: T).(\lambda (H12: (sc3 g x0 d w)).(\lambda (is:
+PList).(\lambda (H13: (drop1 is d c)).(H0 (\lambda (a4: A).(\lambda (H14:
+(llt a4 a0)).(\lambda (c0: C).(\lambda (t0: T).(\lambda (H15: (sc3 g a4 c0
+t0)).(\lambda (a5: A).(\lambda (H16: (leq g a4 a5)).(H1 a4 (llt_trans a4 a0
+(AHead a a0) H14 (llt_head_dx a a0)) c0 t0 H15 a5 H16)))))))) d (THead (Flat
+Appl) w (lift1 is t)) (H6 d w (H1 x0 (llt_repl g a x0 H8 (AHead a a0)
+(llt_head_sx a a0)) d w H12 a (leq_sym g a x0 H8)) is H13) x1 H9))))))) a3
+H11))))))) H7))))) H4)))))))))))) a2)) a1)).
theorem sc3_lift:
\forall (g: G).(\forall (a: A).(\forall (e: C).(\forall (t: T).((sc3 g a e
a1)))) (\lambda (x0: A).(\lambda (H7: (leq g x (asucc g x0))).(ex_intro2 A
(\lambda (a1: A).(arity g c0 (TLRef n) a1)) (\lambda (a1: A).(arity g c0
(lift (S n) O u) (asucc g a1))) x0 (arity_abst g c0 d u n H0 x0 (arity_repl g
-d u x H4 (asucc g x0) H7)) (arity_lift g d u (asucc g x0) (arity_repl g d u x
-H4 (asucc g x0) H7) c0 (S n) O (getl_drop Abst c0 d u n H0))))) H6))))))
-H3)))))))))) (\lambda (c0: C).(\lambda (u: T).(\lambda (t: T).(\lambda (_:
-(ty3 g c0 u t)).(\lambda (H1: (ex2 A (\lambda (a1: A).(arity g c0 u a1))
-(\lambda (a1: A).(arity g c0 t (asucc g a1))))).(\lambda (b: B).(\lambda (t3:
-T).(\lambda (t4: T).(\lambda (_: (ty3 g (CHead c0 (Bind b) u) t3
-t4)).(\lambda (H3: (ex2 A (\lambda (a1: A).(arity g (CHead c0 (Bind b) u) t3
-a1)) (\lambda (a1: A).(arity g (CHead c0 (Bind b) u) t4 (asucc g a1))))).(let
-H4 \def H1 in (ex2_ind A (\lambda (a1: A).(arity g c0 u a1)) (\lambda (a1:
-A).(arity g c0 t (asucc g a1))) (ex2 A (\lambda (a1: A).(arity g c0 (THead
-(Bind b) u t3) a1)) (\lambda (a1: A).(arity g c0 (THead (Bind b) u t4) (asucc
-g a1)))) (\lambda (x: A).(\lambda (H5: (arity g c0 u x)).(\lambda (_: (arity
-g c0 t (asucc g x))).(let H7 \def H3 in (ex2_ind A (\lambda (a1: A).(arity g
-(CHead c0 (Bind b) u) t3 a1)) (\lambda (a1: A).(arity g (CHead c0 (Bind b) u)
-t4 (asucc g a1))) (ex2 A (\lambda (a1: A).(arity g c0 (THead (Bind b) u t3)
-a1)) (\lambda (a1: A).(arity g c0 (THead (Bind b) u t4) (asucc g a1))))
-(\lambda (x0: A).(\lambda (H8: (arity g (CHead c0 (Bind b) u) t3
-x0)).(\lambda (H9: (arity g (CHead c0 (Bind b) u) t4 (asucc g x0))).(let H_x
-\def (leq_asucc g x) in (let H10 \def H_x in (ex_ind A (\lambda (a0: A).(leq
-g x (asucc g a0))) (ex2 A (\lambda (a1: A).(arity g c0 (THead (Bind b) u t3)
-a1)) (\lambda (a1: A).(arity g c0 (THead (Bind b) u t4) (asucc g a1))))
-(\lambda (x1: A).(\lambda (H11: (leq g x (asucc g x1))).(B_ind (\lambda (b0:
-B).((arity g (CHead c0 (Bind b0) u) t3 x0) \to ((arity g (CHead c0 (Bind b0)
-u) t4 (asucc g x0)) \to (ex2 A (\lambda (a1: A).(arity g c0 (THead (Bind b0)
-u t3) a1)) (\lambda (a1: A).(arity g c0 (THead (Bind b0) u t4) (asucc g
-a1))))))) (\lambda (H12: (arity g (CHead c0 (Bind Abbr) u) t3 x0)).(\lambda
-(H13: (arity g (CHead c0 (Bind Abbr) u) t4 (asucc g x0))).(ex_intro2 A
-(\lambda (a1: A).(arity g c0 (THead (Bind Abbr) u t3) a1)) (\lambda (a1:
-A).(arity g c0 (THead (Bind Abbr) u t4) (asucc g a1))) x0 (arity_bind g Abbr
-not_abbr_abst c0 u x H5 t3 x0 H12) (arity_bind g Abbr not_abbr_abst c0 u x H5
-t4 (asucc g x0) H13)))) (\lambda (H12: (arity g (CHead c0 (Bind Abst) u) t3
-x0)).(\lambda (H13: (arity g (CHead c0 (Bind Abst) u) t4 (asucc g
-x0))).(ex_intro2 A (\lambda (a1: A).(arity g c0 (THead (Bind Abst) u t3) a1))
-(\lambda (a1: A).(arity g c0 (THead (Bind Abst) u t4) (asucc g a1))) (AHead
-x1 x0) (arity_head g c0 u x1 (arity_repl g c0 u x H5 (asucc g x1) H11) t3 x0
-H12) (arity_repl g c0 (THead (Bind Abst) u t4) (AHead x1 (asucc g x0))
-(arity_head g c0 u x1 (arity_repl g c0 u x H5 (asucc g x1) H11) t4 (asucc g
-x0) H13) (asucc g (AHead x1 x0)) (leq_refl g (asucc g (AHead x1 x0)))))))
-(\lambda (H12: (arity g (CHead c0 (Bind Void) u) t3 x0)).(\lambda (H13:
-(arity g (CHead c0 (Bind Void) u) t4 (asucc g x0))).(ex_intro2 A (\lambda
-(a1: A).(arity g c0 (THead (Bind Void) u t3) a1)) (\lambda (a1: A).(arity g
-c0 (THead (Bind Void) u t4) (asucc g a1))) x0 (arity_bind g Void
-not_void_abst c0 u x H5 t3 x0 H12) (arity_bind g Void not_void_abst c0 u x H5
-t4 (asucc g x0) H13)))) b H8 H9))) H10)))))) H7))))) H4)))))))))))) (\lambda
-(c0: C).(\lambda (w: T).(\lambda (u: T).(\lambda (_: (ty3 g c0 w u)).(\lambda
-(H1: (ex2 A (\lambda (a1: A).(arity g c0 w a1)) (\lambda (a1: A).(arity g c0
-u (asucc g a1))))).(\lambda (v: T).(\lambda (t: T).(\lambda (_: (ty3 g c0 v
-(THead (Bind Abst) u t))).(\lambda (H3: (ex2 A (\lambda (a1: A).(arity g c0 v
-a1)) (\lambda (a1: A).(arity g c0 (THead (Bind Abst) u t) (asucc g
-a1))))).(let H4 \def H1 in (ex2_ind A (\lambda (a1: A).(arity g c0 w a1))
-(\lambda (a1: A).(arity g c0 u (asucc g a1))) (ex2 A (\lambda (a1: A).(arity
-g c0 (THead (Flat Appl) w v) a1)) (\lambda (a1: A).(arity g c0 (THead (Flat
-Appl) w (THead (Bind Abst) u t)) (asucc g a1)))) (\lambda (x: A).(\lambda
-(H5: (arity g c0 w x)).(\lambda (H6: (arity g c0 u (asucc g x))).(let H7 \def
-H3 in (ex2_ind A (\lambda (a1: A).(arity g c0 v a1)) (\lambda (a1: A).(arity
-g c0 (THead (Bind Abst) u t) (asucc g a1))) (ex2 A (\lambda (a1: A).(arity g
-c0 (THead (Flat Appl) w v) a1)) (\lambda (a1: A).(arity g c0 (THead (Flat
-Appl) w (THead (Bind Abst) u t)) (asucc g a1)))) (\lambda (x0: A).(\lambda
-(H8: (arity g c0 v x0)).(\lambda (H9: (arity g c0 (THead (Bind Abst) u t)
-(asucc g x0))).(let H10 \def (arity_gen_abst g c0 u t (asucc g x0) H9) in
-(ex3_2_ind A A (\lambda (a1: A).(\lambda (a2: A).(eq A (asucc g x0) (AHead a1
-a2)))) (\lambda (a1: A).(\lambda (_: A).(arity g c0 u (asucc g a1))))
-(\lambda (_: A).(\lambda (a2: A).(arity g (CHead c0 (Bind Abst) u) t a2)))
-(ex2 A (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v) a1)) (\lambda
-(a1: A).(arity g c0 (THead (Flat Appl) w (THead (Bind Abst) u t)) (asucc g
-a1)))) (\lambda (x1: A).(\lambda (x2: A).(\lambda (H11: (eq A (asucc g x0)
-(AHead x1 x2))).(\lambda (H12: (arity g c0 u (asucc g x1))).(\lambda (H13:
-(arity g (CHead c0 (Bind Abst) u) t x2)).(let H14 \def (sym_eq A (asucc g x0)
-(AHead x1 x2) H11) in (let H15 \def (asucc_gen_head g x1 x2 x0 H14) in
-(ex2_ind A (\lambda (a0: A).(eq A x0 (AHead x1 a0))) (\lambda (a0: A).(eq A
-x2 (asucc g a0))) (ex2 A (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v)
+d u x H4 (asucc g x0) H7)) (arity_repl g c0 (lift (S n) O u) x (arity_lift g
+d u x H4 c0 (S n) O (getl_drop Abst c0 d u n H0)) (asucc g x0) H7))))
+H6)))))) H3)))))))))) (\lambda (c0: C).(\lambda (u: T).(\lambda (t:
+T).(\lambda (_: (ty3 g c0 u t)).(\lambda (H1: (ex2 A (\lambda (a1: A).(arity
+g c0 u a1)) (\lambda (a1: A).(arity g c0 t (asucc g a1))))).(\lambda (b:
+B).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (ty3 g (CHead c0 (Bind b)
+u) t3 t4)).(\lambda (H3: (ex2 A (\lambda (a1: A).(arity g (CHead c0 (Bind b)
+u) t3 a1)) (\lambda (a1: A).(arity g (CHead c0 (Bind b) u) t4 (asucc g
+a1))))).(let H4 \def H1 in (ex2_ind A (\lambda (a1: A).(arity g c0 u a1))
+(\lambda (a1: A).(arity g c0 t (asucc g a1))) (ex2 A (\lambda (a1: A).(arity
+g c0 (THead (Bind b) u t3) a1)) (\lambda (a1: A).(arity g c0 (THead (Bind b)
+u t4) (asucc g a1)))) (\lambda (x: A).(\lambda (H5: (arity g c0 u
+x)).(\lambda (_: (arity g c0 t (asucc g x))).(let H7 \def H3 in (ex2_ind A
+(\lambda (a1: A).(arity g (CHead c0 (Bind b) u) t3 a1)) (\lambda (a1:
+A).(arity g (CHead c0 (Bind b) u) t4 (asucc g a1))) (ex2 A (\lambda (a1:
+A).(arity g c0 (THead (Bind b) u t3) a1)) (\lambda (a1: A).(arity g c0 (THead
+(Bind b) u t4) (asucc g a1)))) (\lambda (x0: A).(\lambda (H8: (arity g (CHead
+c0 (Bind b) u) t3 x0)).(\lambda (H9: (arity g (CHead c0 (Bind b) u) t4 (asucc
+g x0))).(let H_x \def (leq_asucc g x) in (let H10 \def H_x in (ex_ind A
+(\lambda (a0: A).(leq g x (asucc g a0))) (ex2 A (\lambda (a1: A).(arity g c0
+(THead (Bind b) u t3) a1)) (\lambda (a1: A).(arity g c0 (THead (Bind b) u t4)
+(asucc g a1)))) (\lambda (x1: A).(\lambda (H11: (leq g x (asucc g
+x1))).(B_ind (\lambda (b0: B).((arity g (CHead c0 (Bind b0) u) t3 x0) \to
+((arity g (CHead c0 (Bind b0) u) t4 (asucc g x0)) \to (ex2 A (\lambda (a1:
+A).(arity g c0 (THead (Bind b0) u t3) a1)) (\lambda (a1: A).(arity g c0
+(THead (Bind b0) u t4) (asucc g a1))))))) (\lambda (H12: (arity g (CHead c0
+(Bind Abbr) u) t3 x0)).(\lambda (H13: (arity g (CHead c0 (Bind Abbr) u) t4
+(asucc g x0))).(ex_intro2 A (\lambda (a1: A).(arity g c0 (THead (Bind Abbr) u
+t3) a1)) (\lambda (a1: A).(arity g c0 (THead (Bind Abbr) u t4) (asucc g a1)))
+x0 (arity_bind g Abbr not_abbr_abst c0 u x H5 t3 x0 H12) (arity_bind g Abbr
+not_abbr_abst c0 u x H5 t4 (asucc g x0) H13)))) (\lambda (H12: (arity g
+(CHead c0 (Bind Abst) u) t3 x0)).(\lambda (H13: (arity g (CHead c0 (Bind
+Abst) u) t4 (asucc g x0))).(ex_intro2 A (\lambda (a1: A).(arity g c0 (THead
+(Bind Abst) u t3) a1)) (\lambda (a1: A).(arity g c0 (THead (Bind Abst) u t4)
+(asucc g a1))) (AHead x1 x0) (arity_head g c0 u x1 (arity_repl g c0 u x H5
+(asucc g x1) H11) t3 x0 H12) (arity_repl g c0 (THead (Bind Abst) u t4) (AHead
+x1 (asucc g x0)) (arity_head g c0 u x1 (arity_repl g c0 u x H5 (asucc g x1)
+H11) t4 (asucc g x0) H13) (asucc g (AHead x1 x0)) (leq_refl g (asucc g (AHead
+x1 x0))))))) (\lambda (H12: (arity g (CHead c0 (Bind Void) u) t3
+x0)).(\lambda (H13: (arity g (CHead c0 (Bind Void) u) t4 (asucc g
+x0))).(ex_intro2 A (\lambda (a1: A).(arity g c0 (THead (Bind Void) u t3) a1))
+(\lambda (a1: A).(arity g c0 (THead (Bind Void) u t4) (asucc g a1))) x0
+(arity_bind g Void not_void_abst c0 u x H5 t3 x0 H12) (arity_bind g Void
+not_void_abst c0 u x H5 t4 (asucc g x0) H13)))) b H8 H9))) H10)))))) H7)))))
+H4)))))))))))) (\lambda (c0: C).(\lambda (w: T).(\lambda (u: T).(\lambda (_:
+(ty3 g c0 w u)).(\lambda (H1: (ex2 A (\lambda (a1: A).(arity g c0 w a1))
+(\lambda (a1: A).(arity g c0 u (asucc g a1))))).(\lambda (v: T).(\lambda (t:
+T).(\lambda (_: (ty3 g c0 v (THead (Bind Abst) u t))).(\lambda (H3: (ex2 A
+(\lambda (a1: A).(arity g c0 v a1)) (\lambda (a1: A).(arity g c0 (THead (Bind
+Abst) u t) (asucc g a1))))).(let H4 \def H1 in (ex2_ind A (\lambda (a1:
+A).(arity g c0 w a1)) (\lambda (a1: A).(arity g c0 u (asucc g a1))) (ex2 A
+(\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v) a1)) (\lambda (a1:
+A).(arity g c0 (THead (Flat Appl) w (THead (Bind Abst) u t)) (asucc g a1))))
+(\lambda (x: A).(\lambda (H5: (arity g c0 w x)).(\lambda (H6: (arity g c0 u
+(asucc g x))).(let H7 \def H3 in (ex2_ind A (\lambda (a1: A).(arity g c0 v
+a1)) (\lambda (a1: A).(arity g c0 (THead (Bind Abst) u t) (asucc g a1))) (ex2
+A (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v) a1)) (\lambda (a1:
+A).(arity g c0 (THead (Flat Appl) w (THead (Bind Abst) u t)) (asucc g a1))))
+(\lambda (x0: A).(\lambda (H8: (arity g c0 v x0)).(\lambda (H9: (arity g c0
+(THead (Bind Abst) u t) (asucc g x0))).(let H10 \def (arity_gen_abst g c0 u t
+(asucc g x0) H9) in (ex3_2_ind A A (\lambda (a1: A).(\lambda (a2: A).(eq A
+(asucc g x0) (AHead a1 a2)))) (\lambda (a1: A).(\lambda (_: A).(arity g c0 u
+(asucc g a1)))) (\lambda (_: A).(\lambda (a2: A).(arity g (CHead c0 (Bind
+Abst) u) t a2))) (ex2 A (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v)
a1)) (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w (THead (Bind Abst) u
-t)) (asucc g a1)))) (\lambda (x3: A).(\lambda (H16: (eq A x0 (AHead x1
-x3))).(\lambda (H17: (eq A x2 (asucc g x3))).(let H18 \def (eq_ind A x2
-(\lambda (a: A).(arity g (CHead c0 (Bind Abst) u) t a)) H13 (asucc g x3) H17)
-in (let H19 \def (eq_ind A x0 (\lambda (a: A).(arity g c0 v a)) H8 (AHead x1
-x3) H16) in (ex_intro2 A (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v)
-a1)) (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w (THead (Bind Abst) u
-t)) (asucc g a1))) x3 (arity_appl g c0 w x1 (arity_repl g c0 w x H5 x1
-(leq_sym g x1 x (asucc_inj g x1 x (arity_mono g c0 u (asucc g x1) H12 (asucc
-g x) H6)))) v x3 H19) (arity_appl g c0 w x H5 (THead (Bind Abst) u t) (asucc
-g x3) (arity_head g c0 u x H6 t (asucc g x3) H18)))))))) H15)))))))) H10)))))
-H7))))) H4))))))))))) (\lambda (c0: C).(\lambda (t3: T).(\lambda (t4:
-T).(\lambda (_: (ty3 g c0 t3 t4)).(\lambda (H1: (ex2 A (\lambda (a1:
-A).(arity g c0 t3 a1)) (\lambda (a1: A).(arity g c0 t4 (asucc g
+t)) (asucc g a1)))) (\lambda (x1: A).(\lambda (x2: A).(\lambda (H11: (eq A
+(asucc g x0) (AHead x1 x2))).(\lambda (H12: (arity g c0 u (asucc g
+x1))).(\lambda (H13: (arity g (CHead c0 (Bind Abst) u) t x2)).(let H14 \def
+(sym_eq A (asucc g x0) (AHead x1 x2) H11) in (let H15 \def (asucc_gen_head g
+x1 x2 x0 H14) in (ex2_ind A (\lambda (a0: A).(eq A x0 (AHead x1 a0)))
+(\lambda (a0: A).(eq A x2 (asucc g a0))) (ex2 A (\lambda (a1: A).(arity g c0
+(THead (Flat Appl) w v) a1)) (\lambda (a1: A).(arity g c0 (THead (Flat Appl)
+w (THead (Bind Abst) u t)) (asucc g a1)))) (\lambda (x3: A).(\lambda (H16:
+(eq A x0 (AHead x1 x3))).(\lambda (H17: (eq A x2 (asucc g x3))).(let H18 \def
+(eq_ind A x2 (\lambda (a: A).(arity g (CHead c0 (Bind Abst) u) t a)) H13
+(asucc g x3) H17) in (let H19 \def (eq_ind A x0 (\lambda (a: A).(arity g c0 v
+a)) H8 (AHead x1 x3) H16) in (ex_intro2 A (\lambda (a1: A).(arity g c0 (THead
+(Flat Appl) w v) a1)) (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w
+(THead (Bind Abst) u t)) (asucc g a1))) x3 (arity_appl g c0 w x1 (arity_repl
+g c0 w x H5 x1 (leq_sym g x1 x (asucc_inj g x1 x (arity_mono g c0 u (asucc g
+x1) H12 (asucc g x) H6)))) v x3 H19) (arity_appl g c0 w x H5 (THead (Bind
+Abst) u t) (asucc g x3) (arity_head g c0 u x H6 t (asucc g x3) H18))))))))
+H15)))))))) H10))))) H7))))) H4))))))))))) (\lambda (c0: C).(\lambda (t3:
+T).(\lambda (t4: T).(\lambda (_: (ty3 g c0 t3 t4)).(\lambda (H1: (ex2 A
+(\lambda (a1: A).(arity g c0 t3 a1)) (\lambda (a1: A).(arity g c0 t4 (asucc g
a1))))).(\lambda (t0: T).(\lambda (_: (ty3 g c0 t4 t0)).(\lambda (H3: (ex2 A
(\lambda (a1: A).(arity g c0 t4 a1)) (\lambda (a1: A).(arity g c0 t0 (asucc g
a1))))).(let H4 \def H1 in (ex2_ind A (\lambda (a1: A).(arity g c0 t3 a1))
H=@
-MATITAOPTIONS=-onepass
+MATITAOPTIONS=$(MATITAUSEROPTIONS) -onepass
DIR=$(shell basename $$PWD)
DIR=$(shell basename $$PWD)
-MATITAOPTIONS=-onepass
+MATITAOPTIONS=$(MATITAUSEROPTIONS) -onepass
$(DIR) all:
../matitac $(MATITAOPTIONS)
("Unwrapped exception, please fix: "^ snd (MatitaExcPp.to_string exn));
pp_times fname false big_bang big_bang_u big_bang_s;
clean_exit baseuri false
-;;
module F =
struct
let is_readonly_buri_of opts file =
let buri = List.assoc "baseuri" opts in
- Http_getter_storage.is_read_only (Librarian.mk_baseuri buri file)
- ;;
+ Http_getter_storage.is_read_only (Librarian.mk_baseuri buri file)
let root_and_target_of opts mafile =
try
Some root, LibraryMisc.obj_file_of_baseuri
~must_exist:false ~baseuri ~writable:true
with Librarian.NoRootFor x -> None, ""
- ;;
let mtime_of_source_object s =
try Some (Unix.stat s).Unix.st_mtime
with Unix.Unix_error (Unix.ENOENT, "stat", f) when f = s -> None
- ;;
let mtime_of_target_object s =
try Some (Unix.stat s).Unix.st_mtime
with Unix.Unix_error (Unix.ENOENT, "stat", f) when f = s -> None
- ;;
let build = compile;;
let load_deps_file = Librarian.load_deps_file;;
- let dotdothack s =
- let rec aux = function
- | ".." :: _ :: tl -> aux tl
- | x -> x
- in
- String.concat "/" (aux (Str.split (Str.regexp "/") s))
- ;;
-
end
module Make = Librarian.Make(F)